
M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 697–705, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Undergraduate Computational Science Curriculum

Angela B. Shiflet and George W. Shiflet

Wofford College Spartanburg, South Carolina, USA
{shifletab, shifletgw}@wofford.edu,

http://www.wofford.edu/ecs/

Abstract. Wofford College instituted one of the first undergraduate programs in
computational science, the Emphasis in Computational Science (ECS). Besides
programming, data structures, and calculus, ECS students take two
computational science courses (Modeling and Simulation for the Sciences, Data
and Visualization) and complete a summer internship involving computation in
the sciences. Materials written for the modeling and simulation course and
developed with funding from National Science Foundation served as a basis the
first textbook designed specifically for an introductory course in the
computational science and engineering curriculum. The successful ECS has
attracted a higher percentage of females than in most computer science
curricula. The SIAM Working Group on Undergraduate Computational Science
and Engineering Education summarized features of Wofford’s ECS and other
computational science programs. Besides its established curriculum, Wofford
has incorporated computational science in other courses, such as in a sequence
of three microbiology laboratories on modeling the spread of disease.

Keywords: computational science, education, modeling, simulation, under-
graduate, internships, females.

1 Introduction

Much scientific investigation now involves computing as well as theory and
experimentation. Computing can often stimulate the insight and understanding that
theory and experiment alone cannot achieve. With computers, scientists can study
problems that previously would have been too difficult, time consuming, or
hazardous; and, virtually instantaneously, they can share their data and results with
scientists around the world.

The increasing speed and memory of computers, the emergence of distributed
processing, the explosion of information available through the World Wide Web, the
maturing of the area of scientific visualization, and the availability of reasonably
priced computational tools all contribute to the increasing importance of computation
to scientists and of computational science in education.

With funding from the National Science Foundation (NSF Grant No. 0087979),
Wofford College developed one of the first undergraduate programs in computational
science, an Emphasis in Computational Science (ECS), which the college’s faculty
unanimously approved in 1998 [1]. One highly successful feature of the ECS is the
requirement of a summer internship involving computation in the sciences. With its

698 A.B. Shiflet and G.W. Shiflet

emphasis on applications, the program has attracted women to a much higher
percentage than for the average computer science major.

1.1 Wofford College’s Emphasis in Computational Science (ECS)

Wofford College is a selective residential undergraduate liberal arts institution of
1350 students, where the sciences are particularly strong [2]. The SAT range (mid 50
% of the class) for freshman entering in the fall of 2007 was 1140-1340.
Approximately one-third of the students major in science, and about two-thirds of
those majoring in science and mathematics attend postgraduate or professional
schools.

For a year in 1997-1998, faculty members in biology, chemistry, mathematics,
physics, psychology, and computer science met to discuss how better to prepare
students to use computing in the sciences. The following general needs were
identified:

− A balanced program for interested and qualified science majors through which
they can expand their knowledge of and skills in computational science

− Increased opportunities for students to obtain internships, graduate work, and
jobs in computational science

− Ready access for science and computer science students to modern
computational software, such as scientific visualization tools and graphical
computer algebra systems

− Familiarity for all computer science majors and many science majors with
distributed processing and the UNIX environment because of their extensive use
in the sciences

In response to these needs, with consultation from scientists at various laboratories,
and with assistance from Dr. Bob Panoff and the Shodor Educational Foundation [3],
the faculty developed the Emphasis in Computational Science (ECS), which has the
following requirements:

− Complete a Bachelor of Science in lab science or Mathematics, Physics, or
Psychology

− Complete five courses: Programming and Problem Solving, Data Structures,
Calculus I, and two computational science courses: Modeling and Simulation
for the Sciences (COSC/MATH 175) and Data and Visualization (COSC 370)

− Complete a summer internship involving computation in the sciences

1.2 Modeling and Simulation for the Sciences (COSC/MATH 175)

Prerequisites for Modeling and Simulation for the Sciences (COSC/MATH 175),
which does not require computer programming experience, are minimal. The course
uses the concept of rate of change, or derivative, from a first course in calculus
throughout, but students do not need to know derivative formulas to understand the
material or develop the models. With a brief introduction, all students who have taken
COSC/MATH 175 without having had calculus have successfully completed the
course with above average grades.

 An Undergraduate Computational Science Curriculum 699

Modeling and Simulation for the Sciences prepares the student to understand and
utilize fundamental concepts of computational science, the modeling process,
computer simulations, and scientific applications. The course considers two major
approaches to computational science problems: system dynamics models and cellular
automaton simulations.

System dynamics models provide global views of major systems that change with
time. For example, one such model considers changes over time in the numbers of
predators and prey, such as hawks and squirrels. To develop such models, students
employ a systems dynamics tool, such as STELLA®, Vensim®, or Berkeley
Madonna®, to create pictorial representations of models, establish relationships, run
simulations, and generate graphs and tables of the results. Typical applications
include drug dosage, scuba diving and the ideal gas laws, enzyme kinetics,
defibrillators and electrical circuits, cardiovascular system, global warming,
carbohydrate metabolism, predator-prey, competition, radioactive chains, malaria, and
other diseases.

In contrast to system dynamics, cellular automaton simulations provide local views
of individuals affecting individuals. The world under consideration consists of a
rectangular grid of cells, and each cell has a state that can change with time according
to rules. For example, the state of one cell could represent a squirrel and the state of
an adjacent cell could correspond to a hawk. One rule could be that, when adjacent, a
hawk gets a squirrel with a probability of 25%. Thus, on the average at the next time
step, a 25% chance exists that the particular squirrel will be no more. Students
employ a computational tool, such as Mathematica®, Maple®, or MATLAB®, to
complete simulations, such as Brownian motion, movement of ants, spread of fire,
HIV in body, foraging behavior, spread of disease, fish schooling, pit vipers and heat
diffusion, and snow-flake solidification.

1.3 Data and Visualization (COSC 370)

Because large Web-accessible databases are becoming prevalent for storing scientific
information, Data and Visualization (COSC 370) covers the concepts and
development of relational databases. With a prerequisite of the first programming
course, currently in the Python programming language, students in the class learn Perl
and HTML programming in the UNIX operating system environment. After learning
to access and develop databases in MySQL, they create web pages with Perl CGI
programs to interface between web pages and scientific databases. Additionally, they
study a dynamic programming algorithm for alignment of genomic sequences.
Interactive online modules, developed at Wofford with the help of its NSF grant,
provide the textbook for this portion of the course [4].

The second half of the course covers scientific visualization. Effective
visualization of data helps scientists extract information and communicate results.
Thus, students learn fundamental concepts, tools, and algorithms of computer
graphics and interactive scientific visualization animations using Steve Cunningham’s
text on Computer Graphics: Programming, Problem Solving, and Visual
Communication [5], which has all scientific applications. For example, some of the
animations are of DNA and other molecules, diffusion across a membrane, movement
of ocean waves, heat diffusion, spread of disease, and Lorenz equations.

700 A.B. Shiflet and G.W. Shiflet

1.4 Computational Science Internships

Building on their classroom work, students obtaining the Emphasis in Computational
Science have had exciting and meaningful summer internships involving computation
in scientific research at such institutions as Los Alamos National Laboratory, the Jet
Propulsion Laboratory, Oak Ridge National Laboratory, The Scripps Research
Institute, Howard Hughes Medical Institute at the Wadsworth Center, The Shodor
Education Foundation, the National Blood Data Resource Center, Greenwood Genetic
Center, University of California at San Diego, Virginia Commonwealth University,
Clemson University, University of South Carolina, and the Medical University of
South Carolina. Examples of some of the projects are simulating the dynamics of the
parasite that causes Chagas’ disease, developing software for the science operations
interface of Mars Rovers, optimizing a program to simulate aspects of heart behavior,
developing programs to study the evolution of bacterial genomes, performing a
microgravity scaling theory experiment, analyzing the relationship of diet to birth
defects, creating an extensible framework for the mathematical manipulation of
music, modeling of biochemical pathways involved with cardiovascular disease,
performing computer image processing of the ribosome, modeling metabolic
pathways of a bacterium for bioremediation, implementing a text mining approach to
evaluate terms for ontology development, and analyzing traumatic brain injuries
computationally.

After their internships, students have presented their results at Wofford and at
conferences, such as The Society for Industrial and Applied Mathematics (SIAM)
Annual Conference, the SIAM Computational Science and Engineering Conference,
and the Consortium for Computing in Science in Colleges Southeastern Conference.

ECS graduates have attended medical school to become physicians; pursued such
graduate degrees as genetics at the University of North Carolina, biotechnology and
biomedical engineering at the University of South Carolina, computational physics at
the North Carolina A & T University, physics at the University of Tennessee and
Oklahoma State University, and computer graphics at Columbia University; and have
obtained positions, such as medical researcher at GlaxoSmithKline; researcher at the
National Institutes of Health, Oak Ridge National Laboratory, and Vanderbilt Medical
School; and computational science educator at the Shodor Foundation.

1.5 Attracting Female, Minority, and Biology Students

A disturbing trend in recent years has been for a much smaller percentage of women
to pursue undergraduate degrees in computer science. In 1984, women earned 37% of
computer science bachelor’s degrees, but they obtained only 28% of such degrees in
2000 [6]. Educational research indicates that on the average women prefer
applications of computer science and teamwork to such areas as game development
working individually [7] and [8].

Encouraging women to take more computer science was not one of the goals of
Wofford’s ECS, however, that certainly has been the effect. In the years 2002-2007,
eighteen (18) students graduated with the ECS. Eight (8) of these, or 44%, were
women. Perhaps emphases on applications to the sciences and working in teams have
been two of the factors that have contributed to the higher percentage of interest by
women in computational science at Wofford.

 An Undergraduate Computational Science Curriculum 701

We also were pleased that minorities completed the ECS at a slightly higher
percentage than their representation in Wofford’s general population. Three (3) ECS
graduates (17%) were minorities.

Another surprise is the number of biology majors who are attracted to
computational science. Conventional “wisdom” is that biology majors do not like or
do not excel in mathematics or other technical areas. That has not been our
experience, and often biology majors are at the top of their computer science and
mathematics classes. Since 2002, thirteen (13) of the eighteen ECS graduates (72%)
have been biology majors.

2 Introductory Textbook

While designing the two computational courses, it became evident that there were no
suitable, available textbooks written for undergraduates. Arising from this need, the
authors of this paper developed such a textbook. One of the authors is a
mathematician/computer scientist, and the other is a biologist. The interdisciplinary
nature of this area inspired collaboration. Each author had sufficient science and
mathematics background to make the partnership possible and successful. Thus, with
a foundation of the materials developed through the NSF grant, the authors wrote the
first textbook designed specifically for an introductory course in the computational
science and engineering curriculum, Introduction to Computational Science:
Modeling and Simulation for the Sciences [9].

2.1 Content

Introduction to Computational Science: Modeling and Simulation for the Sciences
prepares the student to understand and utilize fundamental concepts of computational
science, the modeling process, computer simulations, and scientific applications. The
text considers two major approaches to computational science problems: system
dynamics models and cellular automaton simulations.

One of the positive aspects and challenges of computational science is its
interdisciplinary nature. This challenge is particularly acute with students who have
not had extensive experience in computer science, mathematics, and all areas of the
sciences. Thus, the text provides the background that is necessary for the student to
understand the material and confidently succeed in the course. Each module involving
a scientific application covers the prerequisite science without overwhelming the
reader with excessive detail. The numerous application areas for examples, exercises,
and projects include astronomy, biology, chemistry, economics, engineering, finance,
earth science, medicine, physics, and psychology.

Most sections of a module end with Quick Review Questions that provide fast
checks of the student's comprehension of the material. Answers, often with
explanations, at the end of the module give immediate feedback and reinforcement to
the student.

To further aid in understanding the material, most modules include a number of
exercises that correlate directly to text examples and that the student usually is to

702 A.B. Shiflet and G.W. Shiflet

complete with pencil and paper. Answers to selected problems, whose exercise
numbers are in color, appear in an appendix.

A subsequent “Projects” section provides numerous project assignments for
students to develop individually or in teams. While a module, such as “Modeling
Malaria,” might develop one model for an application area, the projects section
suggests many other refinements, approaches, and applications. The ability to work
well with an interdisciplinary team is important for a computational scientist. Two
chapters provide modules of additional, substantial projects from a variety of
scientific areas that are particularly appropriate for teams of students.

2.2 Website

The text’s website (linked from http://www.wofford.edu/ecs/) provides links to
downloadable tutorials, models, pdf files, and datasets for various tool-dependent quick
review questions and answers, examples, and projects. Moreover, an online
Instructor’s Manual includes solutions to all text exercises, tutorials, and selected
projects [4]. To model dynamic systems, students using the text can employ any one of
several tools, such as STELLA®, Vensim® Personal Learning Edition (PLE) (free for
personal and educational use), Berkeley Madonna®, the Python programming
language, or Excel®. The text also employs a generic approach for cellular automaton
simulations and scientific visualizations of the results, so that students can employ any
one of a variety of computational tools, such as Maple®, Mathematica®, MATLAB®,
the Python programming language, or Excel®. Typically, an instructor picks one
system dynamics tool and one computational tool for class use during the term.

3 SIAM Working Group Report

In 2006, a SIAM Working Group on Undergraduate Computational Science and
Engineering Education issued a report [10]. The committee consisted of Peter Turner,
Chair, Kirk Jordan, Linda Petzold, Angela Shiflet, and Ignatios Vakalis. To a large
extent Wofford College’s Emphasis in Computational Science follows the working
group’s recommendations.

3.1 The Report

The SIAM Working Group Report noted, “Some content elements appear to be
common in the emerging undergraduate CSE curriculum: scientific programming,
numerical methods/scientific computing, linear algebra, differential equations,
mathematical modeling, and statistics are common mathematics components;
advanced programming, parallel and high performance computing, and scientific
visualization are commonly added where the program has its home closer to computer
science; simulation, optimization, computational fluid dynamics, image and signal
processing are among the offerings from some of the applications areas…. By the
nature of CSE, the successful undergraduate CSE student will have skills in applied
mathematics, computing including some parallel or high performance computing, and
at least one application field”.

 An Undergraduate Computational Science Curriculum 703

The report continued, “It is absolutely essential that interdisciplinary collaboration
be an integral part of the curriculum and the thesis research….Expressed in broad
terms, the overall needs are a combination of disciplinary skills and cross-disciplinary
skills, learning how to learn, ability to work in a team, adaptability, perseverance and
an interest in solving problems that may be multi-faceted”.

Topics of the report include “Nature of CSE Undergraduate Education”, “Models
for CSE Programs”, “A Few Examples”, “The Value of Internships”, “Needs that
Undergraduate CSE Education Must Address”, “CSE Careers”, and “Conclusion and
Recommendations”.

4 Modeling in the Biology Classroom

Computational science education not only refers to establish programs, but also can
involve individual courses or projects in various science courses. For the past three
years, George Shiflet has incorporated a three-laboratory sequence on the modeling of
the spread of disease in Microbiology, a class with 30 to 40 students.

4.1 The Laboratories on Modeling

In the first week’s laboratory in the sequence on modeling, students are given an
introduction to a systems dynamics modeling tool, in this case STELLA, with a model

infecteds recovereds susceptibles
get sick recover

infection rate recovery rate

Fig. 1. SIR model diagram

susceptibles(t) = susceptibles(t - dt) + (-get_sick)*dt

infecteds(t) = infecteds(t - dt) +
 (get_sick - recover) * dt

recovereds(t) = recovereds(t - dt) + (recover) * dt

get_sick = transmission_constant*susceptibles*infecteds

recover = recovery_rate * infecteds

Fig. 2. Difference equations for SIR model generated by STELLA

704 A.B. Shiflet and G.W. Shiflet

of the interactions of predators and prey. Then, students progress through a tutorial
on developing a simple SIR (susceptibles-infecteds-recovereds) model of the spread
of disease. Fig. 1 displays an SIR model diagram typical of those that the students
create with a systems dynamics tool. After establishing the relationships among the
systems of susceptibles (S), infecteds (I), and recovereds (R), students double click
each component and enter initial values, constants, and differential equations. For
example, with t indicating time and with dR/dt = cR for a positive constant c being the
model for the rate of change of recovereds with respect to time, students enter the
equation recovery_rate * infecteds into the recover flow from infecteds to recovereds.
Similarly, the flow out of susceptibles, get_sick, is gets the equation
transmission_constant * susceptibles * infecteds. STELLA translates the constants and
equations into corresponding difference equations, such as in Fig. 2. Upon running
simulation, STELLA can display tables and graphs.

After completing the tutorial, students select diseases, such as Typhus or Hepatitis
C, at random. Each student is paired at with another student to investigate the disease
before the next laboratory. The student pairs ascertain as much as possible about the
nature of their assigned diseases, including data, such as rates of change.

In the next week’s laboratory, each pair develops a model of the spread of their
disease using the system dynamics modeling tool. The professor and student
assistants, who are obtaining the Emphasis in Computational Science, mentor the
teams.

In the final week of the lab sequence, each pair makes a presentation on their
disease and model to the class. Individually, each student writes a report on his or her
pair’s model and what they learned from the experience. Computational science
students that assist in the laboratories also help to evaluate the models.

4.2 Student Perceptions

Student comments about their projects reveal a deeper understanding of the spread of
their diseases, the modeling process, and the utility of models. Comments from two
students are insightful and typical. One student wrote, “I understand the relationship
between these factors better now that I have worked with the model and adjusted the
formulas that determine these relationships. Using (a system dynamics tool) for this
modeling project was also interesting because it allowed researched facts to be
projected into likely outcomes. It was fascinating to see the trends that developed as
the model ran.”

Another student in the class commented, “I thoroughly enjoyed creating a model to
better understand a biological situation and to determine the rates at which an
infection, recovery, or death can occur. Developing the mumps model allowed me to
better understand how this disease can actually infect a population by producing real
numbers. The graphs, in particular, helped me visualize the results of the model
itself….I felt as if I wanted to add more and more things to make a more complicated
but more realistic model. The ability to work with simulations like this will allow the
scientist or researcher to be able to understand better the disease and relate to it in a
way that could possibly allow for a better prevention of the disease”.

 An Undergraduate Computational Science Curriculum 705

4.3 Why Model in a Biology Lab?

Modeling in the microbiology lab has proved beneficial in several key areas:

− Understanding of fundamental concepts, such as rate of change
− Critical thinking skills, such as model construction, extension, and testing
− More effective problem-solving skills
− Communication skills
− Interactive learning experience.

5 Conclusion

Like others, we have found that computers have become fast and cheap enough;
networks have become sophisticated enough; scientific visualization has become
mature enough; and the Internet has become pervasive and friendly enough so that a
meaningful undergraduate computational science program is not only desirable but
also now possible. Students who successfully complete such a program enter a variety
of scientific fields, where they will be able to collaborate more effectively with others
and help to transform the way science is done.

References

1. Swanson, C.: Computational Science Education. The Krell Institute, http://www.
krellinst.org/services/technology/CSE_survey/

2. Wofford College, http://www.wofford.edu
3. Shodor Educational Foundation, Inc., http://www.shodor.org/
4. Computational Science, http://www.wofford.edu/ecs/
5. Cunningham, S.: Computer Graphics: Programming, Problem Solving, and Visual

Communication. Prentice Hall, New York (2007)
6. Spertus, E.: What We Can Learn from Computer Science’s Differences from other

Sciences. The Barnard Center for Research on Women, http://www.barnard.
columbia.edu/bcrw/womenandwork/spertus.htm

7. Margolis, J., Fisher, A.: Unlocking the Clubhouse: Women in Computing. The MIT Press,
Cambridge (2001)

8. Thom, M.: Balancing the Equation: Where Are Women and Girls in Science, Engineering
and Technology? National Council for Research on Women, New York (2001)

9. Shiflet, A., Shiflet, G.: Introduction to Computational Science: Modeling and Simulation
for the Sciences. Princeton University Press, Princeton (2006)

10. SIAM Working Group on CSE Undergraduate Education: Undergraduate Computational
Science and Engineering Education. SIAM, http://www.siam.org/about/pdf/
CSE_Report.pdf

	An Undergraduate Computational Science Curriculum
	Introduction
	Wofford College’s Emphasis in Computational Science (ECS)
	Modeling and Simulation for the Sciences (COSC/MATH 175)
	Data and Visualization (COSC 370)
	Computational Science Internships
	Attracting Female, Minority, and Biology Students

	Introductory Textbook
	Content
	Website

	SIAM Working Group Report
	The Report

	Modeling in the Biology Classroom
	The Laboratories on Modeling
	Student Perceptions
	Why Model in a Biology Lab?

	Conclusion
	References

