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Abstract: Automatically translating chromaticity-free thermal infrared (TIR) images into realistic
color visible (CV) images is of great significance for autonomous vehicles, emergency rescue, robot
navigation, nighttime video surveillance, and many other fields. Most recent designs use end-to-end
neural networks to translate TIR directly to CV; however, compared to these networks, TIR has low
contrast and an unclear texture for CV translation. Thus, directly translating the TIR temperature
value of only one channel to the RGB color value of three channels without adding additional
constraints or semantic information does not handle the one-to-three mapping problem between
different domains in a good way, causing the translated CV images not only to have blurred edges but
also color confusion. As for the methodology of the work, considering that in the translation from TIR
to CV the most important process is to map information from the temperature domain into the color
domain, an improved CycleGAN (GMA-CycleGAN) is proposed in this work in order to translate
TIR images to grayscale visible (GV) images. Although the two domains have different properties, the
numerical mapping is one-to-one, which reduces the color confusion caused by one-to-three mapping
when translating TIR to CV. Then, a GV-CV translation network is applied to obtain CV images.
Since the process of decomposing GV images into CV images is carried out in the same domain,
edge blurring can be avoided. To enhance the boundary gradient between the object (pedestrian
and vehicle) and the background, a mask attention module based on the TIR temperature mask
and the CV semantic mask is designed without increasing the network parameters, and it is added
to the feature encoding and decoding convolution layers of the CycleGAN generator. Moreover,
a perceptual loss term is applied to the original CycleGAN loss function to bring the translated
images closer to the real images regarding the space feature. In order to verify the effectiveness of
the proposed method, the FLIR dataset is used for experiments, and the obtained results show that,
compared to the state-of-the-art model, the subjective quality of the translated CV images obtained
by the proposed method is better, as the objective evaluation metric FID (Fréchet inception distance)
is reduced by 2.42 and the PSNR (peak signal-to-noise ratio) is improved by 1.43.

Keywords: thermal infrared image; image translation; CycleGAN; temperature information; semantic
mask

1. Introduction

A thermal infrared (TIR) camera captures infrared radiation emitted by objects in
scenes as the visible spectrum images do not have ideal color and texture, such as night
or low-light working environments where TIR images have a strong advantage; thus, in
recent years, TIR cameras have been widely used in industrial surveillance and drones.
However, such images do not have color information, which makes it difficult for humans
to distinguish objects in the scene and affects their use in some important contexts, such as
emergency rescue environments. In order to improve human eye recognition and computer
intelligent processing, many researchers are studying how to translate TIR images into
color visible (CV) images for computer vision tasks such as object tracking, crowd counting,
panoramic segmentation, and image fusion.
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Furthermore, TIR relies on converting temperature into an image, so there is only one
active channel measuring mainly the temperature information; however, CV relies on the
conversion of colors into images, so there are three channels, which we usually call RGB,
and the information carried by TIR and CV is not in the same domain, such that TIR to
CV translation is a one-to-three value mapping, including the translation of texture and
color. Moreover, due to the limitations of imaging mechanisms and camera manufacturing
processes, TIR images have limited resolution and a less prominent texture; these huge
differences between image modalities develop challenges to the design of image translation
models [1]. Most deep learning (DL)-based image translation algorithms use an end-to-end
neural network that directly translates single-channel TIR images to three-channel CV
images. As a result, when the CV content is simple and the TIR texture is relatively rich
(such as face TIR images), the translation effect is better [2]; however, when the CV scene is
complex (such as the street view or the natural landscape), the translated images tend to
have large areas of color confusion and texture anomalies.

The translation from TIR to CV has a one-to-many mapping relationship between the
different domain values, the most important process of which is to translate the information
of the temperature domain into the color domain. In order to reduce the ambiguity of
the translation process, the translation of different domain values is only considered a
one-to-one mapping relationship learning, i.e., first translating the TIR images to grayscale
visible (GV) images. Existing translation algorithms, such as QS-Attn [3], decompose one
temperature value into three RGB values, causing the translated image to show blurred
edges and color confusion, as shown in Figure 1e, which represents the ambiguity in the
mapping from the temperature value to RGB due to a lack of sufficient constraints. This
ambiguity can be reduced when the temperature is translated only to grayscale values, as
shown in Figure 1c.
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Figure 1. Comparison between TIR-GV-CV and TIR-CV. Figure 1. Comparison between TIR-GV-CV and TIR-CV.

Although further translation from GV images to CV images is required, there is no
blurred edge and color confusion because both effects are translated in the same domain.
Some existing research results ([4,5]) show that the only disadvantage of the translation
from GV to CV is that it is not easy to restore the real scene color; however, the resulting
image can fully meet the visual needs of the human eye, as shown in Figure 1f.



Remote Sens. 2023, 15, 663 3 of 14

Since this study focuses on TIR to GV translation, an improved CycleGAN, called
GMA-CycleGAN (Gray Mask Attention-CycleGAN), is proposed, i.e., a gray image cycle-
consistent GAN with mask attention. The mask attention mechanism helps in improving
the texture of salient objects (pedestrians and vehicles) to meet the needs of object detection
and semantic segmentation in practical applications. Thus, a mask attention module has
been proposed. Moreover, this latter does not increase network parameters based on
TIR temperature masks and CV semantic masks that separate salient objects from the
background. Therefore, in GMA-CycleGAN, the mask attention module is added to feature
encoding and the feature decoding convolutional layers of the generator. In addition, a
perceptual loss term is added to the original CycleGAN loss function to make the translated
image closer to the real image in the feature space.

The subsequent parts of this paper are arranged as follows: first, the relevant research
status is explained in Section 2, the improved algorithm that was proposed is explained in
Section 3, the experiments and datasets are explained in Section 4, the obtained results are
analyzed and discussed in Section 5, and a conclusion concludes this work in Section 6.

2. Related Work

Due to the different imaging principles of thermal and visible light sensors, the
temperature domain, where TIR is located, is very different from the color domain, where
CV is located, and it is difficult for traditional methods to directly identify the mapping
relationship from TIR to CV. Early studies ([6,7]) used the fusion of near-infrared images
and TIR to supplement texture information, to obtain a fusion image that approximates
grayscale visible light, and to color the fusion image according to the color distribution of a
reference color image, so that the visual realism of the obtained image is poor.

In recent years, DL has been widely used in various computer vision tasks, and the
powerful fitting ability of neural networks has engendered certain progress in TIR to CV
image translation tasks. Moreover, scholars have proposed many network models based
on DL, and these models were divided into two categories: convolutional neural networks
(CNNs) models and generative adversarial networks (GANs) models according to whether
adversarial training is used. In addition, models based on CNNs, such as the TIR2lab
model proposed by Berg et al. [8], are the first end-to-end TIR translation models. They
hypothesized that the CNN model, based on the autoencoder structure, could identify the
luminance-to-chromaticity mapping relationship of paired TIR and CV, and, for the first
time, they used the neural network to directly translate TIR to CV. In order to make the
small objects of the translated images have more realistic and richer texture information,
Wang et al. [9] proposed an attention-based hierarchical thermal infrared image colorization
network (AHTIC-Net), which uses multi-scale network structures to extract the features of
objects of different sizes in order to enhance the model’s attention to small objects during
the training process. In general, the translation model, based on CNNs, has an intuitive
structure and a simple network training mode; however, due to the insufficient constraint
of the loss function of CNNs on the image translation, the translated CV images have the
disadvantages of local detail distortion, low image contrast, and blurred visual effect.

Thus, due to the adversarial training of the generative model and the discriminative
model, GANs have better behavior than CNNs when applied to image generation, and
they can use the unpaired TIR-CV dataset for training. For instance, Isola et al. [10] propose
pix2pix to identify the mapping of the source image to a target image using paired datasets.
In order to break through the dataset limitations, Zhu et al. [11] proposed the CycleGAN,
which uses two symmetric GANs to form a closed-loop network where one GAN translates
images from the source domain to the target domain and the other GAN translates the
target domain image back to the source domain and uses cycle-consistency loss to boost
the image after two translations to be identical to the original image. Moreover, Pix2pix
and CycleGAN have greatly improved the translation effect between CV images, so that
image translation, based on the GAN model, has attracted the attention of many schol-
ars. Subsequently, several have improved GAN, introduced methods such as contrastive



Remote Sens. 2023, 15, 663 4 of 14

learning and attention mechanisms, and proposed a variety of unpaired image translation
models [3,12–14]. These GAN-based image translation models achieve good results in
tasks such as semantic map to CV translation, super resolution, image inpainting, and style
transfer; however, the visual effect is not ideal when they are directly applied to TIR-CV
translation. Furthermore, Kuang et al. [15] improved the pix2pix method and proposed a
new algorithm, the TIC-CGAN, which used GAN for TIR image translation in traffic scenes
for the first time. To make the translated image richer in texture, TIC-CGAN applied a
coarse-to-fine generator instead of the pix2pix generator, which led to finer texture features
in the target images.

The methods mentioned above, based on CNNs and GANs, use paired TIR-CV
datasets for neural network training. This latter translates daytime TIR into daytime
CV and translates nighttime TIR into nighttime CV, respectively. Since the high beams
of oncoming vehicles in nighttime traffic scenes interfere with RGB imaging, resulting in
the visual effect of nighttime CV being inferior to daytime CV, Luo et al. improved the
CycleGAN algorithm and proposed PearlGAN [16], which used an unpaired training mode
to translate nighttime TIR to daytime CV. Although these improved GAN models improve
the realism of the translated images, the generated CV images still generate defects related
to unclear texture and color distortion. This is due mainly to the one-to-many correspon-
dence in the TIR to CV translation, which is itself an ill-posed solution [17]. Thus, including
the previous CNN models, which directly translate single-channel TIR to three-channel
CV, these end-to-end translations cannot handle the one-to-many mapping between the
temperature domain and the color domain well, resulting in different degrees of color
confusion and edge blurring in the translated image.

In order to reduce the instability of the ill-posed problem-solving process, we propose
the decomposition of the TIR to CV translation into a two-phase translation process: the
first one consists of translating from TIR to GV, whereas the second one achieves the
translation from GV to CV. In the proposed experiment, we use the original CycleGAN as
the base model. First, we change the TIR to CV one-to-three channel translation to TIR to
GV one-to-one channel translation. Although this process does not intrinsically solve the
problem of temperature and color matching, it reduces the uncertainty of temperature-to-
color translation, helping to improve the sharpness of image edges and reduce unwanted
color noise. Inspired by the spatial attention module of AttentionGAN [18], and in order
to better distinguish between salient objects (movable pedestrians and vehicles) in the
generated image, we separate the object and background, then the semantic mask and the
temperature mask are extracted in CV and TIR, respectively, making the salient objects
in the image clearer without increasing the network parameters. Moreover, the use of
adversarial loss in image translation tasks tends to produce distorted textures [17]. In order
to mitigate this problem, a perceptual loss term is added to the original CycleGAN loss
function to encourage the translated image to be more similar to the real image in the
feature space, which makes the texture information of the translated image closer to the
true GV image. Thus, considering that the grayscale image coloring task is only performed
in the temperature domain and does not produce edge blurring and noise [4], the original
CycleGAN is directly used for the GV to CV translation.

3. Methods
3.1. The Framework of GMA-CycleGAN

The flowchart of TIR-GV image translation, based on our improved CycleGAN (GMA-
CycleGAN), is shown in Figure 2, where A and B present two data domains, namely the
TIR and the GV, GAB and GBA are two mask attention-based CycleGAN generators, and
DA and DB are two CycleGAN discriminators. The first row represents the TIR to GV
translation, whereas the second row represents the GV to TIR translation. The unpaired
training scheme is used, where the real images A and B are randomly selected from the
TIR and GV datasets, respectively. Taking the first row of Figure 2 as an example (the same
would have been performed on the second row), the input real TIR image A is translated by
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GAB to GV, and then the discriminator DB determines whether the generated GV and the
real GV image B are real or fake and calculates the adversarial loss. Since the adversarial
loss, calculated by CycleGAN discriminators, will cause some distorted textures in the
generated images, we introduce the perceptual loss (pl), based on the VGG-16 feature
extractor [19], to calculate the difference between the global features of the generated and
the real images. This makes the overall visual effect of the generated images more realistic.
In addition, CycleGAN will also input the generated image and the real image A into
generator GBA, and calculate the difference between the two translated images and the real
image A, namely, determining the cycle consistency loss and identity mapping loss.
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Thus, the remainder of this section consists of introducing the temperature mask
and the semantic mask in Section 3.2, the improved mask attention-based generator in
Section 3.3, and the improved loss function of CycleGAN in Section 3.4.

3.2. Temperature Mask and Semantic Mask

In order to better identify the salient objects (movable pedestrians and vehicles) in the
translated images and perform downstream tasks, such as object recognition and object
tracking, after the completion of the image translation task, the object will be separated
from the background in CV and TIR, the semantic mask and the temperature mask will be
extracted, and they will be added to the generator as prior knowledge.

Furthermore, we extracted the semantic images from the real CV using Mask2Former [20],
a semantic segmentation model pre-trained on the CitySpace dataset, and then assigned
a value of zero to the background (e.g., sky, vegetation, and road) and a value of one to
the objects to obtain binary semantic masks, as shown in Figure 3a–c. Among them, the
semantic masks of the daytime scene have better effect than the semantic masks of the
nighttime scene, as the pre-trained semantic segmentation model will make an incorrect
judgment on the object category in the black border of the nighttime CV and it is difficult
to distinguish pedestrians in the distance; thus, a more accurate temperature mask is used
instead of the semantic mask in the nighttime scene.
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Moreover, the raw TIR contains temperature information for the imaging area. Due to
the different characteristics of various types of objects absorbing, emitting, and reflecting
heat, the specific objects have different manifestations on TIR. Considering this particular
property of TIR, the object is separated from the background by setting a pixel threshold.
Among them, the human body temperature is relatively stable, and it is the easiest to be
separated from the background; moreover, the temperature of the car is higher when the
engine is working, and the metal and glass materials on the outer surface of the car are more
reflective when the engine is turned off; thus, it is easier to distinguish it. Since the thermal
infrared sensor receives both the object’s own radiation and the environmental radiation,
the influence of solar radiation at night on the thermal imaging is small, and the camera
is almost only sensitive to the heat emitted by the object itself, so the segmentation of the
human body and the vehicle in the nighttime scene is more accurate than during the day. In
addition, as daytime lighting conditions vary, the threshold chosen for segmentation should
also vary [21]. Therefore, we used the method proposed in [22] to divide the FLIR dataset
into three scenarios: sunny day, cloudy day, and night, and then extract the corresponding
salient object temperature threshold windows for the different scenarios.

We set the pixel value in the TIR image threshold window to one and the pixel value
beyond the threshold window to zero in order to obtain binary temperature masks, as
shown in Figure 3d,e. From this figure, pedestrians can be better divided in sunny days,
but the car division noise in the distant parking lot is large, and the road surface also has
a certain noise. As for the cloudy days, vehicles and pedestrians can also be separated,
but there is a certain amount of noise. Finally, at night, people in the distance can be
accurately divided with less noise. Since semantic masks are less noisy than temperature
masks during the day and vice versa in nighttime scenes with less ambient radiation, we
use semantic masks during the day and temperature masks at night. In general, both
temperature masking and semantic masking are a little noisy, but our network model does
not rely entirely on masks as it also relies on other feature information of the original
CV-TIR image pairs; thus, the mask noise has a small effect.
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3.3. Generator Based on Mask Attention

Spatial attention focuses on local information within the spatial domain, that is, the
identification of the areas on the feature map that deserve our attention, yielding better
network outputs. General spatial attention is calculated using neural networks, which
is posterior knowledge, while the temperature mask and the semantic mask, inferred by
the threshold window and pre-training model in this study, can be regarded as a type of
spatial attention (i.e., mask attention) based on prior knowledge without increasing the
amount of network parameters, and can focus on the mask region. The proposed mask
attention multiplies the input feature map with the mask on a channel-wise pixel-wise
basis, as expressed in Equation (1):

yc,h,w = f multi(x, tm) = xc,h,w × (tm1,h,w × (1− α) + α) (1)

where xc,h,w and yc,h,w are the feature maps of the mask attention input and output, re-
spectively, tm1,h,w represents the binary masks whose length and width are equal to the
feature maps, and c, h and w represent the number of channels, the height, and the width
of the feature maps, respectively. Added to that, α is a parameter for adjusting the atten-
tion strength of the mask. Afterwards, we translate the binary mask to weight mask by
applying (tm1,h,w × (1− α) + α). In order to emphasize the salient object and suppress the
background, we set α < 1 as this parameter yields a weaker attention when it is close to
one and a strong attention when it is close to zero. For feature maps of different spatial
sizes, the original mask passes through a pooling layer of size 3× 3, stride 2, and padding 1
to keep the length and the width consistent.

The GMA-CycleGAN generator adds mask attention between the convolutional layers,
the instance normalization (IN), and the ReLU activation layers of the original CycleGAN
encoder and decoder. As shown in Figure 4, among them, the encoder uses three con-
volutional layers to extract the feature maps of 64× 64× 256 from the source image of
256× 256× 3 , and then the translator translates the 64× 64× 256 dimension feature maps
extracted in the previous step into the 64× 64× 256 dimensional feature maps of the target
image through nine residual blocks. Finally, the decoder uses three deconvolution layers to
restore the low-level features from the feature maps so as to output a 256× 256× 3 image.
To maintain the symmetry of the CycleGAN generator, in the encoder, we insert the mask
attention module after the initialization convolutional layer (kernel size equal to 7× 7 and
stride equal to one), and after two down-sample convolutional layers (kernel size is equal
to 3× 3 and stride is equal to two), other structures are the same as the original CycleGAN,
and then the corresponding improvements are added symmetrically to the decoder. Since
the CycleGAN model is mirror-symmetric, the mask attention module is placed after the
convolution operation when encoding and before the deconvolution operation when the
feature is decoded.

3.4. Loss Function of GMA-CycleGAN

Let A and B represent the source image domain (TIR domain) and the target image
domain (GV domain), respectively, and a and b represent the source image and target image,
respectively. There are three loss functions for the original CycleGAN: GAN loss, identity
mapping loss, and cycle consistency loss, where GAN loss includes two GAN loss functions,
i.e., LGAN(GAB, DB, A, B) and LGAN(GBA, DA, B, A). Moreover, GAN loss guarantees that
the generated sample is distributed the same way as the real sample. The cycle-consistency
loss Lcyc(GAB, GBA) encourages the sample to remain unchanged after passing through
two generators, i.e., GBA(GAB(a)) ≈ a and GAB(GBA(b)) ≈ b. As for the identity mapping
loss Lide(GAB, GBA), it guarantees hue associativity between the generated image and the
original image.
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Figure 4. Schematic diagram of the model framework of the GMA-CycleGAN generator based on
mask attention.

Since adversarial loss can cause texture distortion in the generated image, we added the
perceptual loss item to make the generated image texture more realistic. Thus, perceptual
loss calculates the `2 distance between the feature maps obtained by the convolution of the
generated image and the feature maps obtained by the convolution of the real image, so
that their high-level semantic information is closer. Referring to [23], we use the pre-trained
VGG-16 network on the ImageNet dataset [24] as a feature extractor, and the perceptual
loss is expressed in Equation (2):

Lper(GAB, GBA) = Ea∼pdata(a)[‖vgg16(GBA(b))− vgg16(a)‖2]

+Eb∼pdata(b)[‖vgg16(GAB(a))− vgg16(b)‖2]
(2)

Since the VGG-16 network is pre-trained and its input must be a three-channel image,
while TIR and GV are single-channel images, we copy the single channel into a three-
channel image and use it as the input of VGG-16.

The final loss function of the model is a weighted combination of each loss, and the
formula is expressed as follows:

L(G, F, DX , DY) = LGAN(GAB, DB, A, B) + LGAN(GBA, DA, B, A) + λcycLcyc(GAB, GBA)+
Lide(GAB, GBA) + λperLper(GAB, GBA)

(3)

where λcyc, λide, λper, λpyr are the weight coefficients used to adjust the ratio of the cycle-
consistency loss, identity mapping loss, and perceptual loss, respectively.

4. Experiments
4.1. Experimental Platform and Dataset

All experiments in this paper were performed using a Dell PowerEdge T640 tower
server with 1080Ti GPUs, and all neural networks were trained and validated using the
Pytorch framework.

Most thermal infrared visible datasets are used primarily for object detection and
tracking. One of the most well-known datasets is KAIST [25], which does not store TIR
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TIFF images with the original temperature radiation value because its TIR JPEG or PNG
format image is obtained by preprocessing, such as affine transformation of TIFF files, and
the original temperature radiation value cannot be retrieved. Published in 2018, the FLIR
dataset, taken on streets and highways, contains TIRs in 14-bit TIFF format images and is
sharper than KAIST; however, 9620 pairs of infrared-visible images from the original FLIR
dataset are not aligned, which results in the semantic mask extracted from the dataset being
misaligned with the temperature mask. Therefore, we experimented using the aligned
FLIR dataset published by Zhang et al. [26], which was selected and aligned from the
original FLIR dataset, where 4129 pairs were deployed for training data and 1013 pairs for
testing the system. Moreover, TIR and CV, having a resolution of 640× 512, and taken by
the FLIR Tau2 camera, contain approximately 80% (4130) daytime images and 20% (1012)
nighttime images.

4.2. Evaluating Metrics and Parameter Configuration

We evaluate the quality of the translated image from both faithfulness and realism
points of view. For faithfulness, we calculate the two most commonly used image distance
measurements, including the average of the structural similarity (SSIM) and the peak
signal-to-noise ratio (PSNR) metrics for each pair of generated and real images. Higher
SSIM and PSNR indicate that the translated image is more similar to the real image. As
for realism, we quantitatively calculate the widely used FID (Frechet inception distance)
metric to measure the distance between two distributions of real and generated images,
and its expression is as follows:

FID(g, r) =
∣∣∣∣µr − µg

∣∣∣∣2 + Tr
(
∑r +∑g−2

√
∑r ∑g

)
(4)

where µr and µg represent the mean of the 2048-dimensional feature vectors obtained
by importing the real images and the translated images into the Inception v3 model [27],
respectively. Moreover, ∑r and ∑g represent the covariance matrices of real images and
generated images, respectively, and Tr indicates the trace of a matrix. The smaller the FID
is, the closer the feature vectors are, and the more realistic the translated image will be.

In temperature mask extraction, since the FLIR dataset did not label the weather
conditions, we manually classified the aligned FLIR dataset into three categories: sunny
day, cloudy day, and night. For these three types of illumination conditions, according to
the parameter settings in [22], we set the corresponding threshold windows as 7500–7700,
7300–7500 and 7200–8000 to extract the temperature masks of the salient objects from TIR
TIFF files.

During the training, we scale the input images of resolution 640× 512 to 256× 256.
Using Adam optimizer for backward propagation [28] and setting the Adam momentum
parameter β1 = 0.5 and β2 = 0.999, as well as the batch size to one, the initial learning rate
to 0.0002, and the training epochs to 200 (where the learning rate of the first 100 epochs is
unchanged and the learning rate of the last 100 epochs is linearly decayed to 0). For the
loss function weights, we follow the experimental parameters presented in [11], and we set
the cycle-consistency factor λcyc to 10 and the identity mapping factor λcyc to 1. Referring
to the experimental parameters proposed in [23], the perceptual loss uses the feature maps
of the 3rd, 8th, 15th, and 22nd layers from VGG-16 pre-trained on ImageNet and sets the
factor λper to 5.

5. Results and Discussion

First, when the mask attention is used in different positions of the generator encoder,
the FID of the corresponding six models of different mask attention parameters w is
calculated as shown in Table 1. Referring to this table, when the mask attention is added to
the first two convolutional layers, the FID is the smallest, i.e., the image translation effect
of the GMA-CycleGAN_4 model is the best. We believe that the first two convolutional
layers extract low-level features of the TIR image, such as edge information, and then
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the mask attention can guide the network to distinguish between the boundaries of an
object and those of a background. As for the third convolutional layer, it extracts more
complicated image global features, and using mask attention may destroy the extracted
global features. As can be seen from the table, it is better to set the parameter w to 0.6, a
smaller w will overly suppress the characteristics of the background area, and a larger w
does not distinguish between the background and the object enough.

Table 1. Results of the FID after that the mask attention was inserted into different layers.

Name
Mask Attention w = 0.2 w = 0.4 w = 0.6 w = 0.8

Layer 1 Layer 2 Layer 3 FID FID FID FID

GMA-CycleGAN_1 X 71.68 71.42 71.19 71.67
GMA-CycleGAN_2 X 71.82 71.58 71.36 71.71
GMA-CycleGAN_3 X 72.61 72.50 72.03 72.29
GMA-CycleGAN_4 X X 71.05 70.77 70.62 70.85
GMA-CycleGAN_5 X X 72.99 72.54 72.06 73.15
GMA-CycleGAN_6 X X 72.46 72.21 71.88 72.13
GMA-CycleGAN_7 X X X 72.25 71.76 71.65 72.03

Since few studies have used FLIR datasets for TIR translation, we selected five typical
and popular unpaired image translation models to compare with our model, including
CycleGAN [11], U-GAT-IT [12], NICE-GAN [13], CUT [14], and QS-attn [3], and their
open-source code was implemented for model training and testing. Table 2 displays
the quantitative evaluation metrics of each model on the testing set, where our model
outperforms the other models across the board. In the typical model, QS-attn has the
highest realism indicator and NICE-GAN has the highest faithfulness indicator. Compared
to these two state-of-the-art (SOTA) models, our model’s FID is reduced by 2.42, the PSNR
is increased by 1.43, and the SSIM is basically unchanged. Moreover, our model is twice as
fast as CycleGAN in terms of training time but faster than the other models, where QS-attn
takes the longest training time of about 9 days.

Table 2. Results of different models.

Name FID PSNR SSIM Training Time (Day)

cyclegan 84.78 38.44 0.9258 1
UGATIT 83.44 38.59 0.9239 6

NICE-GAN 80.23 39.33 0.9309 2
CUT 77.73 39.01 0.9270 3

QSGAN 73.04 38.99 0.9253 9
GMA-CycleGAN_4 70.62 40.76 0.9417 2

To sum up, we provide three nighttime TIR images, four daytime TIR images, and
their corresponding translated CV images to subjectively evaluate the different models, as
shown in Figure 5. Since all models in Figure 5 were trained with the unpaired dataset,
in which daytime CV images accounted for the majority (about 80%), these models can
easily translate the night images into the day images; this does mean these models are
overfitted for the night image translation; however, the loss curves did not show overfitting
during the model training. In fact, in order to obtain better RGB visual effects, we expect
to translate all these TIR images into day images regardless they were captured at day or
night. In the future work, we consider to supplement extra information to augment the
translation effect from night TIR images to day CV images.
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Whether it is a daytime scene or a nighttime scene, the translated image of the typical
models has different degrees of color chaos, and the proposed model does not have this
feature, which shows the superiority that TIR is translated to GV first and then translated
from GV to CV. Moreover, while computing the translated images of the typical models,
the edges of the sky and the roads are clear, but the edges of the ground scene are more
blurred (such as pedestrians and vegetation), while the translated images of our model
have less blurred edges. Overall, the proposed model’s translated images have a better
overall effect, with more realistic textures and better distinction between salient objects
(people and vehicles) and backgrounds.

We also explore the impact of each component in ablation studies. Comparison results
are shown in Figure 6. As can be seen, removing the perceptual loss leads to distorted
details, such as the white circles with blue edges (marked in green rectangles) in the two
rows of Figure 6b and the abnormal red color around the two pedestrians in the second
row of Figure 6b. Additionally, removing the mask attention leads to semantic confusion
between salient objects and the background, such as the two pedestrians and the pick-up
truck in the second row of Figure 6c. Therefore, each component is indispensable for
generating high-quality CV images.
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Table 3 displays the quantitative evaluation metrics of different ablation studies for
GMA-CycleGAN_4. The translated TIR images produced by GMA-CycleGAN_4 with
full structures achieve the best quantitative metrics. The lack of perceptual loss and mask
attention causes performance degradation, in which omitting perceptual loss reduces the
FID, PSNR, and SSIM by 2.66, 1.07, and 0.0086 and omitting mask attention reduces the
FID, PSNR, and SSIM by 2.02, 0.92, and 0.0062.

Table 3. Results of different ablation studies for GMA-CycleGAN_4.

Name FID PSNR SSIM

w/o perceptual loss 73.28 39.69 0.9331
w/o mask attention 72.64 39.84 0.9355

GMA-CycleGAN_4 (full) 70.62 40.76 0.9417

6. Conclusions

To solve the problem of color distortion and edge blurring in the images generated by
the existing end-to-end TIR to CV translation model, we propose an improved CycleGAN
(GMA-CycleGAN) consisting of the translation from TIR to GV first, then using the original
CycleGAN to translate from GV to CV. Thus, for temperature domain to color domain
translation, the one-to-one mapping relationship is only considered, that is, the TIR to GV
translation, which reduces the color ambiguity caused by the different domain translation.
We also take the temperature mask of TIR and the semantic mask of CV as prior knowledge
to add the edge information of salient objects. In addition, to mitigate texture distortion
caused by adversarial loss, perceptual loss is added to the CycleGAN loss function. In
terms of objective evaluation, compared to the existing SOTA methods, our model training
time is shorter, the FID is reduced by 2.42, and the PSNR is increased by 1.43. In terms of
subjective evaluation, experimental results show that the texture and color of the translated
image, obtained by our method, are more realistic, and the salient object edge information
is richer. The results also validate the effectiveness of the proposed method and indicate
its importance for many fields, such as autonomous vehicles, emergency rescue, robot
navigation, and nighttime video surveillance.

Further work is threefold. First, in order to apply our method to versatile datasets,
extraction of the temperature mask from JPG or PNG format image files is needed. Second,
semantic segmentation of TIR and GV images, which can be used to maintain semantic
consistency between real and generated images, is needed to further improve the translated
image quality. Third, when using test datasets that are quite different from the aligned
FLIR dataset, the generalization ability of our model is not ideal, and we consider solving
this problem in further research works.
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