
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

AN UNIVERSALITY RESULT FOR A (MEM)BRANE CALCULUS
BASED ON MATE/DRIP OPERATIONS

LUCA CARDELLI

Microsoft Research Cambridge
7, J.J. Thomson Avenue, Cambridge, CB3 0FB, UK

luca@microsoft.com

GHEORGHE PĂUN

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

and
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

Received (15 May 2005)
Accepted (10 September 2005)

Operations with membranes are essential both in brane calculi and in membrane com-
puting. In this paper we take four basic operations from brane calculi, pino, exo, mate,
drip, we express them in terms of the membrane computing formalism, and then we
investigate the computing power of the P systems using the mate, drip operations as
unique evolution rules. All operations are controlled by – and make evolve – multisets
of protein-objects embedded in the membranes themselves (not contained in the com-
partments of the cell, as standard in membrane computing; all compartments delimited
by membranes are here empty). Somewhat surprisingly, for systems which use the mate,
drip operations we obtain the Turing completeness. The power of P systems based on
other operations remains to be investigated.

Keywords: Brane calculi, membrane computing, universality, matrix grammar.

2000 Mathematics Subject Classification: 68Q42, 68Q45, 68Q85

1. Introduction

Membrane computing [7] and brane calculi [2] start from the same reality, the living
cell, but they have different objectives and develop in different directions. While
membrane computing is a branch of natural computing, which tries to abstract
computing models, in the Turing sense, from the structure and the functioning of
the cell, making use especially of automata, language, and complexity theoretic
tools, brane calculi pay more attention to the fidelity to the biological reality, have

1

2 L. Cardelli, Gh. Păun

as a primary target systems biology, and use especially the framework of process
algebra. Various operations with membranes appear in both areas, fully idealized in
the former area, less idealized in the latter. For instance, an important distinction
concerns the role the membranes play in the two fields: separators of compartments
in membrane computing, with the computation done inside compartments (the main
data structure used is the multiset of abstract objects placed in the compartments
of a cell), and “first class citizens” in brane calculi, with the emphasis put on
the structure, properties, and evolution of membranes; in particular, in the latter
case the membranes are the support of bio-chemistry, with the proteins embedded
in them being central to the cell evolution, rather than the chemicals from the
compartments.

All these similarities and differences raise the natural question of bridging the
two research areas, and this paper is a first attempt in this respect.

We consider here two brane calculi, the one using the pino, exo, phago oper-
ations, and the one using the mate, drip, bud operations. In the next section we
recall the basic elements concerning these operations and calculi. As we will see,
the first calculus is more expressive than the second one, we can simulate the lat-
ter operations by the former ones. This observation was also confirmed in [1] in
what concerns the computational power of the two calculi: Turing universality in
the first case (in fact, using only phago and exo was sufficient), decidability in the
second case. It should be noted that the proofs from [1] were done by simulating
Minsky register machines, with the register values encoded in the number of em-
bedded membranes, using the mentioned operations as introduced in [2], formalized
in process algebraic terms.

In what follows, we write the previous operations – actually, only pino, exo,
mate, drip, with two possible variants in the case of pino, exo – in the formalism
of membrane computing, with slight differences in what concerns the evolution of
proteins which control the operations. Like in brane calculi, the obtained P systems
work only with the membranes and the proteins embedded in them (no object is
present in the compartments), but using the style of membrane computing: the
rules are applied in the maximally parallel manner (if a membrane can evolve, it
has to do it), and considering as successful only the halting computations. Formal
details will be given in Section 5. In this setup, we find that systems using the mate,
drip operations are Turing complete, they can compute all Turing computable sets
of numbers (or of vectors of numbers). It is of interest to note that we do not
use the bud operation, and that our result essentially differs from that in [1] (the
“explanation” lies both in the versions of the operations we use, and in the fact
that we encode the information we work with in a different manner – in turn, the
number of current membranes used in our proof is very small, at most eleven, while
in [1] this number can be arbitrarily large).

After the brane calculi details from Section 2, we introduce (Section 3) the
necessary notions and notations of language theory we need in the proof (especially,
matrix grammars with appearance checking), then we define the operations (Section

An Universality Result Based on Mate/Drip Operations 3

4) and the classes of P systems we investigate here (Section 5). Section 6 gives the
above mentioned universality proof for mate, drip. We close with a short discussion
in Section 7, especially pointing out further research topics.

2. The Pino/Exo/Phago and Mate/Drip/Bud Calculi

We give an informal introduction to the basic operations of brane calculi, as a pre-
lude to their use later in P systems. A formal treatment of brane calculi can be
found in [2]. There, a concrete syntax is first defined for membrane configurations.
The syntax is factored by a congruence relation, e.g., to add multiset laws and other
“chemical mixing” rules. Then, a binary reduction relation (invariant under con-
gruence) is defined inductively. The reduction relation includes the basic reductions
that correspond to the basic operations. The transitive closure of the reduction
relation describes the possible, non-deterministic, evolutions of a configuration.

More informally, a membrane structure (in brane calculi we also say membrane
system) consists of a collection of nested membranes. Membranes are formed of
patches s, where a patch can be a composition of sub-patches s1|s2. An elementary
patch consists of an action a followed (after the action is consumed) by another
patch: a.s. Actions come (often) in complementary pairs that cause interactions
between subsystems. Here is a system consisting of two membranes (written as
brackets [. . .]) nested inside a third (membranes carry patches, indicated by s, t, u):

[[] s [] t]u a membrane structure

Each specific brane calculus has a fixed collection of actions with a specific
operational meaning in terms of reductions. Let us start with the pino action, that
has no complementary co-action. Here P,Q are arbitrary subsystems, u, s, t are
arbitrary patches, and the symbol → means “may reduce to” (a number of different
reductions may be possible out of the same configuration).

(pino) [P]u|(pino(s).t) → [P [] s]u|t
The action pino(s) creates an empty bubble within the membrane where the pino

action resides; we should imagine that the original membrane buckles towards the
inside and pinches off. The patch on the empty bubble so created, s, is a parameter
to pino.

Next, we consider the exo action, which comes with a complementary co-action:

(exo) [[P]u|(exo.t)Q]w|(co-exo.v) → P[Q]u|w|t|v
This operation models the merging of two nested membranes, which starts with

the membranes touching at a point. In the process (which is a smooth, continuous
process), the subsystem P gets expelled to the outside, and all the residual patches
of the two membranes, u,w, t, v, become contiguous.

Finally we consider the phago action, which also comes with a complementary
co-action:

(phago) [P]u|(phago.t)[Q]w|(co-phago(s).v) → [[[P]u|t]sQ]w|v

4 L. Cardelli, Gh. Păun

This operation models a membrane (the one with Q) “eating” another mem-
brane (the one with P). But, again, the process has to be smooth and continuous, so
it is biologically implementable. It proceeds by the Q membrane wrapping around
the P membrane and joining itself on the other side. Hence, an additional layer of
membrane is created around the eaten membrane: the patch on that membrane is
specified by the parameter s on the co-phago action (similar to the parameter on
the pino action).

These three operations, pino, exo, phago, form a complete set, in the sense, e.g.,
that the brane calculus with such operations is Turing complete under opportune
conditions (since operations are always consumed, a form of iteration is needed as
well). Moreover, these three operations are sufficiently mechanistic that it is possible
to write meaningful programs and algorithms with them.

Those are, however, not the only operations one can imagine on membranes,
and in fact are not the only ones that have a biological realization. For example, we
can consider a different brane calculus with the following three operations.

(drip) [P]u|(drip(s).t) → [P]u|t[]s,

(mate) [P]u|(mate.t)[Q]w|(co-mate.v) → [PQ]u|t|wv,

(bud) [[P]u|(bud.t)Q]w|(co-bud(s).v) → [[P]u|t]s[Q]w|v.

Drip produces an empty bubble (like pino), but outside a membrane. Mate
merges two membranes (like exo), but the membranes are not originally nested.
Bud expels a membrane from inside another one (the opposite of phago), but still
wrapping an additional layer.

It turns out that the drip, mate, bud operations are expressible in the pino,
exo, phago calculus by simple operations, but the drip, mate, bud calculus is not
Turing complete (under the same appropriate conditions) [1]. In practice, all six
operations have separate, direct, biological implementations, and therefore can all
be considered “primitives”.

3. Prerequisites (Matrix Grammars)

Excepting the matrix grammars, which will be introduced immediately, all notions
of formal language theory we use are elementary, and can be found in any basic
monograph, such as [9], [6]. Details about matrix grammars can be found in [3], [4],
and in the introductory chapter of [8]. We specify here only the notation we use.

For an alphabet V , by V ∗ we denote the set of all strings over V , the empty string
λ included; the set of non-empty strings over V , that is V ∗−{λ}, is denoted by V +.
The length of a string x ∈ V ∗ is denoted by |x|, and |x|a, for a ∈ V , is the number
of occurrences of the symbol a in x. If V = {a1, . . . , an}, then the Parikh mapping
associated with V is ΨV : V ∗ −→ Nn, defined by ΨV (x) = (|x|a1 , . . . , |x|an), for
all x ∈ V ∗. For a language L ⊆ V ∗, lg(L) = {|x| | x ∈ L} is the length set, and
ΨV (L) = {ΨV (x) | x ∈ L} is the Parikh set/image of L. The left derivative of
L ⊆ V ∗ with respect to a string x ∈ V ∗ is defined by ∂l

x(L) = {w ∈ V ∗ | xw ∈ L}.

An Universality Result Based on Mate/Drip Operations 5

The four basic families of languages from Chomsky hierarchy – regular, context-
free, context-sensitive, recursively enumerable – are denoted by REG, CF, CS, RE,
respectively (RE is the family of languages which can be recognized by Turing
machines). For a family FL of languages, we denote by NFL, PsFL the family of
length sets and of Parikh images of languages from FL (hence NRE is the family
of Turing computable sets of numbers, and PsRE is the family of sets of vectors of
numbers which are Turing computable).

A multiset over an alphabet V = {a1, . . . , an} is a mapping m : V −→ N.
Because the natural extension of m to strings over V gives the Parikh mapping,
we can represent the multiset m by any string w ∈ V ∗ such that ΨV (w) =
(m(a1), . . . ,m(an)) (thus, if a string w represents the multiset m, then all per-
mutations of w represent it). The empty multiset is represented by λ. Operations
with multisets are defined in this way as operations with strings.

In our universality proof we use the characterization of recursively enumerable
languages by means of matrix grammars with appearance checking. Such a grammar
is a construct G = (N,T, S,M,F), where N,T are disjoint alphabets (of non-
terminals and terminals, respectively), S ∈ N (axiom), M is a finite set of matrices,
that is, sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules
over N ∪ T , and F is a set of occurrences of rules in the matrices of M .

For w, z ∈ (N∪T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1,

and, for all 1 ≤ i ≤ n, either (1) wi = w′iAiw
′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈

(N ∪T)∗, or (2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (All rules which are not in F should be applied. If applicable, the rules from
F should be applied, but if they cannot be applied, then we may skip them. That
is why the rules from F are said to be applied in the appearance checking mode.) If
F = ∅, then the grammar is said to be without appearance checking.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}, where
=⇒∗ is the reflexive and transitive closure of the relation =⇒.

The family of languages of this form is denoted by MATac, while the family of
languages generated by matrix grammars without appearance checking is denoted
by MAT . The following results are known:

(1) CF ⊂ MAT ⊂ MATac = RE.
(2) NCF = NMAT ⊂ NRE, PsCF ⊂ PsMAT ⊂ PsRE (PsCF contains only

semilinear sets, while PsMAT contains non-semilinear sets of vectors).

We say that a matrix grammar with appearance checking G = (N, T, S, M, F)
is in the Z-binary normal form if N = N1 ∪ N2 ∪ {S, Z, #}, with these three sets
mutually disjoint, and the matrices in M are in one of the following forms:

(1) (S → XA), with X ∈ N1, A ∈ N2,

(2) (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

(3) (X → Y,A → #), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,

6 L. Cardelli, Gh. Păun

(4) (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → #
appearing in matrices of type 3 (# is a trap-symbol, if it is introduced, then it
cannot be removed), and, if a sentential form generated by G contains the symbol
Z, then it is of the form Zw, for some w ∈ (T ∪ {#})∗ (that is, the appearance of
Z makes sure that, except for Z, all symbols are either terminal or the trap-symbol
#). The matrix of type 4 is used only once, in the last step of a derivation.

For each language L ∈ RE there is a matrix grammar with appearance checking
G in the Z-binary normal form such that L = L(G).

Convention. When comparing two language generating devices G1, G2, the
empty string is ignored, that is, we consider G1 equivalent with G2 if L(G1)−{λ} =
L(G2) − {λ}. Similarly, we ignore the number zero (and the zero vector) when
comparing number (vector) generating devices.

4. Pino/Exo and Mate/Drip as Membrane Computing Operations

In what follows, the reader is assumed to have some familiarity with membrane
computing, e.g., from [8]: current details can be found at the web address [10].

We start by writing the four operations we use below, pino, exo, mate, drip,
using the formalism of membrane computing, as we will immediately see, with two
possible variants for pino, exo.

As usual, we represent a membrane by a pair of square brackets, []. If necessary,
the brackets can have labels, written as []i, in order to refer them, but in what
follows we avoid the use of labels. However, we associate here with membranes
multisets of proteins (we also use to speak about “objects” instead of “proteins”).
A membrane having associated a multiset u of proteins (remember that we represent
multisets by strings) is written in the form []

u
; we also use to say that the membrane

is marked with the multiset u. The intuition is that the proteins are placed on the
membrane, intercalated with its phospholipidic molecules.

Then, taking an alphabet V of proteins, the four operations – with two possi-
bilities from pino, exo – are written as follows:

pinoi : []
uav

→ [[]
ux

]
v
, (1)

exoi : [[]
ua

]
v
→ []

uxv
, (2)

pinoe : []uav → [[]v]ux, (3)

exoe : [[]
u
]
av
→ []

uxv
, (4)

mate : []ua[]v → []uxv, (5)

drip : []
uav

→ []
ux

[]
v
, (6)

in all cases with a ∈ V , u, x ∈ V ∗, v ∈ V +, with ux ∈ V + for pino, drip rules.
Therefore, each membrane, from the left hand or the right hand of any rule, has
associated a non-empty multiset of proteins. Of course, this restriction can be re-
laxed, but in this paper we work in this setup. The length of the string uxv (hence

An Universality Result Based on Mate/Drip Operations 7

the total multiplicity of the multiset represented by this string) from each rule is
called the weight of the rule.

In each case, multisets of proteins are transferred from input membranes to
output membranes as indicated in the rules, with protein a evolved into the multiset
x (which can be empty).

Note the important fact that the multisets u, v and the protein a marking the
left hand membranes of these rules correspond to the multisets u, v, x from the right
hand side of the rules; specifically, the multiset uxv resulting when applying the rule
is precisely split into ux and v, with these two multisets assigned to the two new
membranes.

The difference between pinoi, exoi (with i from “internal”) and pinoe, exoe (with
e from “external”) is that in the first case the “main role” is played by the internal
membrane, and in the second case the external membrane contains the proteins a

and x. We still use pino, exo as generic names for pinoi, exoi and pinoe, exoe.
The rules are applied to given membranes if they are marked with multisets

of proteins which include the multisets of proteins mentioned in the left hand of
rules; all proteins not specified in the rules are not affected by the use of rules, but,
in the case of pino and drip, they are randomly distributed to the two resulting
membranes.

Because this is an important point, we also give a more formal definition.
Assume that we have a membrane []

zuav
, for a ∈ V, u, v, z ∈ V ∗. By a pinoi

rule as in (1), we obtain any one of the pairs of membranes [[]
z1ux

]
z2v

such
that z = z1z2, z1, z2 ∈ V ∗; by a pinoe rule as in (3), we obtain any one of the
pairs of membranes [[]z1v]z2ux such that z = z1z2, z1, z2 ∈ V ∗; by a drip
rule as in (6) we obtain any one of the pairs of membranes []z1ux[]z2v, such
that z = z1z2, z1, z2 ∈ V ∗. In all cases, we have as many possible results as many
decompositions of the multiset z into two multisets exist.

In the case of the other operations, the result is uniquely determined. From a
pair of membranes [[]z1ua]z2v, by an exoi rule as in (2) we obtain the membrane
[]

z1z2uxv
, and from [[]

z1u
]
z2av

, by an exoe rule as in (4) we obtain the membrane
[]

z1z2uxv
. In turn, from a pair of membranes []

z1ua
[]

z2v
, by means of a mate

rule as in (5) we obtain the membrane []
z1z2uxv

. In all cases, z1, z2 are arbitrary
multisets over V . The former three types of rules, (1), (3), and (6), introduce non-
determinism in the evolution of the membranes, the latter three types, (2), (4), and
(5), cancel the non-determinism introduced by the former rules – providing that
they are applied to the pair of membranes produced by the first rules.

The contents of membranes involved in these operations is transferred from the
input membranes to the output membranes in the same way as in brane calculus,
with the mentioning that here we have no objects inside a membrane, but possi-
bly only other membranes. Denoting these contents (empty or consisting of other
membranes) by P, Q as in Section 2, we can write the six operations as follows:

pinoi : [P]uav → [[]ux P]v, (7)

8 L. Cardelli, Gh. Păun

exoi : [[P]ua Q]v → P [Q]uxv, (8)

pinoe : [P]
uav

→ [[]
v

P]
ux

, (9)

exoe : [[P]u Q]av → P [Q]uxv, (10)

mate : [P]
ua

[Q]
v
→ [P Q]

uxv
, (11)

drip : [P]
uav

→ []
ux

[P]
v
. (12)

Note that from the point of view of handling the contents, we can distinguish a
variant of drip, in the form

[P]
uav

→ [P]
ux

[]
v
.

However, in the proof of the theorem from Section 6 we will use only membrane
structures with two levels, with the active membranes placed in the inert skin
membrane; therefore, always the contents of membranes (other than the skin) will
be empty, so no care should be paid to the evolution of the contents (P, Q above)
during the computations.

5. P Systems Based on the Previous Operations

Using rules as defined above, we can define a machine-oriented computing model in
the form of a P system as follows:

Π = (A,µ, u1, . . . , um, R),

where:

(1) A is an alphabet (finite, non-empty) of proteins;
(2) µ is a membrane structure with m ≥ 2 membranes;
(3) u1, . . . , um are multisets of proteins (represented by strings over A) bound to

the m membranes of µ at the beginning of the computation (one assumes that
the membranes in µ have a precise identification, e.g., by means of labels, or of
other “names”, in order to have the marking by means of u1, . . . , um precisely
defined; the labels play no other role than specifying this initial marking of
membranes); the skin membrane is labelled with 1 and u1 = λ;

(4) R is a finite set of pino, exo, mate, drip rules, of the forms specified above, with
the proteins from the set A.

Note that the skin membrane has no protein associated. Actually, in what fol-
lows, it plays no role in the computation, no rule can be applied to it. The skin
membrane is only meant to keep together the “computer”, to delimit it from the
environment. Also, we have to stress that there is no object in the compartments
of µ; a membrane can contain other membranes inside, but in-between membranes
there is nothing.

When using any rule of any type, we say that the membrane(s) from its left hand
side are involved in the rule; they all are “consumed”, and the membranes from the
right hand side of the rule are produced instead. Similarly, the protein a specified

An Universality Result Based on Mate/Drip Operations 9

in the left hand side of rules is “consumed”, and it is replaced by the multiset x.
It is important to mention again that the proteins other than a which mark the
membranes which are consumed remain unchanged, and they are transferred to
the newly created membranes. In the case of rules producing only one membrane
– exo, mate – all proteins are inherited by the new membrane; in the case of rules
producing two new membranes – pino, drip – the proteins of the old membrane
which are not involved in the rule are non-deterministically distributed to the two
new membranes, as already explained in the previous section.

The evolution of the system is done through transitions among configurations,
based on the non-deterministic maximally parallel use of rules. A configuration
consists of the membrane structure of the system and the multisets marking the
membranes; thus, the initial configuration is that defined by µ and u1, . . . , um. In
what follows, we will specify the configurations by writing the markings as sub-
scripts of the right hand parentheses which identify the membrane. For instance,
[[]

aabbcde
]
λ

describes the configuration consisting of the skin membrane (with no
protein on it) and the inner membrane marked with aabbcde. In each step (a global
clock is assumed), we choose non-deterministically and apply in a parallel manner
a maximal set of rules which can be applied to the configuration at hand. That is,
which rules to apply and to which membranes to apply is decided randomly, all pos-
sible choices are allowed (of course, with the restriction that the multisets u, v and
the protein a from the left hand of the rules are included in the multisets marking
the membranes to which the rules are applied). In each step, any membrane can
be involved in at most one rule. However, the choice of rules should be maximal,
in the sense that after choosing some rules to apply, no further rule can be applied
to the membranes which are not involved in the chosen rules. A membrane remains
unchanged if not evolving by a rule. The skin membrane never evolves.

Again, an example can be useful. If we have the configuration

[[]
a

[]
b

[]
c

[]
d

]
λ
,

and the mate rules

r1 : []
a
[]

b
→ []

ab
,

r2 : []
c
[]

d
→ []

cd
,

r3 : []b[]c → []bc,

then using only r1 is not maximal, because also r2 can be applied to the remaining
membranes; using r1, r2 in parallel, or only r3 is maximal, because the remaining
membranes (none in the first case – the skin is not considered) cannot evolve by
the available rules. Similarly, using only once r1 for evolving

[[]
a

[]
b

[]
a

[]
b

]
λ
,

is not allowed/maximal, because both pairs of membranes []
a
[]

b
have to evolve,

hence we have to apply r1 twice.

10 L. Cardelli, Gh. Păun

Note the important detail that the evolution is parallel at the level of membranes,
but sequential at the level of each multiset marking a membrane: at most one
protein, a, evolves by applying a rule, and at most one rule is applied to each
membrane.

The contents of membranes evolving by means of any rule as above is passed
to the resulting membranes as indicated in (7) – (12), with the mentioning that,
because the contents consist of membranes, they can evolve at the same time (due
to the parallelism). For instance, starting from the configuration [[[[]

cc′]
a

]
b

]
λ

and using the rules (pinoi) []
cc′ → [[]

c
]
c′ and (exoi) [[]

a
]
b
→ []

ab
, we obtain

the configuration [[[]
c

]
c′ []

ab
]
λ

(the innermost membrane evolves to [[]
c

]
c′

by the pino rule, at the same time with the evolution of the membranes marked
with a and b through the exo rule; in this way, the contents of the former membrane
marked by a will be placed outside the membrane marked by ab).

Because in what follows we work only with membranes placed on two levels
(the skin, containing membranes which evolve through mate, drip operations, hence
always obtaining membrane structures with two levels of nesting), and this is a
simpler and more transparent case, we avoid a cumbersome formal definition of
the way the membrane structures are changed by means of the rules a system can
contain, and rely on the intuition provided by equations (7) – (12), which, in turn,
correspond to the brane calculi operations as introduced in Section 2.

A sequence of transitions constitutes a computation. A computation which starts
from the initial configuration is successful if (i) it halts, that is, it reaches a config-
uration where no rule can be applied, and (ii) in the halting configuration there are
only two membranes, the skin (marked with λ) and an inner one. The result of a
successful computation is given by the multiset which marks the inner membrane in
the halting configuration. Here we consider as the result the vector describing the
multiplicity of proteins in this multiset. Such a vector is said to be computed by the
system Π. Note that the computations which do not halt, or halt with more than
one inner membrane provide no output. (The latter condition can be relaxed, by
considering a special membrane as the output one – which makes again necessary
considering labels – or, simply, by taking as results of the computation all multisets
marking membranes in the halting configuration; a filtering can be also considered
in the second case, accepting only membranes whose markings contain/do not con-
tain certain designated objects. Here we work in the restricted setup mentioned
above, with the successful computations halting with only one inner membrane.)

Because of the non-determinism in using the rules, starting from the initial
configuration we can get several computations, possibly several of them successful.
The set of all vectors (from Nn, for n = card(A)) computed in this way by Π is
denoted by Ps(Π) (with “Ps” coming from “Parikh set”).

Note that, because of the restriction we have started with, to have ux and v

non-empty in each rule, we cannot compute the number/vector zero, that is why
zero is ignored when comparing two computing devices.

An Universality Result Based on Mate/Drip Operations 11

In what follows we only investigate the power of P systems using the mate, drip
operations.

The family of all sets of vectors Ps(Π) computed by P systems Π using at any
moment during a halting computation at most m membranes, and mate, drip rules
of weight at most r, s, respectively, is denoted by PsOPm(mater, drips). When one
of the parameters m, r, s is not bounded we replace it with ∗.

The system we use in the proof below is described in good details, so that we
do not illustrate here the previous definitions with any example.

We end this section by pointing out some results which follow directly from
the definitions (and, in the case of inclusion (ii), from Turing-Church thesis – this
can be also done through a cumbersome direct construction of a Turing machine
simulating a P system as above).

Lemma 1. (i) PsOPm(mater, drips) ⊆ PsOPm′(mater′ , drips′), for all m ≤ m′,
r ≤ r′, s ≤ s′.

(ii) PsOP∗(mate∗, drip∗) ⊆ PsRE.

6. Universality for the Mate/Drip Case

We consider here only the systems based on the mate, drip operations. Their study
is simpler than that of systems using pino, exo operations, because the membrane
structure cannot grow the depth, and all membranes from the same level can mate
with each other. In the case of pino, exo, the membrane structure can get more
complex and the vertical nesting imposes a precise neighboring relation, with only
adjacent membranes allowed to evolve through exo.

What is interesting is that the Turing completeness (because the proof is con-
structive and the main data we process are the multisets of objects placed on mem-
branes, this also implies universality, in the standard sense, that is why we use the
words completeness and universality as interchangeable) is obtained for systems
with a reduced number of membranes and using rules of a reduced weight.

Theorem 2. PsRE = PsOPm(mater, drips) for all m ≥ 11, r ≥ 5, and s ≥ 5.

Proof. In view of Lemma 1, we only have to prove the inclusion PsRE ⊆
PsOP11(mate5, drip5), and to this aim, we use the equality PsRE = PsMATac.

Let us consider a set of vectors Q ∈ Nn, for some n ≥ 1. We have Q = ΨV (L),
for some language L ∈ RE = MATac, L ⊆ V ∗, for an alphabet V with n symbols.
We write this language in the form

L = (L ∩ {λ}) ∪
⋃

a∈V

{a}∂l
a(L).

The family MATac is closed under left derivatives, hence a matrix grammar with
appearance checking Ga = (Na, V, Sa,Ma, Fa) exists such that L(Ga) = ∂l

a(L), for
each a ∈ V . We consider these grammars Ga in the Z-normal form introduced in

12 L. Cardelli, Gh. Păun

Section 3, hence with Na = Na,1∪Na,2∪{Sa, Za,#}, and matrices of the four men-
tioned types. We assume the alphabets Na mutually disjoint and we “put together”
the grammars Ga, a ∈ V , constructing the matrix grammar G = (N, V, S, M, F)
with

N = N1 ∪N2 ∪ {Za | a ∈ V } ∪ {S, #},
N1 =

⋃

a∈V

Na,1,

N2 =
⋃

a∈V

Na,2,

M = {(S → XA) | (Sa → XA) ∈ Ma, a ∈ V }
∪ {(X → Y,A → x) | for (X → Y, A → x) a two-rule matrix in Ma, a ∈ V }
∪ {(Za → a) | a ∈ V }.

Obviously, L(G) = L (modulo the empty string, which is ignored; note that instead
of rules Za → λ we have here Za → a).

We assume that all two-rules matrices from M are injectively labelled, in the
form ml : (X → Y, A → x), l ∈ Lab, for a set Lab of labels.

Starting from the grammar G we now construct a P system

Π = (A, [[]], λ, S1S2, R),

with the alphabet

A = {X, X ′, X ′′, X ′′′, XivXv, Xvi, Xvii | X ∈ N1}
∪ {Xl | l ∈ Lab}
∪ {α, α′ | α ∈ N2 ∪ V }
∪ {EA | A ∈ N2}
∪ {a′′, Za | a ∈ V }
∪ {E,E′,H,H ′,H ′′, S1, . . . , S9, c1, . . . , c8, c

′
1, . . . , c

′
8, d1, d2, d

′
1, d

′′
1 , d′2, f

′, #},
and the rules from the set R as constructed below (we give them in groups dedicated
to various tasks to accomplish during the computation).

Any computation starts from the configuration [[]
S1S2

]
λ
, by using rules from

the following group:

Step 1 []S1S2
→ []S3S4

[]S2
,

Step 2 []
S3S4

→ []
S5S6XA

[]
S4

,

Step 3 []S5S6XA → []c1c′1
[]S6XA, []S2

[]S4
→ []S7S4

,

Step 4 []
S6XA

→ []
S9

[]
XA

, []
c1c′1

→ []
c1

[]
c′1

, []
S4S7

→ []
S8

[]
S7

,

Step 5 []
S9

[]
XA

→ []
EHXA

, []
S8

[]
c1
→ []

c1d1
, []

S7
[]

c′1
→ []

c′1d′1
,

for (Sa → XA) ∈ Ma, a ∈ V,

[]
S8

[]
S7
→ []

##S7
.

An Universality Result Based on Mate/Drip Operations 13

These rules are meant to simulate the initial matrices (S → XA) from M (corre-
sponding to (Sa → XA) ∈ Ma, for a ∈ V), thus preparing the system for simulat-
ing two-rules matrices from M . Assume that we use in each of the first five steps
the rules specified above, that is, after using the rule []

S1S2
→ []

S3S4
[]

S2
, we

use the rule []S3S4
→ []S5S6XA[]S4

. We have three inner membranes present,
[]S5S6XA, []S2

, and []S4
. If we continue with rule []S5S6XA → []c1c′1

[]S6XA

for the first membrane, then the next two steps continue deterministically using the
rules indicated above for steps 4 and 5.

There are alternate rules to apply only in steps 2 and 3.
If in step 2, instead of the rule []S3S4

→ []S5S6XA[]S4
we use the rule

[]S3
[]S4

→ []S7S4
, then we obtain the configuration [[]S3S7S4

]λ, to which we
can apply only the rule []

S4S7
→ []

S8
[]

S7
, followed by []

S8
[]

S7
→ []

##S7
,

which introduces the trap-object #.
In turn, if in step 3, instead of the rule []

S5S6XA
→ []

c1c′1
[]

S6XA
we use the

rule []
S6XA

→ []
S9

[]
XA

(this happens in parallel with using the rule []
S2

[]
S4
→

[]
S7S4

, which produces the membrane []
S7S4

), then the objects c1, c
′
1 are not

introduced. In the next step we use the rule []
S4S7

→ []
S8

[]
S7

, and now the only
rule applicable to membranes obtained in this way is []S8

[]S7
→ []##S7

, which
again introduces the trap-object #.

We also introduce the following rules for handling the trap-object:

[]## → []#[]#, []#[]# → []##.

By using these rules, the computation can continue forever (if the two trap-objects
are together, then there is a rule to apply, if they are separated, then again there is
a rule to apply).

Therefore, the only computation which can terminate is the one leading to three
inner membranes of the form

[]EHXA, []c1d1
, []c′1d′1

,

where (Sa → XA) ∈ Ma, for some a ∈ V . We use to refer to these membranes (and
to their descendants) as “the first membrane”, “the second” and “the third” one,
although, obviously, there is no ordering of them in the system.

In what follows, we have to have in mind that the symbols from N1 “remember”
which is the symbol a ∈ V to be introduced in the end by a rule Za → a, and
that all alphabets Na,2 were supposed mutually disjoint, hence no interference of
the rules corresponding to various grammars Ga is possible.

Let us assume that, after these first five steps, we have produced the config-
uration [[]EHXA []c1d1

[]c′1d′1
]λ, for XA the starting sentential form for a

grammar Ga. By repeatedly applying mate and drip operations to the membrane
marked with XAEH, we simulate a derivation in grammar G; the membranes with
markers c1d1, c

′
1d
′
1 and their successors will help in this process, more exactly, in

simulating the matrices with rules to be used in the appearance checking mode.
The simulation of any matrix will take 9 steps.

14 L. Cardelli, Gh. Păun

For a better understanding of the nine steps (hence of the interplay between the
membranes which will emerge from the three initial inner membranes), we present
the respective rules in Table 1 and Table 2; the first table refers to simulating a
matrix without a rule to be used in the appearance checking mode, the second
table refers to matrices with rules used in the appearance checking mode. The last
two columns are the same in the two tables, and they indicate the rules used for
evolving the auxiliary membranes, those having initially the markings c1d1 and c′1d

′
1.

The simulation of matrices is done through the multisets marking the membranes
emerging from the membrane with the marking EHXA – at a current stage, this
membrane is supposed to be marked with []EHzXA, for some z ∈ (N2 ∪ V)∗;
initially, this is the case, with z = λ.

In Table 1, the primed string x′ is defined as follows. If x = x1α, for some
α ∈ N2∪V and x1 ∈ (N2∪V)∗, then x′ = x1α

′; if x = λ, then x′ = f ′. In the latter
case, α′ = f ′, but in row 4 the symbol α is replaced by λ.

1 []EHXA → []EHXl
[]A []c1d1

→ []c2
[]d1

[]c′1d′1
→ []c′2

[]d′1
2 []A[]EHXl

→ []x′EHXl
[]c2

[]d1
→ []c3c4d1

[]c′2
[]d′1

→ []c′3c′4d′1
3 []Xlα′EH → []Y ′ []α′EH []d1c3c4

→ []d2
[]c3c4

[]d′1c′3c′4
→ []d′2

[]c′3c′4
4 []EHα′ []Y ′ → []EHαY ′ []c4c3

[]d′2
→ []c4c5d′2

[]c′3c′4
→ []c′5

[]c′4
5 []EHY ′ []d2

→ []EHY ′′d2
[]d′2c4c5

→ []c6c7
[]c4c5

[]c′4
[]c′5

→ []d′1c′5
6 []Ed2Y ′′H → []Ed2Y ′′′ []H []c6c7

→ []d1
[]c7

[]c′5d′1
→ []c′6

[]d′1
[]

c4c5
→ []

c1
[]

c5

7 []
Y ′′′Ed2

[]
H
→ []

Y ′′′EH
[]

c5
[]

c7
→ []

c8c7
[]

c′6
[]

d′1
→ []

c′7d′1
8 []

Y ′′′EH
→ []

Y iv []
EH

[]
c8c7

[]
d1
→ []

c8d1
[]

c′7d′1
→ []

c′8
[]

d′1
9 []

Y iv []
EH

→ []
Y EH

[]
d1c8

[]
c1
→ []

d1c1
[]

c′8
[]

d′1
→ []

c′1d′1

Table 1. Rules for simulating a matrix ml : (X → Y, A → x) ∈ M

Besides the rules in these tables, we also consider the following rules:

[]XEH → []##[]EH ,

[]
E

[]
d2
→ []

##d2
,

[]c3c4
→ []##[]c4

,

[]
c1d′2

→ []
##

[]
d′2

,

[]c5d′2
→ []##[]d′2

.

Let us examine in some details how the simulation proceeds. Assume that we
have a membrane marked with a multiset zXEH. If no matrix can be simulated,
then the rule []

XEH
→ []

##
[]

EH
must be used and the computation never stops.

An Universality Result Based on Mate/Drip Operations 15

1 []XEH → []Xl
[]EH []c1d1

→ []c2
[]d1

[]c′1d′1
→ []c′2

[]d′1
2 []HE []Xl

→ []HEBXl
[]c2

[]d1
→ []c3c4d1

[]c′2
[]d′1

→ []c′3c′4d′1
3 []EBHBXl

→ []EBH##[]Xl
[]d1c3c4

→ []d2
[]c3c4

[]d′1c′3c′4
→ []d′2

[]c′3c′4
4 []HXlEB

[]d2
→ []HXlE′d2

[]c4c3
[]d′2

→ []c4c5d′2
[]c′3c′4

→ []c′5
[]c′4

5 []HEXlE′d2
→ []HY v []E′d2

[]d′2c4c5
→ []c6c7

[]c4c5
[]c′4

[]c′5
→ []d′1c′5

6 []Y vH → []Y vi []H []c6c7
→ []d1

[]c7
[]c′5d′1

→ []c′6
[]d′1

[]E′d2
→ []E []d2

[]c4c5
→ []c1

[]c5

7 []Y vi []d2
→ []Y viid2

[]c5
[]c7

→ []c8c7
[]c′6

[]d′1
→ []c′7d′1

8 []Y viid2
[]H → []Y viiH []c8c7

[]d1
→ []c8d1

[]c′7d′1
→ []c′8

[]d′1
9 []HY vii []E → []HY E []d1c8

[]c1
→ []d1c1

[]c′8
[]d′1

→ []c′1d′1

Table 2. Rules for simulating a matrix ml : (X → Y, B → #) ∈ M

Assume that we start with rule []EHXA → []EHXl
[]A corresponding to a

matrix ml : (X → Y, A → x), hence with the second rule not to be applied in
the appearance checking mode. The two membranes mate in the next step, and we
obtain a membrane marked with XlEHx′, where x′ is the string obtained from x

in A → x, by priming one symbol if x is non-empty, or, if x = λ, then x′ = f ′. The
evolution continues deterministically by using the rules from the second column
of Table 1, correctly simulating the two rules of the matrix, and returning to a
membrane again marked with EH and a symbol from N1. The only delicate point
is that in step 5 we can continue only if a membrane []

d2
was made available by

processing the membrane having initially the marking c1d1.
The presence of this membrane is ensured by the interplay of the evolution of

membranes which originate in []
c1d1

and []
c′1d′1

. Let us examine the way of using the
rules from the last two columns of Table 1. The first two steps are identical, modulo
the primes of objects marking membranes evolving from []c′1d′1

. In the third step
we have a choice. If we use the rules []

d1c3c4
→ []

d2
[]

c3c4
, []

d′1c′3c′4
→ []

d′2
[]

c′3c′4
,

then the continuation is correct – we get the necessary membrane marked with d2,
while in step 4 we can use the rule []c4c3

[]d′2
→ []c4c5d′2

. However, if this rule
cannot be applied, then the rule []

c3c4
→ []

##
[]

c4
must be applied and the

computation will never stop.
After having produced the membrane []c4c5d′2

we have again two possibilities.
The one which does not lead to an endless computation is that using the rule
[]

d′2c4c5
→ []

c6c7
[]

c4c5
, followed now deterministically by the rules from lines

6, 7, 8, 9 of Table 1, and ending with the membrane []c1d1
. However, in step 5

we can use instead the rule []c4c5
→ []c1

[]c5
. The object d′2 is either together

with c1 or together with c5 on the same membrane, and this makes possible (and
obligatory, due to the maximality of the parallelism) the use of one of the rules
[]

c1d′2
→ []

##
[]

d′2
, []

c5d′2
→ []

##
[]

d′2
, making the computation never halt.

The evolution of membranes evolving from []
c′1d′1

from step 5 on is deterministic,

16 L. Cardelli, Gh. Păun

and it ends by reproducing the membrane []c′1d′1
.

Consequently, the matrix ml can be correctly simulated, and, if the computation
in Π does not correctly simulate the matrix, then it never ends. After completing
the correct simulation, the three starting membranes are reproduced, with similar
markings: EHY appears on the first membrane, c1d1, c

′
1d
′
1 on the other two.

The evolution of the configuration along the nine steps of (correctly) simulating
the matrix ml : (X → Y, A → x) is indicated in Figure 1, where the maximal
number of membranes present simultaneously in the system is nine (step 6).

Initial [[]EHXA []c1d1
[]c′1d′1

]λ

Step 1 [[]EHXl
[]A []c2

[]d1
[]c′2

[]d′1
]λ

Step 2 [[]x′EHXl
[]c3c4d1

[]c′3c′4d′1
]λ

Step 3 [[]
Y ′ []

α′EH
[]

d2
[]

c3c4
[]

d′2
[]

c′3c′4
]
λ

Step 4 [[]
EHαY ′ []

d2
[]

c4c5d′2
[]

c′5
[]

c′4
]
λ

Step 5 [[]
EHY ′′d2

[]
c6c7

[]
c4c5

[]
c′5d′1

]
λ

Step 6 [[]Ed2Y ′′ []H []d1
[]c7

[]c1
[]c5

[]c′6
[]d′1

]λ

Step 7 [[]Y ′′′EH []c8c7
[]d1

[]c1
[]c′7d′1

]λ

Step 8 [[]Y iv []EH []c8d1
[]c1

[]c′8
[]d′1

]λ

Step 9 [[]
EHY

[]
c1d1

[]
c′1d′1

]
λ

Fig. 1. The evolution of membranes when simulating ml : (X → Y, A → x)

Consider now the case when we start with the rule []XEH → []Xl
[]EH ,

hence we intend to simulate a matrix ml : (X → Y, B → #). In the next step
the two membranes mate, and we get []

EBHXi
; note that all symbols from N ∪

V from the current sentential form of G are together on this membrane (they
have been non-deterministically separated by using the first rule, but now they
come back). This is important in view of simulating the rule B → # from the
matrix ml: if any copy of B is present, then the rule []

EBHBXl
→ []

EBH##
[]

Xl

must be applied, and the computation never stops. If no B is present, then this
rule is not applied, the membrane remains unchanged. Simultaneously, the second
membrane, the one marked with []d1c3c4

, produces the membrane []d2
, which

makes possible the continuation of the evolution of the first membrane, by using
the rule []

HXlEB
[]

d2
→ []

HXlE′d2
.

In step 5 we can use the rule []
HXlE′d2

→ []
HY v []

E′d2
, and then the contin-

uation proceeds deterministically, by using the rules from rows 6, 7, 8, 9 of Table
2. In the end, we obtain a membrane with the marking EHY , hence correct with
respect to G: we have checked that B is not present, and X was changed with Y .

However, in step 5 we can also use the rule []
E′d2

→ []
E

[]
d2

, and this leas to
two membranes []

Ez1
[]

d2z2
with z1z2 ∈ {HXl}(V ∪ N2)+. The only rule which

An Universality Result Based on Mate/Drip Operations 17

can be applied to these membranes is []E []d2
→ []##d2

, hence the computation
never stops.

Let us also note that the rules from the second column of Table 1 cannot interfere
with the rules used for simulating a matrix ml : (X → Y, B → #), and, conversely,
rules from the second column of Table 2 cannot be used when simulating a matrix
ml : (X → Y, A → x); this is ensured by the different priming of symbols Y and E,
and by the fact that the matrices of M are injectively labelled.

It is important to remember from the previous discussion, that the membrane
marked with d2 is produced exactly in step 3, and it is indeed produced (otherwise
the second membrane introduces the trap-object); moreover, there is no d2 available
in the system from the simulation of a previous matrix, of any type (with or without
rules to be used in the appearance checking manner), because, as we have seen above,
the membrane []

d2
is “consumed” during the simulation of the matrices.

We return again to three membranes with markings as in the beginning. The
evolution of the membrane structure during the nine steps is indicated in Figure 2
(this time, the maximal number of membranes present simultaneously is eleven, in
step 6).

Initial [[]
EHX

[]
c1d1

[]
c′1d′1

]
λ

Step 1 [[]
Xl

[]
EH

[]
c2

[]
d1

[]
c′2

[]
d′1

]
λ

Step 2 [[]
HEBXl

[]
c3c4d1

[]
c′3c′4d′1

]
λ

Step 3 [[]HEBXl
[]d2

[]c3c4
[]d′2

[]c′3c′4
]λ

Step 4 [[]HXlE′d2
[]c4c5d′2

[]c′5
[]c′4

]λ

Step 5 [[]HY v []E′d2
[]c6c7

[]c4c5
[]c′5d′1

]λ

Step 6 [[]
Y vi []

H
[]

E
[]

d2
[]

d1
[]

c7
[]

c1
[]

c5
[]

c′6
[]

d′1
]
λ

Step 7 [[]
Y viid2

[]
H

[]
E

[]
c8c7

[]
d1

[]
c1

[]
c′7d′1

]
λ

Step 8 [[]
Y viiH

[]
E

[]
c8d1

[]
c1

[]
c′8

[]
d′1

]
λ

Step 9 [[]EHY []c1d1
[]c′1d′1

]λ

Fig. 2. The evolution of membranes when simulating ml : (X → Y, B → #)

In both cases, the simulation of matrices is correct, and the process can be
iterated. We continue in this way until reaching a configuration with three inner
membranes marked as follows: []

wZaEH
, []

c1d1
, []

c′1d′1
. In order to conclude

the computation, we have to mate all membranes in a single one, to remove all
auxiliary objects, and to check whether any symbol # is present, a case where the
computation should not halt. These operations are done by means of the following
rules:

[]ZaHE []c1d1
→ []ZaHc1d1

, []ZaEH → []##[]EH .

The first membrane starts to “swallow” the other membranes, and this is the only

18 L. Cardelli, Gh. Păun

way to halt, otherwise the second rule above is used and the computation never
stops (the second rule prevents, for instance, the use of the rule []c1d1

→ []c2
[]d1

from Tables 1 and 2). In the same step, the rule []c′1d′1
→ []c′2

[]
d′1

is used. The
membrane []

c′2
is “eaten” by the first membrane, by means of the rule

[]ZaHd1c1
[]c′2

→ []ZaHd1c′2
,

which is necessarily used, otherwise we use the rule

[]ZaHc1d1
→ []##[]Hc1d1

,

and the computation never stops. We continue by means of the following rules:

[]ZaHd1c′2
[]d′1

→ []ZaHd1d′1
,

[]
ZaHd1d′1

→ []
Za

[]
d1d′1

,

[]
d′1d1

[]
Za
→ []

d′1Za
,

[]
Zad′1

→ []
a′′ []

d′1
,

[]d′1
[]a′′ → []d′′1 a′′ ,

[]a′′d′′1
→ []a[]d′′1

,

[]
d′′1

[]
a
→ []

a
,

for all a ∈ V .
If the membrane []ZaHd1d′1

obtained after using the first rule above evolves
(prematurely) by means of the rule []

Zad′1
→ []

a′′ []
d′1

, then we obtain two
membranes []w1a′′ []w2d′1

with w1w2 = Hd1, but they mate by means of the rule
[]

d′1
[]

a′′ → []
d′′1 a′′ , thus bringing together the multisets w1, w2. This means that

Hd1 mark the same membrane, hence we can use the rule

[]Hd1
→ []##[]d1

in order to prevent this path (no other rule can be applied instead).
The evolution of the membrane structure in the end of a computation is indicated

in Figure 3.
Therefore, we end with only one inner membrane, marked, like any string gener-

ated by G after introducing the symbol Za, by symbols from V and, possibly, #. In
order to make the computation continue forever in this latter case, even if exactly
one copy of # is present, we also introduce the rule

[]a# → []#[]#, a ∈ V.

(Note that there is at least one symbol a ∈ V present, the one introduced from the
symbol Za.)

The previous analysis shows that ΨV (L(G)) = Ps(Π). Because the number of
membranes and the weight of rules is as stated in the theorem, this concludes the
proof.

An Universality Result Based on Mate/Drip Operations 19

Initial [[]
EHZaw

[]
c1d1

[]
c′1d′1

]
λ

Step 1 [[]
ZaHc1d1

[]
c′2

[]
d′1

]
λ

Step 2 [[]
ZaHd1c′2

[]
d′1

]
λ

Step 3 [[]
ZaHd1d′1

]
λ

Step 4 [[]Za
[]d1d′1

]λ

Step 5 [[]d′1Za
]λ

Step 6 [[]
a′′ []

d′1
]
λ

Step 7 [[]
d′′1 a′′]

λ

Step 8 [[]
d′′1

[]
a

]
λ

Step 9 [[]
wa

]
λ

Fig. 3. The evolution of membranes in the end of a computation

It is interesting to note that if we start from a matrix grammar without appear-
ance checking (in the standard binary normal form [3], not in the Z-normal form –
the technical details are obvious and we omit them), then the auxiliary membranes
marked with c1d1 and c′1d

′
1 are no longer necessary; the system simplified in this way

uses one rule at a time, with the rules precisely chained, that is, we can apply them
in an unsynchronized manner and still we generate the Parikh image of the starting
language. Therefore, by unsynchronized systems we generate at least PsMAT .

7. Final Remarks

The result above confirms a statement made several times in membrane computing:
the cell is a very powerful “computer”. This time, the Turing completeness was
obtained in the rather restrictive framework of using only the mate, drip operations,
with proteins placed on membranes and controlling the operations.

Several directions for continuing the present research are of interest. First, the
use of the pino, exo operations should be investigated. Similarly, other operations
from brane calculi could/should be considered, such as phago and bud, and the power
of P systems using also such operations should be examined. Then, improvements
of the previous results, in the number of membranes or the weight of rules could
be sought for. Of a possible practical relevance from the point of view of systems
biology is to find classes of operations which can lead to systems with decidable
properties (hence sub-universal). Removing the restriction of maximal parallelism
might lead to such a decrease of the power – but, as seen in the end of Section 6,
with rules as above we can still generate all Parikh images of languages generated by
matrix grammars without appearance checking, which, intuitively speaking, is not
a small family (it equals the family of vectors accepted by partially blind register
machines of [5]).

20 L. Cardelli, Gh. Păun

Acknowledgements

In some sense, this paper was catalyzed by Gabriel Ciobanu, during the Third
Brainstorming Week on Membrane Computing, Sevilla, February 2005, by discus-
sions with both authors about the possibility to bridge brane calculi and membrane
computing.

References

[1] N. Busi, R. Gorrieri, On the computational power of brane calculi. Third Workshop
on Computational Methods in Systems Biology, Edinburgh, 2005.

[2] L. Cardelli, Brane calculi. Interactions of biological membranes. In Proc. Computa-
tional Methods in Systems Biology, 2004, Springer, Berlin, to appear.

[3] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[4] J. Dassow, Gh. Păun, A. Salomaa, Grammars with controlled derivations. Chapter
3 in vol. 2 of Handbook of Formal Languages (G. Rozenberg, A. Salomaa, eds.),
Springer-Verlag, Berlin, 1997, 101–154.

[5] S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7 (1978), 311–324.

[6] M. Harrison, Introduction to Formal Language Theory. Addison-Wesley, Reading,
MA, 1978.

[7] Gh. Păun, Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science–TUCS Report 208,
November 1998, www.tucs.fi).

[8] Gh. Păun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
[9] A. Salomaa, Formal Languages: Academic Press, New York, 1973.

[10] The membrane computing web page: http://psystems.disco.unimib.it.

