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An unconventional uptake rate objective function

approach enhances applicability of genome-scale models

for mammalian cells
Yiqun Chen 1, Brian O. McConnell2, Venkata Gayatri Dhara1, Harnish Mukesh Naik1, Chien-Ting Li1, Maciek R. Antoniewicz2 and

Michael J. Betenbaugh1

Constraint-based modeling has been applied to analyze metabolism of numerous organisms via flux balance analysis and genome-

scale metabolic models, including mammalian cells such as the Chinese hamster ovary (CHO) cells—the principal cell factory

platform for therapeutic protein production. Unfortunately, the application of genome-scale model methodologies using the

conventional biomass objective function is challenged by the presence of overly-restrictive constraints, including essential amino

acid exchange fluxes that can lead to improper predictions of growth rates and intracellular flux distributions. In this study, these

constraints are found to be reliably predicted by an “essential nutrient minimization” approach. After modifying these constraints

with the predicted minimal uptake values, a series of unconventional objective functions are applied to minimize each individual

non-essential nutrient uptake rate, revealing useful insights about metabolic exchange rates and flows across different cell lines and

culture conditions. This unconventional uptake-rate objective functions (UOFs) approach is able to distinguish metabolic

differences between three distinct CHO cell lines (CHO-K1, -DG44, and -S) not directly observed using the conventional biomass

growth maximization solutions. Further, a comparison of model predictions with experimental data from literature correctly

correlates with the specific CHO-DG44-derived cell line used experimentally, and the corresponding dual prices provide fruitful

information concerning coupling relationships between nutrients. The UOFs approach is likely to be particularly suited for

mammalian cells and other complex organisms which contain multiple distinct essential nutrient inputs, and may offer enhanced

applicability for characterizing cell metabolism and physiology as well as media optimization and biomanufacturing control.

npj Systems Biology and Applications (2019)5:25 ; https://doi.org/10.1038/s41540-019-0103-6

INTRODUCTION

Constraint-based genome-scale models and flux balance analysis
(FBA) have been widely used to investigate metabolic systems of
various organisms. By connecting genotype to phenotype,
genome-scale metabolic models (GeM) provide detailed informa-
tion about biochemical reactions networks that compose cellular
metabolism.1 Assuming pseudo-steady-state for the intracellular
metabolites, one can limit the solution space of these under-
determined systems by optimizing one particular reaction via
linear programming, referred to as the objective function. Besides
a value of the optimized objective function, the resulting solution
also provides information about intracellular fluxes within the
system.2 A conventional objective function often used for
biological entities is maximization of the growth rate, known as
the biomass objective function (BOF), giving the underlying
assumption that the “goal” of an organism is to maximize its
reproduction, from a perspective of adaptive evolution.3 This
optimization approach has been well-studied and validated for
many prokaryotic organisms such as Escherichia coli4,5 and B.
subtilis.6,7 However for a more complex metabolic system such as
mammalian cells, fewer successful constraints-based and FBA-
related models have been published.8 Chinese hamster ovary
(CHO) cells represent the most widely used host cell for

therapeutic recombinant protein production and have been
gaining increased attention for in-silico modeling to better
understand the metabolism. Prior to the development of CHO
genome-scale models, constraint-based modeling work done on
CHO cells included studies using metabolomics and FBA to
investigate key metabolism such as energy consumption and
lactate production,9,10 using a non-specific mammalian cell
genome-scale model and Mus musculus metabolic model.
A recent CHO-specific genome-scale model contains informa-

tion on 1766 genes, 6663 reactions, and has led to the generation
of three cell line-specific models (CHO-S, CHO-K1, and CHO-
DG44).11 The model was validated by predicting growth rates
using sets of metabolic flux data from the literature, and was then
applied to study the tradeoff between growth and recombinant
protein production.11 The published CHO GeM has demonstrated
its value in facilitating the studies of CHO metabolism. For
example, one study tailors the generic CHO GeM into host and
recombinant cell-specific models and integrated with multi-omics
data to understand the differences of genotypic and phenotypic
traits between wild-type and recombinant CHO cells.12 Another
study perturbed the constraints of a CHO GeM to mimic the
variation of medium composition and found that CHO cells stop
growing when CHO-specific essential amino acids availability
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decreases, and limitations in non-essential amino acids can be
overcome by enhancing amino acid biosynthesis reactions.10

Besides understanding intracellular physiology and predicting
metabolic engineering consequences, constraint-based models
can be useful for other applications such as model predictive
control,13–15 for various organisms including yeast and mamma-
lian cells.16–19

Computational models are useful tools typically because of their
capability to describe multiple or hard-to-measure outputs from
fewer or easy-to-measure inputs. However, current constraint-
based modeling approaches do not fully exploit the value of
detailed metabolic models, in particular for mammalian cells with
complex, numerous and distinct nutrient inputs. Although
intracellular fluxes can be estimated, required inputs are
considerable and may be challenging to quantify rapidly. These
represent some of the principal difficulties in extending
constraint-based models to mammalian cell bioprocesses, eliciting
the need for a modeling approach specifically tailored for
mammalian cells.
In particular, mammalian cell growth predictions by FBA suffer

from a significant complication due to the input requirement of
numerous essential amino acids exchange fluxes as part of the
constraints. Even slight disagreement between these uptake rate
constraints and biomass composition in the model can result in
optimization solutions being overly restrictive or even dictated
by a single or a few potentially underestimated essential amino
acid uptake rates. However, direct estimation of these essential
amino acid uptake inputs is possible based on measured growth
rates and a “essential nutrient minimization” (ENM) approach
which solves for the absolute minimal consumption require-
ments. These rate estimations can be used to adjust the FBA
constraints in order to resolve problematic mass balance
constraints. Also, they can be transformed into real-time
concentration predictions via a static optimization approach,14

which can be useful for bioreactor monitoring and control. In this
study, we introduce an unorthodox FBA approach based on a set
of uptake-rate objective functions (UOFs), which utilizes the
measured growth rate as a constraint and independently
minimizes the uptake rate of each individual non-essential
nutrient. We demonstrate that the UOFs approach reveals
insights concerning metabolic differences between mammalian
cell line variants not evident from traditional BOF methodologies.
Furthermore, sensitivity data derived from the UOFs solution
provides a direct visualization of metabolic relationships
between nutrients in the networks, providing enhanced char-
acterizations of CHO physiology with applications ranging from
cell line evaluation, metabolic engineering to media optimization
and biomanufacturing control.

RESULTS

Growth predictions of technical replicates reveal the impact of
essential amino acid and rate-limiting fluxes

We initially demonstrated how the presence of essential amino
acids can exert a negative impact on the FBA of a mammalian cell
model due to their values being rate-limiting factors for the
conventional BOF, using a case study containing published CHO-
K1 specific growth rates, 23 metabolites production and
consumption rates for 7 cell culture replicates.20 Reported
cell-density specific exchange rates of each replicate were
converted to dry-weight specific rates assuming cell dry weight
equaling 216.1 pg/cell.11 The FBA-predicted growth rates using
metabolomics data of all the seven replicates as well as a
prediction using all averaged flux data were compared against
experimental measurements as illustrated in Fig. 1a. While all
individual predictions for the individual raw inputs significantly
underestimate the growth rate, the averaged flux inputs provide a

higher growth rate value that more closely matches to the
averaged measured value, indicating significant fluctuations for

the individual measured fluxes within the 23 flux inputs (Fig. 1b).
We, therefore, hypothesize that specific flux input values may be
underestimated in some cases and as a result overly restrictive,
lowering the predictions of the growth rate.
In order to elucidate which metabolites or fluxes limit the

growth prediction for each individual replicate, we evaluated

the dual price (also known as shadow price) of each metabolite
for the BOF, which indicates how maximized growth rate
changes in response to increasing the flux value of a particular

metabolite under pseudo steady-state conditions. Shown in
Supplementary Table 1 are the shadow prices for each of these
metabolites for all replicates. In six of the seven replicates, only
the dual prices of lysine and histidine are positive among the 23

flux inputs, suggesting these components represent the
primary rate-limiting factors for growth maximization. The
exception, replicate 3, indicates multiple rate-limiting factors
exist. This is most likely due to energy being the rate-limiting

factor in this particular FBA solution. However, the predicted
growth rate of replicate 3 is closer to that of the averaged
inputs, indicating that, unlike all other cases, replicate 3 is not

significantly affected by deficiencies in the lysine and histidine
input data.
To illustrate how predictions are biased by deviation in the

lysine and histidine flux measurements, the growth rates were
predicted with individual lysine and histidine flux constraints
replaced by the replicate average. Averaged lysine or averaged

histidine fluxes both result in increases of uptake flux constraints
and growth rate predictions for multiple replicates (see Fig. 1b,
Avg Lys or Avg His versus Raw), and averaging both (Avg Lys &
His) brings most of the growth predictions to a similar and higher

level, albeit lower than experimentally measured rates perhaps
due to limitations with other constraints or inaccuracies in
assumed cell dry weight. Shown in Fig. 1c is the mean relative

deviation between the individual growth predictions for replicate
inputs and the prediction using averaged inputs (definition shown
in Fig. 1d), in which mean relative deviation drops from 50.2% for
the Raw data to 10.2% for the Avg Lys & His, implying that lysine

and histidine constraints are responsible for the interesting
observation that averaged inputs yield the highest growth rate
prediction. Averaging of glucose inputs had no impact on the
growth rate prediction results except for replicate 3, in which the

predicted growth rate increases by 13%. Indeed, these results
agree with the dual prices with respect to BOF as illustrated in
Supplementary Table 1, in which replicate 3 is limited by the

energy sources such as glucose and the other replicates are
limited, at least initially, by lysine or histidine. A distribution of
measured lysine and histidine uptake rates (Supplementary Fig. 1)
indicates that replicates 1, 2, and 7, whose growth predictions are

limited by lysine, exhibit the lowest lysine uptake rates of the
group; likewise for histidine-limited replicates 4, 5, and 6, their
corresponding reported uptake rates are 50% less than the

average. Thus 2 of the 23 flux constraints, which are both essential
amino acids, dictate the upper limit of the growth maximization
solutions for six of the seven replicates. These results illustrate that
for mammalian modeling involving essential amino acids, under-

estimation of even a single exchange flux constraint can exert an
outsized negative impact on the FBA-based growth rate predic-
tions. Such a limitation can result in an inability to properly
estimate the corresponding intracellular flux distributions. Unfor-

tunately, typical analytical methodologies do not guarantee
sufficient measurement accuracy that would prevent such flux
underestimations.
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Essential amino acid consumption rates estimated by the
“essential nutrient minimization” approach are comparable to the
measured values

Given that essential amino acids can independently control the
final FBA solution as essential elements of the BOF, it is possible
that these amino acids can be rate-determining factors of cell
growth. Since essential amino acid uptake rates may be directly
related to growth, their consumption rate values can be estimated
by finding the uptake requirements needed to sustain the
observed growth rates, and one way to evaluate this approach
is to compare measured amino acid uptake rates to model-
predicted levels. Therefore, we began by revisiting the standard
BOF and instead implementing a minimization approach in which
the cells are assumed to incorporate nutrients at the minimal
uptake rates with respect to the growth rate. This inversion of the
objective function can provide a useful strategy to address the
challenges in estimating the utilization rates for essential amino
acids and other metabolites and eventually reduce the model
inputs for FBA.
First of all, one can solve for the “essential minimal” nutrient

uptake rates for a particular growth rate after unbounding all
nutrient uptake rates in order to permit unrestricted consumption
of other nutrients while constraining growth and protein
productivity, if available (Fig. 2a). The objective function is then
set to minimize utilization of each specific substance. Here we
define the term “essential minimum” as the minimal uptake
requirement of a particular substance required to sustain a given
growth rate and productivity regardless of how much other

nutrients the cell can consume. This approach, called “essential
nutrient minimization” (ENM) approach, can be used to identify
model-specific essential nutrients as well as their absolute minimal
uptake requirements corresponding to the observed growth rates.
This ENM approach predicts non-zero fluxes for arginine, cysteine,
histidine, isoleucine, leucine, lysine, methionine, phenylalanine,
proline, threonine, tryptophan, and valine, which correspond to
the 12 CHO-specific essential amino acids, as well as a limited
glucose uptake rate. All non-essential amino acid uptake fluxes are
zero when subjected to the same minimization approach due to
reactions present in the model that allow synthesis of these
nutrients. The ENM-solved essential amino acid uptake rates
solved from experimentally measured growth rates are compared
with measured exchange fluxes for three published studies and
eight cultivation conditions.9,21,22 These growth and metabolo-
mics datasets collected for various culture conditions were
originally used to validate the CHO GeM.11 Shown in Fig. 2b is a
comparison of essential amino acid uptake rates between the
ENM solutions and measured values. For both high and low
producers, early and late exponential phases, and one of the two
cases in which cultures were subjected to temperature shift (Cold
1), the relative prediction error is 26% assuming measurement
error is zero. This comparability between prediction and
measurement across 12 different amino acids suggests that in
unperturbed culture conditions, CHO cells consume essential
amino acids at a rate near the theoretical minimum. This means
that essential amino acids contribute mostly or only to synthesize
biomass and recombinant proteins for CHO cells cultured in these
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Fig. 1 Effects of raw and averaged specific uptake constraints on growth rate predictions when using biomass objective function compared
to experimental growth measurements for 7 replicates. a Schematic of different GeM growth predictions with raw or averaged data inputs of
lysine, histidine, lysine plus histidine, and glucose; b growth rate measurements (yellow bars) versus growth rate predictions (black bars)
before and after specific input averaging; c mean relative deviation of predicted grow rates using replicate 1–7 inputs compared to predicted
growth rate using averaged inputs for all five raw/modified datasets; d deviation from “average” is defined as the difference between
predicted growth rates using replicate and averaged inputs
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conditions, and this may be due to a number of possible reasons.
For example, it might be assumed that in many typical culture
conditions, the enzymatic pathway efficiency of metabolizing the
non-essential nutrients outcompetes the efficiency of degrading
essential amino acid as energy sources, leading to CHO cell’s
preference of consuming non-essential nutrients and only
requisite amounts of essential amino acids. However, a noticeable
underestimation of consumption rates can be observed for several
essential amino acids in Fig. 2b when the cells were treated with
sodium butyrate (HP+ NaBu and LP+ NaBu) and the second case
in which cells were subjected to a temperature shift (Cold 2). A
possible explanation for the larger average discrepancy in these
cases is that culture perturbations led to a physiological response
to environmental stress, causing the cells to consume more
essential nutrients than the theoretical minimal growth require-
ment. In addition, tryptophan uptake rates are underestimated for
the majority of the computational predictions. One possibility is
that CHO cells consume and metabolize more tryptophan than
minimal requirement. Another possibility is that tryptophan
composition in the cell biomass experimentally is different from
that in the model. Moreover, the results also help explain the
unsuccessful BOF-based growth prediction in the low producer
case of Fig. 2b, where the growth rate prediction exhibited a
relative error as large as 60% with respect to the experimental
data in the previous CHO GeM publication.11 Minimal amino acid
flux predictions match closely to the experimental data except for
phenylalanine and threonine, and among the two, the measured
threonine uptake is much lower than prediction and has the same
level of error as growth prediction, meaning that the growth
prediction is directly dictated by the low measured threonine
uptake flux for this particular case.
To further examine if the predictable behavior of essential

amino acids consumption can be observed in cultures having
different media compositions, a batch experiment was performed

with a suspension IgG1 producing CHO-K1 cell line grown in five
mixtures of two different chemically defined media A and B (Fig.
3a). Viable cell density (VCD), glucose, 15 amino acids, and lactate
concentrations were measured daily until all cells reached the
death phase at ~167 h. Specific growth rates were estimated by
fitting VCD data in the growth phase (0–94 h) to an exponential
growth equation. All the cell dry-weight-specific consumption
rates were calculated using concentration levels and integrated
viable cell density from 18 to 94 h, assuming cell dry weight
approximately equals to 216.1 pg/cell.11 Specific productivity was
assumed unchanged to be the model’s “default number”,
originally measured in another study.9 Since the flux magnitude
through recombinant protein production is relatively small
compared to the flux through biomass function, productivity
does not have a significant impact on flux prediction results for
this model. Flux predictions for the eight measured essential
amino acids (arginine, cysteine, and tryptophan values were not
available) obtained by this approach agree with the experimental
values for all cases (Fig. 3b–f), and the relative magnitudes of each
amino acid uptake rate are consistent between prediction and
measurement and among the 5 different cases. However,
methionine uptake is underestimated for all cases with a relative
error as large as 64%, which may be due to methionine
measurement error or biomass composition differences between
the cell lines used in the experiment and that in the model.
Obvious differences in culture behaviors can be observed for the 5
cases, confirming the impact of media composition on the cells.
For example, cells cultured in 100% media B secreted glutamate at
a higher rate than that in 100% media A. Despite obvious
differences observed for cell behavior in the two media (details
shown in Supplementary Data), measured essential uptake fluxes
are conserved and consistent with our predictions. Moreover, no
direct relation between essential amino acid concentrations and
uptake rate was observed. For example, even though the

Growth rate measurements
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Minimize each uptake rate
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Essential Nutrient Minimization (ENM)Essential Nutrient Minimization (ENM)

(predicted essential AA uptake rates)(predicted essential AA uptake rates)
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Fig. 2 Approach to estimate essential amino acid consumption rates using growth rate data. a Schematic of Essential Nutrient Minimization
(ENM) approach; b comparison of model-solved essential amino acid minimal uptake rates and measured exchange fluxes for 12 essential
amino acids under different cultivation conditions. Literature experimental data include: High producer (HP), low producer (LP), sodium
butyrate treatment (NaBu), early exponential phase (Early Exp), late exponential phase (Late Exp), and temperature shift (Cold 1 and Cold
2).9,21,22 Uptake rates are in units of millimole/gram dry weight/hour
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measured initial proline concentration in 100% media A is more
than 2 times higher than that in 100% media B, measured specific
proline consumption rates demonstrate no significant difference
for all 5 media blends. Thus for these CHO cells, it is reasonable to

assume that uptake rates of the 12 essential amino acids are
strongly related to growth and can be directly estimated by
finding the minimal uptake requirement. Thus, one is able to avoid
measuring 12 input constraints needed to conduct FBA.

Unconventional uptake-rate objective functions (UOFs) for non-
essential nutrients reveal metabolic differences across cell lines

Mentioned in the previous section, an “essential nutrient
minimization approach” can be used to estimate the consumption

rates of 12 CHO-specific essential amino acids directly from
growth rate, and as a result, makes FBA more tractable for
biotechnologists as they are able to measure fewer key
metabolites in order to generate an intracellular flux distribution

profile. Next, we applied an unconventional FBA approach that
individually minimizes a number of uptake rates of non-essential
nutrients, while the growth rate and all other available flux
constraints are fixed (Fig. 4a). To demonstrate the merits of this

UOFs approach, we first optimized the growth rates via BOF using
three different CHO cell line models (CHO-K1, CHO-DG44, and
CHO-S) for a CHO M250-9 fed batch culture9 (Early Exp and Late

Exp cases in Fig. 2b). Shown in Fig. 4b, the BOF predictions present
the correct experimental trends in decreasing growth rate with
time for early and late exponential phases but interestingly no

difference was observed in the three cell-line specific growth rate
predictions.
We then applied the UOFs algorithm in which uptake rates of

glucose and non-essential amino acids (only for those that are
consumed by the cells) were minimized individually one at a time.
Measured growth rates, IgG productivity and all measured
metabolite exchange rates (except for the one to solve for) were
set as constraints. Essential amino acid exchange inputs were
corrected with the ENM-predicted uptake rates (as shown in Fig. 2)
if the measured values were smaller. Interestingly, the FBA results
revealed distinct differences among the three cell-line specific
models (Fig. 4c). Simulation results of each nutrient indicated that
the CHO-DG44, among the three cell line variants, requires more
nutrients to sustain the given growth and flux constraints,
indicating a more “resource demanding” metabolism in this
experimental condition. Furthermore, for both early and late
exponential phases, uptake rates predicted by the -DG44 model
agree best with experimental measurements for all the substrates
considered except tyrosine (in which all predictions were the
same). Also noteworthy is that the -DG44 model correctly predicts
consumption of aspartic acid while the other two models ignore
aspartate consumption. Of note, CHO M250-9 is indeed a CHO-
DG44 cell line producing an IgG product of commercial interest.
These results demonstrate that the nutrient uptake behavior
solved with the model of CHO-DG44, the cell-line used in these
experiments, best describes the experimentally observed meta-
bolic profile, and unlike the BOF-based results, successfully
captures metabolic differences among the three cell lines.

Media B

Media A
Measure

Cell culture

Mix

+ cells

Predict

Amino acid level measurements

Amino acid uptake rate predictions

Growth rate

Genome-scale model

Input Uptake

minimization

Fig. 3 Comparison Of Model-predicted Minimal Essential amino acid uptake rates and measured exchange fluxes for an IgG-producing CHO-
K1 cell line in various media blends during the early exponential phase. a Schematic of media-blend experimental measurements and model
predictions; b 100% media A, c 75% media A+ 25% media B, d 50% media A+ 50% media B, e 25% media A+ 75% media B, f 100% media B
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Although cell line differences might exist in the BOF-driven
solution, they are not readily observable and likely hidden in the
thousands of intracellular fluxes predicted. To demonstrate how
the UOFs approach can impact the intracellular flux solutions,
viable flux ranges of several intracellular carbohydrate metabolism
reactions solved independently by the BOF and a single UOFs
solution (glucose), are shown in Supplementary Fig. 4 for the early
exponential case (see Fig. 4b, c). For the selected reactions in the
BOF solution, CHO-K1 and CHO-S exhibit similar fluxes while CHO-
DG44 has the most distinct flux profile compared to the other two
cell lines. The fluxes obtained by the UOFs methods also varied,
meaning that UOFs approach is available as a tool for evaluating
flux profiles across cell lines and culture conditions. Interestingly,
the resulted ranges of viable flux of UOFs solution are narrower
than that of BOF, potentially due to the fact that the UOFs
approach uses measured growth rate as a constraint. Alternatively,
BOF’s predicted growth rate is lower than UOFs’ growth rate
constraint, resulting in less contribution of nutrients to biomass
and thus more available as “free fluxes” in the BOF solutions. Thus
this UOFs mechanism can be a powerful method for analyzing
metabolic systems that require multiple nutrient inputs, which
typically exist in mammalian cell cultures.

Dual prices of metabolites for uptake rates describe nutrient
substitution and metabolic stress inflicted by excessive
methionine

As mentioned previously, dual prices of metabolites can be
calculated relative to BOF to predict the metabolite which upon
increasing will potentially improve the growth. However, BOF-
based dual prices provide very limited information, especially for
the mammalian models since the dual price is zero unless the
metabolite is rate-limiting for the FBA, and having 10–12 innate
and potentially independent rate-limiting metabolites in the
model will very likely result in having only one non-zero value

for the optimized solution. Furthermore, the resulting dual price is
not meaningful if rate-limiting flux is an artifact due to a slightly
underestimated experimental exchange flux. On the other hand,
dual prices calculated based on UOFs tell how many units of each
uptake requirement will change if one increases one unit of
another metabolite present in cell. Figure 5 shows dual prices of
all the inlet metabolites with respect to each uptake flux from
solutions in Fig. 4c for the three cell lines at the early exponential
phase. Here each metabolite carries a distinct value presenting the
relationship with each uptake flux. Since an IgG producing CHO-
DG44 cell line (CHO M250-9) was used to generate the
experimental data, results from CHO-DG44 model may contain
the most relevant dual price values. Due to the use of measured
flux profiles, these solutions do not represent a general analysis of
the particular cell line but are scenario-specific for the particular
experimental results used here, and thus it may not be
appropriate to directly compare values between different
solutions. Nevertheless, since every single dual price was
calculated based on a corresponding optimized solution where
each single uptake flux objective function was kept at its
minimum, qualitative comparisons can provide knowledge about
metabolic similarities and differences across the different cell lines.
For example, for all three cell lines tyrosine can only be converted
from phenylalanine at 1:1 ratio, as only the dual price entry for
tyrosine (Tyr, y-axis) is phenylalanine (Phe, x-axis) and itself (Tyr, x-
axis) at −1. Tryptophan is not directly related to any of the five
metabolites considered here since the corresponding dual prices
are zero. Also, for all three cell lines increasing methionine (Met, x-
axis) will lead to elevated uptake requirement of five of the six
nutrients excluding tyrosine. The reason is because the CHO cells
require extra energy and other metabolites such as serine to
catabolize methionine. The result also implies that rather than
relieving other nutrient demands, excessive methionine uptake
inflicts a metabolic burden on the cells. Arginine in CHO-S is

Fig. 4 Demonstration of biomass objective function (BOF) and uptake-rate objective functions (UOFs)-based predictions versus experimental
measurements for for CHO cells during early and late exponential phases. a Schematics of the BOF and UOFs inputs and outputs when
applied to CHO genome-scale model; b growth rate predictions via BOF using three cell-line specific models and metabolomics datasets for
fed-batch of CHO-DG44-derived cell line,9 for early and late exponential phases; c uptake rate predictions of glucose and 5 non-essential
amino acids and measurements obtained via UOFs for these same datasets
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metabolically connected to asparagine, aspartic acid, glutamine
and serine, unlike in the other two cell lines which indicate
negligible conversion from arginine (Arg, x-axis). Similarly,
increasing valine consumption (Val, x-axis) exerts a very slight
metabolic demand on other nutrients for the CHO-DG44 solution
as indicated by the slight positive dual prices, while no such
demand is evident in CHO-K1 and CHO-S dual prices of valine.
These results reflect metabolic differences between CHO-DG44
and the other two cell lines, indicating fewer interrelated amino
acid metabolic reactions available in the CHO-DG44 model and
may potentially explain, at least in part, why CHO-DG44 requires
slightly more nutrients than the other two cell lines in the
simulation given the same hypothetical flux exchange profile.

DISCUSSION

The widely used BOF maximization approach has inherent
limitations when applied to mammalian cells due to their complex
nutrient requirements, including essential nutrients that the
mammalian cells are not capable of synthesizing. Liebig’s law of
the minimum states that agricultural yield is determined by the
availability of scarcest essential nutrient resource.23 In the case of
constraint-based models, this “Liebig’s barrel effect” also exists
that the optimized maximal biomass reproduction rate is dictated
by one or more rate-determining nutrient uptake rates. Therefore,
from the perspective of FBA, each and every individual resource
must be sufficient to satisfy the material balance for biomass
generation in order to achieve the observed rate. Indeed, such
mass balance violations have even been observed when modeling
the prokaryotic Escherichia coli, and as a result the biomass
composition was modified accordingly.24 These nutrient uptake
restrictions detract from the reliability of a BOF-based mammalian
cell FBA, because underestimation of even one amino acid
consumption rate may significantly bias the linear program
solution. As an attempt to address this limitation, one can identify
and reformulate poor datasets by searching for flux constraints
that make the material balance infeasible. For example, Hefzi et. al. 11

performed flux variability analysis to find the range of each
exchange reaction that results in a feasible FBA solution. However,
despite the wide range of feasible values, some upper limits of

essential amino acid exchange fluxes were still slightly lower than
the values needed to be consistent with observed growth rates,
and as a result, the predicted growth rates were reduced.
Considering how the disagreement between uptake rates and
biomass composition data of essential amino acids can impact
FBA results for mammalian models, it is recommended to pay
extra attention to critical measurement values and appropriate
corrections should be applied before using them to perform FBA.
Alternatively, the approach taken in this study was to directly

estimate those essential amino acid uptake fluxes by solving for
the “essential minimum” consumption requirements based on
growth measurements. The predicted uptake rates are compar-
able with the experimentally measured values for a variety of
unperturbed culture conditions (Fig. 2). As a result, researchers
may reasonably avoid the effort-consuming analytical approaches
required to obtain the information of consumption rates for each
essential amino acid. However, the predictions demonstrated are
based on several key assumptions. First of all, we assume that the
model includes a reliable biomass composition of CHO cells. While
the information of amino acid compositions in proteins were
obtained from five different CHO cell lines,9 the total biomass
composition used in BOF are not CHO-specific11 and thus may
affect the accuracy of essential amino acid predictions based on
growth rates. Second, we assumed a consistent cell dry weight of
216.1 picograms per cell for all cell lines based on the biomass
composition used in the CHO genome-scale models.11 Other
studies have reported various cell dry weight can range from
about 300 pg/cell to as large as 770 pg/cell,22,25–27 and uncertain-
ties in cell dry weight can impact the estimation of dry-weight-
specific uptake rates. Finally, we assumed that the biomass
composition and cell weight remains unchanged during 18–94 h
culture period, which may not be realistic in all cases. Thus a more
comprehensive and accurate set of information about CHO-line-
specific biomass composition and dry weight is desired for even
more reliable amino acid uptake rate predictions.
Nonetheless, this rate prediction approach can refine existing

problematic constraints for FBA by preventing mass balance
conflicts between constrained growth rates and essential nutrient
exchange fluxes. This enables the implementation of the
alternative UOFs objective function described here involving

Fig. 5 Dual price sensitivity of uptake fluxes for 6 non-essential nutrients in response to 17 nutrient exchange fluxes for CHO-DG44, -K1 and -S
during early exponential phase. Positive and negative values represent increase or decrease, respectively, of uptake requirement in response
to increasing consumption of amino acids and glucose. x-axis: Increase in 1 unit of specific amino acid or glucose availability; y-axis: Resulting
increase/decrease of each nutrient uptake requirement
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minimization of the uptake rate of non-essential nutrients.
Previous studies have examined different objective functions that
are potential candidates for representing the metabolic goal of
organisms and considered selection of minimizing substrate
utilization. Knorr, Jain, and Srivastava28 studied the selection of
the most appropriate objective function using an Escherichia coli
genome-scale model and stated that minimization of succinate
does not predict the experimentally measured values. Savinell and
Palsson29 investigated the effect of minimizing ATP production,
NADH production, moles and mass of nutrient uptake for but
observed that minimization of total nutrient uptake was not
appropriate for hybridoma cells. Indeed, in a nutrient-rich
environment, one might claim that the goal of an organism is
not to minimize nutrient consumption. However, the validity of
this nutrient minimization approach is actually supported for a
variety of reasons. First of all, the UOFs approach has a
theoretically equivalent underlying assumption as the BOF, where
the BOF assumes organisms use their given nutrient availability to
maximize growth, and the UOFs states that the organisms’
nutrient uptake is the minimal amount to sustain a given growth
rate. BOF approach has been proved to work for a number of
organisms including CHO according to the publication of CHO
genome-scale model, thus the UOFs theoretically should generate
similarly accurate predictions. Also, from the perspective of mass
balances, the possible solutions will converge as the degrees of
freedom decrease, thus the minimization approach will describe
the actual behavior if enough relevant constraints are applied.
Thus, although it may not be appropriate to apply the UOFs
approach if the organism is known to systematically consume
more nutrients than its metabolic requirement, this approach will
be valid and even preferable if enough relevant constraints are
available (e.g., enhanced lactate secretion fluxes may address
excessive glucose consumption fluxes) and furthermore provides
enhanced sensitivity in predicting insights into metabolic
variability as described below.
Indeed, for a network including “macro-reactions” such as

biomass generation which requires a combination of multiple

elements such as energy sources and building blocks for protein,
minimizing individual elements is distinct from maximizing
biomass generation and is more capable of demonstrating
metabolic differences between networks. This minimization
approach takes into account the availability and excess of each
single element and the metabolic connections among them, while
classic maximization solutions may ignore some of these. As a
simple example, FBA problems for 2 different hypothetical
networks shown in Fig. 6 illustrate the difference between the
two approaches when applied to models such as those present for
mammalian cells. For the two hypothetical networks, a macro-
component X (analogous to biomass protein) is composed of 1
unit of each individual building block components A, B, C, and D
(analogous to amino acids), and Network 2 contains one more
reaction than Network 1 (inter-conversion between B and C). With
the given constraint on the availability of four components,
maximizing production of X gives the same answer 4 for both
networks, due to the fact that component A is rate-limiting
(analogous to an essential amino acid). However, when the
generation of X is constrained to 4 units and instead minimizing
the utilization of C is the objective function, the two solutions vary
and Network 2 yields a smaller minimized value. This difference in
metabolic capabilities explains the observations in Fig. 4c in which
two different cell lines yielded different solutions for the UOFs
case while the two cell lines had equivalent solutions for the BOF
case. In cases where multiple rate-limiting components are
present, the UOFs are able to reveal a greater amount of
information concerning metabolic differences, specifically, meta-
bolic “flexibility”.
Such a difference indicates the UOFs to be a more suitable

choice for selecting cell lines or clones by providing information
about nutrient consumption efficiency and, potentially, viability
in specific media environments. From the perspective of
intracellular flux analysis, the FBA-derived flux profile is likely
to be reliable only if the optimized objective function is
consistent with the experimental data. Compared to BOF, linear
program solutions based on UOFs are more sensitive to “system-

1 X 1 A 1 B 1 C 1 D

A B C D= + + +

A B C D

4

X

5 5 3

4 4 4 4

Network 2

A B C D

4

X

5 5 3

4 4 4 4

Network 1

A B C D

4

X

5 ? 3

4 4 4 4

4

A B C D

4

X

5 ? 3

4 4 4 4

4

Fig. 6 Model FBA problem containing 2 alternative hypothetical networks. Comparison between maximizing X (upper) and minimizing
component C (lower) illustrates the enhanced sensitivity of the minimization approach for certain networks
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level” variations, not only because UOFs calculate every single
uptake flux, but also due to the reason that the BOF
optimization does not consider other additional fluxes that do
not contribute or detract from to the optimal solution of
biomass generation (e.g., unconstrained by-product secretion).
Thus an accurate prediction by UOFs may be more reliable for
intracellular flux analysis than one obtained from a BOF. This
advantage of being more sensitive increases the capability of
identifying cell line variants from metabolomic flux data, leading
to increased potential to obtain physiological or genomic
insights from metabolomics data. However, the selection
between BOF and UOFs approach is a trade-off between
sensitivity and flexibility, where the UOFs may strictly necessi-
tate certain measurement inputs as constraints which may not
be required by the BOF to generate a solution. Moreover, the
fact that UOFs uses growth rate as a constraint enables a robust
analysis of intracellular flux profiles when the realistic cell
growth rates can be reliably measured. The biomass generation
reaction (growth rate) is the most important factor in FBA
models which often drives the intracellular flux distribution
since this reaction involves the greatest number of metabolites
and its value largely determines the overall nutrient consump-
tion and energy generation requirements. As mentioned before,
BOF predictions may exhibit challenges in cases where nutrient
constraints limit the range of possible growth solutions and
hence lead to varied intracellular flux predictions. In contrast,
the UOFs approach fixes growth rates as constraints; in cases
where the uptake rate of a nutrient is inaccurately predicted, the
impact on the intracellular flux profile may be more restricted to
fluxes within that particular nutrient and its derivatives. Thus,
the UOFs method is likely to still generate reasonable flux
profiles for many of the metabolites involved in cell growth as
long as the growth estimates are reliable.
Dual prices provide information on how the objective can

increase/decrease relative to the change in a specific factor. In
FBA, dual prices are commonly used to analyze the sensitivity of
growth in response to a metabolite pool change and identify
growth-limiting factors.30 This sensitivity data will also carry
information regarding the energetics of metabolism.31 Dual
prices calculated based on UOFs allow researchers to visualize
the sensitivity of a metabolite uptake requirement with respect
to changes in availability, providing useful information about
metabolic relationships between metabolites such as inter-
conversion, nutrient substitution as well as cost-benefit
responses to metabolite pool perturbation. A previous study
calculated the cost of synthesizing intermediates of glucose/
glutamine consumption in hybridoma cells under different
oxygen availability, by minimizing glucose/glutamine uptake
rates after fixing glutamine/glucose exchange flux to minimum
flux needed for biosynthesis and removing the catabolic
pathways of essential amino acids.32 However, these sensitivity
data were generated with artificial exchange constraints that
will affect the optimization results and the optimization was not
validated by experimental measurement, thus these values may
not represent the actual metabolic cost of metabolites in
hybridoma cells. Also, ignoring the catabolism of essential
amino acids does not permit analysis of cases in which essential
amino acids are over-consumed as shown in Fig. 2b. In the
current study, our approach keeps the metabolic pathways
intact and as a result incorporates constraints correction via a
direct estimation of minimal essential amino acid uptake rates.
The sensitivity results for CHO-DG44 shown in Fig. 5 are derived
from validated FBA solutions in which the UOFs optimization
results are consistent with experimental measurements.
The results in Fig. 5 illustrate the potential impact of perturbing

the amino levels, such as negative consequences of increasing the
intracellular methionine pool to a higher level. It suggests that if
these cells use the resources in the most efficient way, they are

likely to keep the methionine consumption to a minimum but
sufficient rate to optimize its metabolism, which agrees with our
general hypothesis made about estimating essential amino acid
uptake rates. Also, it provides insights into strategies for media
optimization in which it may be useful to limit methionine
consumption during the cell culture process in order to minimize
the potential undesired effects on the consumption of other
nutrients. Indeed, a previous in vivo study has shown that
excessive dietary methionine depletes serine in rat livers, and in
turn obligates serine supplementation to reduce methionine
toxicity,33 due to the fact that methionine catabolism in
mammalian cells demands serine and ATP.34

As a result, this study introduces an alternative approach to
predict the metabolic characteristics and performance for
complex systems such as mammalian cells, for which conven-
tional FBA approach are limited due to multiple overly restrictive
or conflicting constraints. Prediction of essential amino acid
consumption through the ENM approach prevents problematic
rate-limitations by ensuring consistency between flux con-
straints and biomass composition, making our non-traditional
UOFs approach feasible. The UOFs approach improves the
capabilities and sensitivity of mammalian FBA with the under-
lying dual prices providing additional information about
nutrient consumption, metabolic variations, and differences
across cell lines. In addition, straightforward estimation of hard-
to-measure amino acid concentration data from easy-to-
measure cell counts and recombinant protein productivity
may also enhance optimization of biomanufacturing (for
example, see Supplementary Discussion). Indeed, predictions
of essential amino acid consumption rates may be useful for
facilitating monitoring of bioreactor operations and even model
predictive control in the future.

METHODS

Cell culture and quantification of extracellular metabolites

A CHO-K1 suspension cell line provided by National Institute of Health was
used to perform amino acid consumption study. CHO cells were seeded at
0.3 × 106 cells/mL and cultured in shaker flasks (Fisher Scientific) in
incubators operating at 37 °C and constant 5% CO2 level. Direct mixture of
two chemically defined media purchased from GE HealthCare Life Science
and MilliporeSigma were used to generate different media compositions.
6 mM of glutamine was supplemented to the media before using. Culture
aliquots were collected daily for analysis. Viable cell density was counted
using hemocytometer and cell viability was estimated via trypan blue
staining method. Glucose and lactate levels were measured using a YSI
2700 D select biochemistry analyzer (Yellow Spring Instruments).
Concentrations of alanine, glycine, valine, leucine, isoleucine, proline,
methionine, serine threonine, phenylalanine, aspartate, glutamate, lysine,
glutamine, and tyrosine were measured using a GC-MS based method as
described in a previous publication.35

Growth and exchange rate calculation

Growth rates of CHO cells were assumed to follow exponential growth
behavior:

Nx ¼ Nx; 0 � exp μ � tð Þ (1)

Here Nx,0 is the number of cells (counted in millions of cell) at initial time,
Nx is the number of cells after culture time t (hour), and μ is the specific
growth rate (1/hour). Specific growth rates were estimated by fitting the
time and cell counts data to the exponential equation (1). Assuming CHO
cells growing exponentially, the specific metabolite exchange rates were
determined by dividing the metabolite concentration difference by the
integration of cell density over time:36

r ¼
V � ΔCi
R t

0
Nxdt

¼
μ � V � ΔCi

Nx; 0 � exp μ � tð Þ � 1ð Þ
(2)

Here specific exchange rate r has the unit of millimole per million cells per
hour, V is the culture volume (mL), ΔCi (mmol/L) is the concentration
difference of metabolite i between two time points (initial time and after t
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hours). Specific exchange rates were converted to genome-scale model
inputs, in the unit of millimole per gram dry weight per hour with an
assumed cell dry weight.

Constraint-based modeling

COBRA toolbox v3.037 was used to conduct constraint-based modeling
studies, running in MATLAB 2016b environment (The MathWorks Inc.).
CHO global and cell-line specific genome-scale models (available from
http://bigg.ucsd.edu/ and11) were used to perform analysis.

Dual price analysis

In linear programs, dual price, also known as shadow price, is defined as
the change in objective function as a result of a unit incremental change of
a specific constraint.30 Such kind of dual problems study the marginal
worth of a specific resource with respect to the optimization target. For
FBA problems in this article, the dual price (λi) of a specific uptake rate (ri)
can be defined by the following formula:

λi ¼
∂Z

∂ri
(3)

Here Z is the objective function for specific problems, which is, growth rate
for BOF and non-essential nutrient uptake rate for UOFs. Dual prices in
Fig. 5 and Supplementary Table 1 were solved using COBRA toolbox with
Gurobi LP solver.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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