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ABSTRACT

This article deals with the steady-state behavior of an MX/G/1 retrial queue with the Bernoulli vacation 

schedule and unreliable server, under linear retrial policy. Breakdowns can occur randomly at any 

instant while the server is providing service to the customers. Further, the concept of Bernoulli 

admission mechanism is introduced. This model generalizes both the classical MX/G/1 retrial queue 

with unreliable server as well as the MX/G/1 retrial queue with the Bernoulli vacation model. The 

authors carry out an extensive analysis of this model. Namely, the embedded Markov chain, the 

stationary distribution of the number of units in the orbit, and the state of the server are studied. Some 

important performance measures and reliability indices of this model are obtained. Finally, numerical 

illustrations are provided and sensitivity analyses on some of the system parameters are conducted.
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1. INTROdUCTION

Retrial queues (or queues with repeated attempts) are characterized by the feature that a customer that 

finds, upon arrival, the server busy, is obliged to leave the service area and repeat his demand for service 

after some time called “retrial time.” Between trials, the blocked customer joins a pool of unsatisfied 

customers called “orbit.” Queues in which customers are allowed to conduct retrials have been 

widely used to model many practical problems in telephone switching systems, telecommunication 

networks and computers competing to gain service from a central processing unit. Moreover, retrial 

queues are also used as mathematical models for several computer systems such as packet switching 

networks, shared bus local area networks operating under the carrier-sense multiple access protocol 

and collision avoidance star local area networks etc. For a review of the main results and methods, 

the reader is referred to the survey papers of Yang and Templeton (1987), Falin (1990), Kulkarni 
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and Liang (1997) and the book by Falin and Templeton (1997). For more recent references, see the 

bibliographical overviews in (Artalejo 2010; Artalejo, 1999; Artalejo, 1999). Further, a comprehensive 

comparison between retrial queues and their standard counterparts with classical waiting lines can 

be found in Artalejo and Falin (2002).

Many of the queueing systems with repeated attempts operate under the classical retrial policy, 

where each block of customers generates a stream of repeated attempts independently of the rest of 

the customers in the orbit, i.e., the intervals between successive repeated attempts are exponentially 

distributed with rate nθ  (say), when the number of customers in the orbit is n. However, there is a 

second kind of policy, called constant retrial policy, which arises naturally in problems where the 

server is required to search for customers (Sengupta 1990) and in communication protocols of type 

carrier sense multiple access (CSMA). The latter discipline was introduced by Fayolle (1986), who 

investigated an M/M/1 retrial queue in which the repeat customers form a queue and only the head 

customers of the orbit queue can request a service after an exponentially distributed retrial time with 

some parameter γ (say), i.e., the retrial rate is ( )
,

1
0

− δ γ
n

, where δ
i j,

 denotes the Kronecker’s delta, 

when the number of units in the orbit is n. Farahmand 1990) called this discipline a retrial queue with 

FCFS orbit retrial policy. Choi et al. (1992) generalized this retrial policy by considering an M/M/1 

retrial queue with general retrial times. Artalejo and Gomez-Corral (1997) introduced a more general 

kind of retrial incorporating both possibilities by assuming that when there are n customers in the 

system, the time intervals between successive repeated attempts are exponentially distributed random 

variables with parameter θ δ γ
n n
= −( )

,
1

0
, where θ can be considered as the retrial per customer and 

γ the rate at which the server seeks service for customers whenever it is idle. Such a type of retrial 

policy is known as a linear retrial policy. Recently, Choudhury (2008) investigated such a queueing 

model for two phases of service under Bernoulli vacation schedule.

The classical vacation scheme with Bernoulli service discipline was originated and significantly 

developed by Keilson and Servi (1986) and co-workers. Kella (1990) suggested a generalized Bernoulli 

scheme according to which a single server goes on i consecutive vacations with probability p
i
 if the 

queue is empty upon his return. At the end of a vacation period, service begins if a customer is present 

in the queue. Otherwise, the server waits for the first customer to arrive. A wide class of retrial policies 

for governing the vacation mechanism has also been discussed in the literature. Most of the analyses 

for retrial queues concerns the exhaustive service schedule (Artalejo, 1997), gated service policy 

(Langaries, 1999) and recently modified vacation policy (Ke & Chang 2009). A number of papers 

(Ke & Chang, 2009; Krishnakumar & Arivudainambi, 2002; Krishnakumar et al., 2002; Wenhui, 

2005) have recently appeared in the queueing literature in which the concept of Bernoulli vacation 

schedule has been introduced under the FCFS orbit retrial policy. Such type of queueing models 

occurs in many real-life situations where the server may be used for other secondary jobs, for instance 

to serve customers in other systems. Allowing the server to take vacations makes the queueing model 

more realistic and flexible in studying real-world queueing situations. Applications arise naturally 

in call centers with multi-task employees, customized manufacturing, telecommunication and computer 

networks, maintenance activities, production and quality control problems, etc.

The study of queueing models with service interruptions goes back to the 1950s. Among some 

early papers on service interruptions, we refer the readers to see the papers by Gaver (1962), Avi-ltzhak 

and Naor (1963), Thirurengadan (1963) and Mitrany and Avi-ltzhak (1968) for some fundamental 

works. Li et al. (1997), Sengupta (1990), Takin and Sengupta (1998), Tang (1997), among others, have 

studied some queueing systems with interruptions where, in one of the underlying assumptions, the 

service channel undergoes repair instantaneously, as soon as it fails. Recently, Lee (2018) considered 

a model where the breakdowns/repair process is non-stationary in the number of breakdowns/repairs. 

On the other hand, retrial queues that take into account servers failures and repairs were introduced by 

Aissani (1988) and Kulkarni and Choi (1990). As related literature, we should mention some papers 

by Aissani (1994; 1993), Aissani and Artalejo (1998) and Anisimov and Atadzhanov (1994). Wang 
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et al. (2001) studied a repairable M/G/1 retrial queueing model from the viewpoint of reliability for 

the first time, and both of the queueing indices and reliability characteristics are obtained. Atencia 

et al. (2008) investigate a similar type of batch arrival retrial model under FCFS orbit retrial policy. 

Choudhury and Deka (2008) investigate such a repairable M/G/1 retrial queueing model with two 

phases of service under the classical retrial policy. Although some aspects have been discussed 

separately on queueing systems with service interruptions, second optional service, repeated attempts, 

however, no work has been found that combines all these features together for batch arrival queueing 

systems, even in the most recent studies. Hence to fill up to this gap, in this article an attempt has been 

made to study an MX/G/1 retrial queue with Bernoulli vacation schedule which is subject to server’s 

breakdown. Further, we introduce the concept of control of the admission policy to the retrial group 

in the form of Bernoulli admission mechanism.

In the Bernoulli admission mechanism, we assume that each individual blocked customer is 

admitted to join the retrial group with a probability ϖ ϖ( )0 1≤ ≤ , independently of the admission 

of the rest of the customers arriving in the same batch and/or of the actual size of the retrial group. 

This type of mechanism for the admission to the retrial group was introduced recently by Artalejo 

and Atencia (2004) and Choudhury (2007) for continuous time queueing models and Artalejo et al. 

(2005) for a discrete time queueing model. The consideration of the admission probability ϖ can be 

viewed as a first step to extend the existing control mechanism for admission of customers in the 

standard waiting lines to queues with repeated attempts.

The first study of a batch arrival retrial queue was introduced by Falin (1976), who assumed 

the following operating rule: “If the server is busy at the arrival epoch, then whole batch joins the 

retrial group, whereas if the server is free, then one of the arriving units starts its service and the 

rest joins the retrial group”. This kind of policy is applicable to the performance evaluation of Local 

Area Networks operating under transmission protocols like the CSMA/CD (Carrier Sense Multiple 

Access with Collision Detection); see Choi et al. (1992). In such a context, messages of variable length 

arrive at the stations and then they are divided into a number of packets in order to be transmitted 

to the destination station. If the transmission medium (i.e., a bus in the engineering terminology) 

is idle, then one packet is selected to be transmitted automatically and the rest is stored in a buffer 

(i.e., the retrial group). On the other hand, if the bus is busy, then the entire packet must be stored in 

the buffer and the station will retry the transmission later on. A more complete description of this 

mechanism can be found in Yang and Templeton (Yang & Templeton, 1987). Some recent papers 

(Aissani, 2000; Artalejo & Atencia, 2004; Artalejo et al., 2005; Choudhury, 2007; Choudhury & 

Deka, 2013; Ke & Chang, 2009; Kulkarni, 1986) discussed more complicated queueing situations 

with retrials and batch arrivals. However, our objective in this paper is to extend the analysis of the 

main MX/G/1 retrial queue under Bernoulli vacation schedule with linear retrial policy and Bernoulli 

admission mechanism for an unreliable server with a view to unify several classes of related batch 

arrival queueing systems. To this end, the methodology will be based on a combination of embedded 

Markov chain and inclusion of supplementary variables techniques.

The rest of the paper is organized as follows. In Section 2, we give a brief description of the 

mathematical model. Section 3 deals with the derivations of the stability criteria for existence of the 

stationary regime and studies the embedded Markov chain describing the behavior of the system size 

distribution at a departure epoch. Section 4 deals with the derivations of the stationary distribution 

of the state of the server and the number of customers in the orbit. Some important performance 

measures are derived in Section 5. Numerical illustrations are presented in Section 6.

2. THe MATHeMATICAL MOdeL

We consider an MX/G/1 queueing system, where the number of individual primary customers arrives 

to the system according to a compound Poisson process with arrival rate λ. The size of successive 
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arriving batches is X X
1 2
, ,⋯  where X X

1 2
, ,⋯  are iid random variables, distributed with probability 

mass function (pmf) a P A n n
n
= = ≥{ }, 1 , probability generating function (PGF) a z E zX( )= 




 

and finite factorial moments a E X X X k
k[ ]

[ ( ) ( )]= − − +1 1⋯ . Let ϖ ∈ ( , ]0 1  be the probability of 

admission for each individual customer and b
n

 be the probability that a batch of n units joins the 

system. Then, for n ≥ 0 , we have (Artalejo & Atencia, 2004):

b a
k

k

k

0
1

1= −
=

∞

∑ ( )ϖ  

b a n
n k n

k n k n

k n

= ( ) − ≥−

=

∞

∑ ϖ ϖ( ) ,1 1  

such that the relationship between the PGFs of the sequences { ; }a n
n
≥ 1  and { ; }b n

n
≥ 0  is 

given by:

b z z b a zn

n

n

( ) ( )= = − +( )
=

∞

∑
0

1 ϖ ϖ  

In particular, if ϖ = 1 , (i.e., there is no control of admission to the system), then a z b z( ) ( )= . 

Further, if we denote by b
k[ ]

 the kth factorial moment of b z( ) , then we have b a
k

k

k[ ] [ ]
.= ϖ

The server provides a preliminary service denoted by B  to all arriving customers. The service 

time random variable follows a general law with probability distribution function (df) B x( ) , Laplace 

Stieltjes Transform (LST) β*( )s E e
sB= 





−  and finite kth moment β( )k . While the server is working 

with the primary customers, it may breakdown at any time and the service channel will fail for a short 

interval of time. The service interruptions, i.e., server’s life times, are generated by an exogenous 

Poisson processes with rate α . As soon as a breakdown occurs, the server is sent for repair, during 

which time it stops providing service to the arriving batch of customers. The customer just being 

served before server breakdown waits for the server to complete its remaining service. The repair 

time (denoted by G ) distribution is assumed to be arbitrarily distributed with df G y( ) , LST 

G s E e
sG*( )= 





−  and finite kth moment g k( ) . Immediately after the server is repaired, the server is 

ready to resume its remaining service to the primary customers and in this case the service times are 

cumulative, which we may refer to as generalized service times. Now if we define B n
c n,
; ≥{ }1  as 

a sequence of iid random variables for generalized service time with df B x
c
( )  and its LST 

H s E e
sB
c*( )= 





−
, then we have:

H s e e
x

n
G s dB x

sx x

n

n

n
i* *( )
( )

!
( ) ( )=























=− −
∞

=

∞

∫∑ α α

00

ββ α* *
s G s+ − ( )( )( )1  (2.1)

After each service completion the server takes a Bernoulli vacation, i.e., after each service 

completion the server may go for a vacation of random length V  with probability p  or, with probability 

q , he may serve the next unit, if any, where p q+ = 1 . The vacation time distribution is assumed 

to be a general law with df V y( ) , LST ϑ*
s E e

sV( )= 




−  and finite kth moment V k( ) . This type of 
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model is known as a batch arrival queue with unreliable server and Bernoulli vacation schedule based 

on a single vacation policy. It should be noted here that a model of similar nature was studied by Li 

et al. (1997) for the single unit arrival case. Now, for further development for such a type of model, 

we may further introduce the concept of repeated attempts under a linear retrial policy with Bernoulli 

admission mechanism, where primary customers finding the server free upon arrival automatically 

start their service. However, if the primary customer finds the server busy, on vacation or down 

(attending the repair job), then he joins a group of unsatisfied customers, i.e., orbit, to seek the service 

again and again, until he finds the server free. The time interval between successive repeated attempts 

is assumed to be exponentially distributed with rate θ θ
n
n=  + −( )γ δ1

0n,
, when the number of 

customers in the retrial group, i.e., orbit size, is n ≥ 0 .

Further, we assume that the input process, the intervals between successive repeated attempts, 

the server’s life time, the server’s repair time, the server’s vacation time and the service time random 

variables are mutually independent of each other.

3. eMBedded MARKOV CHAIN

Let t
n

 be the time instant at which the nth service completion occurs, i.e., we consider the epoch 

at which the generalized service time requested by a customer expires, and N t( )  be the orbit size 

at time t. Then, the sequence X N t
n n
= ( )  forms a Markov chain which is an embedded Markov 

renewal process. The sequence X n
n
; ≥{ }0  is a homogeneous Markov chain with respect to the 

following transitions:

X X j

j S

j W S
n n

n

j

j

n n

−
={ }=

− +
+

+ − +
1

0

1

1

with probability

with probab

θ

λ θ

iility
λ

λ θ
0
+









 j

 

where S
n

 is the number of customers that arrive during the nth modified service time and if the nth 

customer in service proceeds from a batch arrival then W
n

 represents the number of customers 

admitted to join the system. The rate λ
0

 is equal to λ 1
0

−( )b .

Now it is not difficult to see that X n
n
; ≥{ }0  is irreducible and aperodic. To prove its ergodicity, 

we shall use Foster’s criterion, which states that an irreducible and aperiodic Markov chain is ergodic 

if there exist a non-negative function f e e( ), ≥ 0  and ε > 0  such that:

φ
e n n n
E f X f X X e= ( )− ( ) =



+1
 

is finite for all e ≥ 0  and ϕ ε
e
≤−  for all e ≥ 0 , except perhaps a finite number. In our case, we 

take f e e( )=  to obtain:

φ

ρ

ρ
γ θ

λ γ θ
j

H

H

j

j

j
j

=
=

−
+
+ +

=











0

1 2
0

,
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where:

ρ λ β α λ
H

b g p b v= +{ }+[ ]

( ) ( )

[ ]

( )

1

1 1

1

11  

Clearly, if ρ
H

 satisfies following conditions viz:

1.  If γ > 0  and θ = 0 , then:

ρ
λ γ

λ β α ν γ
H

g p

<
+

+ +( )+







 +

( ) ( ) ( )
−

0

0

1 1 1
1

1

 

2.  If γ ≥ 0  and θ > 0 , then ρ
H
< 1  and then we have lim

j j→∞
<ϕ 0 . Hence, the embedded Markov 

chain X n
n
; ≥{ }0  is ergodic.

The necessary condition follows from Kaplin’s condition as noted in Sennott et al. (1983) namely, 

ρ
H
<∞  as j > 0  and there exists j

0
 such that ρ

H
 for j j≥

0
. It should be pointed out that Kaplin’s 

condition is fulfilled if there is a k  such that p j i k i
ij
= < − >0 0,{ , } , where P p i j

ij
= =( ),{ , , , , }0 1 2⋯  

is the transition probability matrix associated with { ; }X n
n
≥ 0 .

Next, we assume that { ; }X n
n
≥ 0  is recurrent-positive to guarantee that the limiting probabilities:

π
j n r n

P X j j= ={ } ≥
→∞
lim ; 0  

exist and are positive. The one-step transition probability matrix P p
ij

= ( ) , associated with 

{ ; }X n
n
≥ 0 has the elements:

p

qh pm i j i

b qh pm
i j

i

i

i

n j i n j i

,

,

=
+

+( ) ≥ = −

+
+

− + − − + −

θ

λ θ

λ

λ θ

0

0 0

0

1 1

1 1if

nn

i

i

j i j i
n

j i

qh pm i j( )+
+

+( ) ≤ ≤









 − + − +
=

− +

∑
θ

λ θ
0

1 1
1

1

0if


 

where m h l
ij j j i

i

j

= −
=
∑

0

 are the probabilities that several batches totaling j  customers arrive during 

the service period plus vacation period. Here h
j
 and l

j
 are defined as follows:

h

e dB x j

b e x

j
dB x j

j

x

c

j

k x
j

c
k

=

( ) =

( )
( ) ≥


−

∞

( ) −∞
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∞

∫
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and b j
j

k( ); ≥{ }0  is the nfold convolution of the sequence b j
j
; ≥{ }0  with itself. Then, the Kolmogorov 

equations associated with the Markov chain { ; }X n
n
≥ 0  can be written as:

π
λπ

λ θ
j

n

n

i j n i j n i
i

j n

n

b qh pm=
+











+( )− + − − + −

=

− +

=
∑

0

1 1
1

1

00 01

1

1 1
0

j

i i

ii

j

j i j i
qh pm j∑ ∑+ +











+( ) ≥

=

+

− + − +

θ π

λ θ
;  (3.1)

We now introduce the following generating functions:

π πz z j
j

j

( )=
=

∞

∑
0

and φ
π

λ θ
z

z
j

j

jj

( )=
+=

∞

∑
00

 

such that:

π θ φ λ γ φ λ γπz z z z( )= ( )+ +( ) ( )− −/

0 0

1

0
 (3.2)

Now because of convolution, Equation (3.1) can be transformed with the help of the following 

generating functions:

H z z hj
j

j

( )=
=

∞

∑
0

, M z z m
j

j

j

( )=
=

∞

∑
0

and L z z lj
j

j

( )=
=

∞

∑
0

 

Note that:

H z b z G b z( )= − ( )( )+ − − ( )( )( )( )β λ α λ λ* *1 1 ,L z b z( )= − ( )( )ϑ λ λ*  

and M z H z L z( )= ( ) ( ) . Then, Equation (3.1) becomes:

π θ φ λ γ λ φ λ γπz z z z b z z z( )= ( )+ + − − ( )( ){ } ( )−( )







− −
/ 1

0 0

1

0
1  

× + − ( )( )





− ( )+ − − ( )( )( )( )q p b z b z G b zϑ λ λ β λ λ α λ λ* * *1  (3.3)

We now combine Equations (3.2) and (3.3) to get:

θ φ λ γ
λ ϑ λ β

ϑ λ β
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z q p z A z
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( )+ + −
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and:
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π
λ ϑ λ β

ϑ λ β
z

z q p z A z

q p z A z
( )=

( ) + ( )( )





( )( )
+ ( )( )





( )(
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* * ))−
( )

z
zφ  (3.5)

where λ λ( ) ( )z b z= −( )1  and A z z G z( ) ( ) ( )= + − ( )( )λ α λ1 . Since π( )1 1= , Equation (3.5) yields 

the initial condition:

φ
ρ

λ
1

1

1

( )=
−






H

b
 (3.6)

Now solving the above differential Equation (3.4), we get the following:

Theorem 3.1: Under the stability condition, the PGF ψ( )z  is given by:

1.  If λ > 0  and θ > 0 , then:
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2.  If γ = 0  and θ > 0 , then:
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3.  If γ > 0  and θ = 0 , then:
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where:

π
λ

ρ γ
ρ λ γ β α ν ρ
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0

0

1 1 1
1 1= −( ) +( ) +( )+{ }−











( ) ( ) ( )
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Remark 3.1: By putting z = 0  in (3.4) for γ = 0  and θ > 0 , since π λϕ
0

0= ( )  then utilizing it 

in (3.19) for z = 0 , we get:
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It should be pointed here that the limiting probabilities π
j
j; ≥{ }0  can be computed 

recursively from Equation (3.1) and the expression (3.8) or (3.10) or (3.11) for π
0

, 

depending upon the nature of retrial policies. The computation of the integrals h
j
 and m

j
 

are reduced to explicit expressions in the case of many standard service time and vacation 

time distributions.

Remark 3.2: The result in this section is quite general and covers many practical situations. For 

example, let us consider the situation when α = 0 , then β β λ λ
* *( ( )) ( ( ))A z b z= − , 

ρ λ β
H

b pv= +{ }[ ]

( ) ( )

1

1 1 , and therefore, we have:

π

ρ ϑ λ λ β λ λ
( )

* *

z
b z q p b z b z

b

H

=
−( ) − ( )




+ − ( )( )





− ( )( )



1 1

1


+ − ( )( ){ } − ( )( )−






q p b z b z zϑ λ λ β λ λ* *

 

× −
+ −( ){ } −( )

+ −( ){ }
exp

( ) ( ) ( )

( )

* *

* *

1
0

θ
λ

λ ϑ λ λ β λ λ

ϑ λ λ β

u q p b u b u

q p b u λλ λ−( )−





























∫
b u u

du

u
z ( )

1

 

and:

π
ρ

θ
λ

λ ϑ λ λ β λ λ

0

1

0

1 1
=

−( )
−

+ − ( )( ){ } − ( )( )
+





H

b

u q p B u b u

q
exp

( ) * *

pp b u b u u

du

uϑ λ β λ λ* * ( )− ( )( ){ } −( )−

















 ∫
0

1













 

which is consistent with the result obtained by Choudhury (2007) for β λ λ
2

1*( ( ))− =b z  and the 

result obtained by Falin and Templeton (1997) for p = 0  (i.e., there is no Bernoulli vacation schedule) 

and ϖ = 1  (i.e., there is no control of admission to join in the retrial group).
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4. STATIONARy dISTRIBUTION OF THe NUMBeR OF 
UNITS IN THe ORBIT ANd STATe OF THe SeRVeR

In this section, we first set up the system state equations for its stationary system size distribution by 

treating the elapsed service time, the elapsed vacation time and the elapsed repair time of the server 

as supplementary variables. Then we solve the equations and derive the PGFs of the stationary system 

size distribution. Assume that the system is in steady-state conditions. Let N t( )  be the orbit size 

(i.e., the number of customers in the retrial group) at time t, B t0( )  be the elapsed service time of the 

customer at time t. In addition, let V t
0( )  and R t0( )  be the elapsed vacation time and elapsed repair 

time of the server during which breakdown occurs in the system at time t. Further, we introduce the 

following random variable:

Y t

t

t
( )

, ,

,
=

0

1

if the system is idle at time

if the server is busy at time ,,

, ,

,

3

4

if the server is on vacation at time

if the system is under re

t

ppair during service at timet











 

So that the supplementary variables B t V t
0 0( ), ( )  and R t0( )  are introduced in order to obtain a 

bivariate Markov process N t X t( ), ( ){ } , where X t( )= 0  if Y t( )= 0 , X t B t( ) ( )= 0  if Y t( )= 1 , 

X t V t( ) ( )= 0  if Y t( )= 2 , and X t R t( ) ( )= 0  if Y t( )= 4 . Next, we define the following limiting 

probabilities for n ≥ 0 :

ψ
n

t
r
P N t n X t= = ={ }

→∞
lim ( ) , ( ) 0  

P x dx P N t n X t B t x B t x dx
n

t
r

( ) lim ( ) , ( ) ( ); ( )= = = < ≤ +{ }
→∞

0 0 ;x > 0  

Q y dy P N t n X t V t y V t y dy
n t r
( ) lim ( ) , ( ) ( ); ( )= = = < ≤ +{ }

→∞

0 0 ;y > 0  

R x y dy P N t n X t R t y R t y dy B t x
n t r
( , ) lim ( ) , ( ) ( ); ( ) ( )= = = < ≤ + ={ }

→∞

0 0 0 ;( , )x y > 0  

Further, it is assumed that B B G G( ) , ( ) , ( ) , ( )0 0 1 0 0 1= ∞ = = ∞ =  and that B x( )  is continuous 

at x = 0  and V y( )  and G y( )  are continuous at y = 0 , respectively, so that:

µ( )
( )

( )
;x dx

dB x

B x
=
−1

η( )
( )

( )
;y dy

dV y

V y
=
−1

ζ( )
( )

( )
y dy

dG y

G y
=
−1

 

are the first order differential (hazard rate) functions of B, V and G, respectively.

First of all, let us investigate the stability condition of our model. Let t n Z
n
; ∈{ }+  be the sequence 

of epochs of the nth total service completion epoch, i.e., epoch at which the service requested by a 

customer expires. Then, the sequence N N t
n n
= +( )  forms a Markov chain, which is embedded in 

our queueing system.
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Since the arrival process is a Poisson process, it can be shown from Burke’s theorem (Cooper, 

1981) that the steady-state probabilities of the bivariate Markov process N t X t( ), ( ){ }  exist and are 

positive under the same condition as X n
n
; ≥{ }0 .

4.1. The Steady-State equations
The Kolmogorov forward equations to govern the system under steady-state conditions (Cox, 1955) 

can be written as follows:

d

dx
P x x P x b P x y R x y dy
n n k

k

n

n k n
( ) ( ) ( ) ( ) ( ) ( , )+ + +



 = +

=
−∑λ α µ λ ζ

0 00

0
∞

∫ ≥;n  (4.1)

d

dy
Q y y Q y b Q y n
n n k

k

n

n k
( ) ( ) ( ) ( );+ +


 = ≥

=
−∑λ η λ

0

0  (4.2)

d

dy
R x y y R x y b R x y n
n n k

k

n

n k
( , ) ( ) ( , ) ( ; );+ +


 = ≥

=
−∑λ ζ λ

0

0  (4.3)

λ θ ψ η µ
0

0 0

0+( ) = ( ) + ≥
∞ ∞

∫ ∫n n n n
y Q y dy q x P x dx n( ) ( ) ( ) ;  (4.4)

These sets of equations are to be solved under the boundary conditions at x = 0 :

P b n
n i

i

n

n i n n
( ) ;0 0

1

1

1 1 1
= + ≥

=

+

− + + +∑λ ψ θ ψ  (4.5)

at y = 0 :

Q p x P x dx n
n n
0 0

0

( )= ( ) ( ) ≥
∞

∫ µ ;  (4.6)

and at y = 0 for fixed values of x :

R x P x x n
i n n,
( , ) ; ,0 0 0= ( ) > ≥α  (4.7)

with the normalizing condition:

ψ
n n n n

n

P x dx Q y dy R x y dxdy+ ( ) + ( ) + ( )















=

∞ ∞∞∞

=

∞

∫ ∫∫∫∑
0 0000

; 11  (4.8)
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4.2. The Model Solution
To solve the system of Equations (3.1) - (3.7), let us introduce the following PGFs for | |z < 1 :

R x y z z R x y
n

n

n

( , ; ) ( ; )=
=

∞

∑
0

, R x z z R xn

n
n

( , ; ) ( ; )0 0

0

=
=

∞

∑ , ψ ψ( )z zn
n

n

=
=

∞

∑
0

 

Q y z z Q yn

n
n

( ; ) ( )=
=

∞

∑
0

, Q z z Qn
n

n

( ; ) ( )0 0
0

=
=

∞

∑ , 

P x z z P xn

n
n

( , ) ( )=
=

∞

∑
0

, P z z Pn
n

n

( , ) ( )0 0
0

=
=

∞

∑  

Let λ λ( ) ( ( ))z b z= −1 , then proceeding in the usual manner with Equation (4.2) and (4.3), we 

get a set of differential equations of Lagrangian type whose solutions are given by:

Q y z Q z V y z y y( ; ) ( ; )[ ( )]exp{ ( ) };= − − >0 1 0λ  (4.9)

R x y z R x z G y z y y( , ; ) ( , ; )[ ( )]exp{ ( ) };= − − >0 1 0λ  (4.10)

where R x z( , ; )0  can be obtained from Equations (4.7). Simplification yields:

R x z P x z( , ; ) ( ; )0 = α  (4.11)

Solving the differential Equations (4.1), we get:

P x z P z B x A z x x( ; ) ( ; )[ ( )]exp{ ( ) };= − − >0 1 0  (4.12)

where A z z G z( ) ( ) ( )= + − ( )( )λ α λ1 . Now, multiplying both sides of Equations (4.5) and (4.6) by 

zn  and then taking the summation over all possible values of n ≥ 0 , we get on simplification:

P z z z z z
z

( , ) ( ) ( ) ( )/0
0

1 0= + −( ) + −−ψ λ γ λ θψ
γψ

 (4.13)

Q z pP z A z0 0; ; *( )= ( ) ( )( )β  (4.14)

Similarly, from Equation (4.4) after utilizing (4.14), we get:

λ γ ψ γψ θ ψ ϑ λ β
0 0

0+( ) ( )− + ( )= + ( )( )





( )( ) ( )z z z q p z A z P z/ * *
;  (4.15)

We now combine (4.13) and (4.15) to get:
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P z
z z

q p z A z z
( , )

( ) ( )
* *

0 =
+ ( )( )





( )( )−
ψ λ

ϑ λ β
 (4.16)

and:

θ ψ λ γ
λ ϑ λ β

ϑ λ β
z z

z q p z A z

q p z

/

* *

*
( )+ + −

( ) + ( )( )





( )( )( )
+ ( )( )( )0

** A z z
z

( )( )





−





















( )=ψ γψ
0

 (4.17)

which is almost a similar type of expression with expression (3.4) of Section 3. Hence, the solution of 

Equation (4.17) can also be obtained from Theorem 3.1. To obtain the solution of (4.17), we utilize the 

classical limiting theorem of Markov regenerative processes established in Çinlar (1975) and we may write:

ψ

π τ

π τ
j

n n
n

n n
n

j

j=

( )

( )
≥=

∞

=

∞

∑

∑

0

0

1

0;  (4.18)

where the expected amount of time τ
n
j( )  spent by a test unit in the retrial group is j , when the 

system is idle during the service cycle, given that at the beginning of the interval the number of units 

in the retrial group was ' 'n . Similarly, τ
n

1( )  is the expected length of the service cycle given that 

at the beginning of this interval the number of units in the retrial group was ' ' .n  Now for our model:

τ
λ θ

β α ν
n

n

g p n1
1

1 0
0

1 1 1( )=
+

+ +( )+ ≥( ) ( ) ( )
;  

Hence the mean service cycle is given by:

π τ λ
n n

n

b1
0

1

1

( )= 



=

∞






−

∑  (4.19)

Also:

τ
λ θ

δ
n

n

j n
j( )=

+

1

0

,
 (4.20)

where δ
i j,

 denotes Kronecker’s delta. Now utilizing (4.19) and (4.20) in (4.18), we get:

ψ
λ π

λ θ
j

j

j

b
j=

+
≥




1

0

0;  (4.21)
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which can also be considered to be a stable recursive scheme to calculate the limiting probabilities 

ψ
j
j ≥( )0  in terms of π

j
j ≥( )0  from expression (4.21). Now multiplying both sides of (4.21) by 

z j  and then taking the summation over all possible values of j ≥ 0,  we get finally:

ψ λ φz b z( )= ( )


1

 (4.22)

which is the relationship between the two PGFs ψ z( )  and φ z( ) . Hence with the help of this 

relationship, one can easily obtain the solution of (4.17). Further, let z → 1  in (4.16), we obtain by 

L’Hospital’s rule:

P

b

H

( , )
( )

[ ]
0 1

1

1

1
=
−

λ ψ

ρ
 (4.23)

where ρ ρ α λ ν
H

g p b= +{ }+( )





( )
1

1

1

1
1  is the utilization factor of the system and ρ λ β

1 1

1
=

( )b
[ ]

.
. 

This gives:

P x

b B x

H

( , )
( ) ( )

[ ]
1

1 1

1

1
=

−



−

λ ψ

ρ
 (4.24)

Q y
p b V y

H

( , )1
1 1

1

1
=

( ) − ( )





−






λ ψ

ρ
 (4.25)

and:

R x y
b B x G y

H

( , , )
( ) ( ) ( )

[ ]
1

1 1 1

1

1
=

−

 −






−

αλ ψ

ρ
 (4.26)

Hence from the normalizing condition (4.8), we get:

ψ ρ( )1 1= −
H

 (4.27)

The joint distribution of the state of the server and the number in the orbit results is summarized 

in Theorem 4.1 below.

Theorem 4.1: Under the stability conditions, the joint distribution of the server’s state and the number 

of units in the orbit has the following partial PGFs:

P x z
z z B x A z x

q p z A z
( ; )

( ) ( )[ ( )]exp ( )

( ) ( )* *
=

− −( ){ }
+ ( ){ } ( )−

λ ψ

ϑ λ β

1

zz
 (4.28)
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Q y z
p z z A z V y z y

q p z
( ; )

( ) ( ) [ ( )]exp ( )

( )

*

*
=

( )( ) − −( ){ }
+ ( ){ }

λ ψ β λ

ϑ λ

1

ββ* ( )A z z( )−
 (4.29)

R x y z
z z B x A z x G y z

( , ; )
( ) ( )[ ( )]exp ( ) [ ( )]exp ( )

=
− −( ){ }× − −(α λ ψ λ

1
1 1 )){ }

+ ( ){ } ( )−
y

q p z A z zϑ λ β* *( ) ( )
 (4.30)

where A z z G z( ) ( ) ( )*= + − ( )( )λ α λ1  and λ λ( ) ( )z b z= −( )1 .

Next, we are interested in investigating the marginal orbit size distributions due to the state of 

the server.

Theorem 4.2: Under the stability conditions, the marginal PGFs of the server’s state orbit size 

distributions are given by:

P z
z z A z

A z q p z A z z
( )

( ) ( ) ( )

( ) ( ) ( )

*

* *

=
− ( )





+ ( ){ } ( )−


λ ψ β

ϑ λ β

1





 (4.31)

Q z
p z A z z

q p z A z z
( )

( ) ( )

( ) ( )

* *

* *

=
( )( ) − ( )





+ ( ){ } ( )−

ψ β ϑ λ

ϑ λ β

1





 (4.32)

and:

R z
G z z A z

A z q p z A
( )

( ) ( ) ( )

( ) ( )

* *

* *

=
− ( )( ) − ( )





+ ( ){ }

α λ ψ β

ϑ λ β

1 1

(( )z z( )−





 (4.33)

Proof: Integrating (4.28) and (4.29) with respect to x  and y , respectively, then using the well-known 

results of renewal theory:

e B x dx
s

s

sx

i

−

∞

−( ) =
−

∫ 1
1

0

( )
( )*β

and e V y dy
s

s

sy−

∞

− ( )( ) =
− ( )

∫ 1
1

0

ϑ*

 

we get formulae (4.31) and (4.32). Similarly, integrating equations (4.30) with respect to y , we get:

R x z R x y z dy
G z z B x A z

( , ) ( , ; )
exp*

= =
− ( )( )( ) ( ) − ( )





− ( )∞

∫
0

1 1α λ ψ xx

q p z A z z

{ }
+ ( )( ){ } ( )( )−ϑ λ β* *

 (4.34)

Further integrating expression (4.34) with respect to x , we claimed in formulae (4.33).
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Theorem 4.3: See the following:

a.  Let Ω
j
 be the stationary distribution of the number of customers in the orbit, then its 

corresponding PGF Ω( )z z Pj
j

j

=
=

∞

∑
0

is given by:

Ω( )
( )( )

( ) ( )* * *

z
z z

q p b z b z G b z
=

−

+ −( )





−( )+ − − ( )

ψ

ϑ λ λ β λ λ α λ λ

1

1 (( )( ){ }− z
 (4.35)

b.  Let Φ
j
 be the stationary distribution of the total number of customers in the system at a 

random epoch i.e., Φ
j j j j j j

P Q R= + −( ) + +{ }− − −
ψ δ1

0 1 1 1,
; j ≥ 0 , then its corresponding 

PGF is given by:

Φ( )
( )( ) ( ) ( )* * *

z
z z q p b z b z G b z

=
− + −( )





− + − − ( )( )ψ ϑ λ λ β λ λ α λ λ1 1(( ){ }
+ −( )





− + − − ( )( )( ){ }−

=

q p b z b z G b z z

z

ϑ λ λ β λ λ α λ λ

ψ

* * *( ) ( ) 1

(( )
( )
( )

ψ
ξ

1
z

 

(4.36)

where ξ z( )  is the PGF of the number of customers present in the system in an MX/G/1 queue with Bernoulli 

vacation schedule for an unreliable server under Bernoulli admission mechanism, which is given by:

ξ
ρ ϑ λ λ β λ λ α λ λ

( )
( ) ( ) ( )* * *

z
z q p b z b z G b z

H

=
−( ) − + −( )





− + − − ( )1 1 1 (( )( ){ }
+ −( )





− + − − ( )( )( ){ }−q p b z b z G b z zϑ λ λ β λ λ α λ λ* * *( ) ( ) 1
 (4.37)

Note that for α = 0  and ϖ = 1 , the above formula (4.37) is consistent with expression (3.16) 

of Madan and Choudhury (2004).

Proof: The result follows with the help of PGFs ψ( )z , P z( ) , Q z( )  and R z( ) , we get the distribution 

of the PGF of the number of customers in the orbit as:

Ω( ) ( )z z P z Q z R z= + ( )+ ( )+ ( )ψ  

By direct calculation we can obtain (4.35). Similarly, result (4.36) follows by calculating:

Φ( ) ( ) ( ) ( ) ( )z z z P z Q z R z= + + +{ }φ  

Remark 4.1: It is important to note here that the stationary distribution of the number of customers 

present in the system at a random point of an MX/G/1 retrial queue with Bernoulli vacation 

schedule and linear repeated attempts for unreliable server under Bernoulli admission mechanism 

given in Equation (4.36) in terms of a generating function decomposes into the distributions of 

two independent random variables:
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a.  The system size distribution of an MX/G/1 queue with Bernoulli vacation schedule for 

unreliable server under Bernoulli admission mechanism [represented by the second term of 

equation (4.36)]; and

b.  The conditional distribution of the number of customers in the retrial group given that the 

system is idle [represented by the first term of equation (4.36)].

This confirms the decomposition property of Fuhrmann and Cooper (1985). It should be pointed 

out that our retrial model can also be viewed as a special type of the non-exhaustive vacation model 

where the vacations begin at the service completion times. Also, we note that a similar model with 

two phases of service and Bernoulli admission mechanism was investigated recently by Choudhury 

and Deka (2013).

Remark 4.2: If we compare expression (4.31) with the expression (3.5), then we have:

π( )
( )

( )/
z

b z

b z
z B z z=

−

( ) −
( )= ( ) ( )1

1 1
Φ Φ  (4.38)

as expected, where:

B z
b z

b z
( )=

− ( )
( ) −( )

1

1 1/
 

is the PGF of the number of customers that are before an arbitrary test customer (tagged customer) 

in an admission batch in which the tagged customer arrived. This number is given as the backward 

recurrence time in the discrete time renewal process where renewal points are generated by the arrival 

size random variable. Note that this is consistent with the result of Falin and Templeton (1997) of 

the main MX/G/1 retrial queue by taking p = 0 , α = 0  and ϖ = 1 .

5. SOMe PeRFORMANCe MeASUReS

Our next objective is to provide explicit expressions for system size probabilities and performance 

measures of the system. The results are summarized in the following theorems.

Theorem 5.1: If the system is in steady-state conditions, then:

a.  The probability that the server is idle is P b g p b
I
= − +{ }−





( ) ( )





( )1 1
1

1 1

1

1
λ β α λ γ ;

b.  The probability that the server is busy is P b
B
=

( )
λ β
[ ]1

1
;

c.  The probability that the server is on vacation is P p b
V
=

( )
λ γ
[ ]1

1
;

d.  The probability that the server is under repair is P b g
R
=

( ) ( )
λα β

[ ]1

1 1
.

Proof: Noting that:

P P z
B z
=

→

lim ( ),
1

P Q z
V z
=

→

lim ( )
1

 

and:
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P R z
R

z

=
→

lim ( )
1

 

and:

P P P P
I B V R
= − − −1  

the stated formulae follow by direct calculations.

Next, we are interested in the mean orbit size and the mean system size of this model.

Theorem 5.2: Let E N
O

( ) , E NS( )  and E N
D

( )  be the expected number of units in the retrial groups, 

system size at random epoch and system size at departure epoch, respectively. Then, under the 

stability condition, we have:

E N L
M

O

H

( )= +
−0

0

1 ρ
 

where:

L

b g g p p

0

1

2
2 1

2
1 2 2 1 1

1 2

=








 +( ) + + +





( ) ( ) ( ) ( ) ( ) ( )
λ β α αβ ν ν β

(( ) ( )
+( )













−( )
+
−

1

2 1 1

1
α

ρ

ρ

ρ

g
b

H

H R

H

 (5.1)

and M
0

1= ( )ψ/ . Now:

1.  If γ > 0  and θ > 0 , then:

M

b
H

0

1 0

1

0 0
1 1

=
+( )+ +( ) −( )





−λ γλ π λ γ ρ

θ
 (5.2)

2.  If γ > 0  and θ = 0 , then:

M

b L b

b

H R

H

0

1 0

0 1

1

1
=








 + +( )

+ − −( )










−

λ ρ

λ γ λ ρ

 (5.3)

E N E N
S O H

( )= ( )+ ρ  (5.4)

E N E N b
D S R( )= ( )+  (5.5)
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where b
b

b
R
=











2

1
2

.

Proof: The proof follows by routine differentiation. So, we just indicate a few steps. 

Furthermore, (4.35), (4.36) and (4.38) are valid for any retrial policy. They are obtained 

by taking the first derivatives with respect to z and then taking the limit z → 1  by using 

L’Hospital’s rule. With the help of (4.22) and (3.4), we can obtain the following 

differential equation:

θ ψ λ γ
λ

ρ
ς ψ

γλ
z z

b z

z
z z

b

H

/( )+ + −
− ( )( )

−( ) −( )
( )
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 (5.6)

By putting z = 1  in (5.6), we get formula (5.2) on simplification. Formula (5.3) follows from 

(5.6) after putting θ = 0  and suitable differentiation of (4.33). Finally, (5.1), (5.4) and (5.5) follow 

by routine differentiation in (4.35), (4.36) and (4.38), respectively.

Remark 5.1: The result obtained in this section is consistent with the existing literature. For example, 

if we take γ = 0 , then for θ > 0,  formula (5.4) reduces to:
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which is the expression for the mean number of units present in the system for the existing model 

under classical retrial policy. Now suppose that p = 0  (i.e., there is no Bernoulli schedule in the 

system) and ϖ = 1  (i.e., there is no control of admission to join the retrial group), then Equation 

(5.7) yields:
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which is the expression for the mean number of units present in the system for an MX/G/1 

retrial queue with classical retrial policy and unreliable server. Note that for α = 0  the 

expression is consistent with the results of the MX/G/1 queue under classical retrial policy, 

e.g. see Falin and Templeton (1997). Similarly, by taking the limit θ→∞  in expression 

(5.7), we get:
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Note that for α = 0 , the above expression is consistent with the result obtained by Madan and 

Choudhury (2004), without restricted admissibility in their result.

Finally, we consider two reliability indices of the system viz- the system availability and the 

failure frequency under the steady state conditions. Let A t
V
( )  be the system availability at time ‘t’, 

that is, the probability that the server is either working for a customer or is in an idle period. The 

steady-state availability of the server will be A A t
V

t
V

=
→∞

lim ( ) .

Theorem 5.3: The availability of the server and failure frequency of the server under the steady-state 

conditions are respectively given by:

A b g p b
V
= − −





( ) ( )





( )1
1

1 1

1

1
αλ β λ ν  (5.8)

and:

M
f
=

( )
αλβ

1
 (5.9)

Proof: The result follows directly by considering the following equations:

A P x dx
V n

n

= + ( )
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= ( )
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∫α ;1
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Now, since:

1
1

00

−

 = = ( )

∞∞

∫∫ B x dx xdB x( ) ( ) β  

from Equations (4.24) and (4.27), we get (5.8) and (5.9), respectively.

6. NUMeRICAL ILLUSTRATIONS

We present in this section some numerical illustrations to show the effect of using the Bernoulli 

admission mechanism on the system performance, in particular on the expected number of units 

in the retrial group E N[ ]
0

. For simplicity, assume that the service time, the vacation time, and 

the repair time follow the exponential distribution with respective means β µ
( ) /1 1= , v v( ) /1 1= , 

and g r
( ) /1 1= . Also, assume the size of arriving batches of units follows the displaced geometric 
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distribution with mean a
[ ]

/ ( )
1
1 1= − ε . Now let us start with the case when the Bernoulli 

admission mechanism is not implemented in the system. We consider the following base values 

for the system parameters: λ µ ε µ µ= = = = =0 1 3 5 0 5 2 10. , . , . , ,r v . We also take α = 0 5.  and 

p = 0 5. . In this case, we obtain a mean number of units in the retrial group E N[ ] .
0
0 3001= . 

Also, the availability of the server is A
v

= 99 31. %  and the failure frequency of the server is 

M
f
= 2 86. % . The effect of the failure rate α and the Bernoulli vacation schedule p on the 

expected number of units in the retrial group is shown in Figure 1 below. As can be seen, E N[ ]
0

 

increase as either α increases or p increases.

Now to observe the effect of the Bernoulli admission mechanism on the expected number of 

units in the retrial group, we compute E N[ ]
0

 for various values of ϖ. The effect of the failure rate 

and the Bernoulli vacation schedule on employing Bernoulli admission mechanism is investigated 

by changing the values of α and p. For each combination of the parameters, the value of E N[ ]
0

 is 

computed and compared to the value of E N[ ]
0

 when there is no Bernoulli admission mechanism. 

Tables 1–3 below show the value of the effect:

∆ = −| ( ) ( )E N E N
0 0with Bernoulli admission mechanism withoutBernoullli admission mechanism

|  

when θ > 0 (we took θ = 0.5). Tables 4 – 6 show the same quantity ∆  when θ = 0 (in this case, we 

took γ = 0.5). Tables 1 – 6 all show that for a fixed value of ϖ, the effect ∆  increases as p increases. 

This is also shown in Figures 2 and 3 for sample values of ϖ. However, for a fixed value of p, Tables 

4 – 6 show that ∆  increases when ϖ increases, while Tables 1 – 3 show that ∆  first increases and 

then decreases as ϖ increases, making ∆  a concave function of ϖ. This is also shown in Figure 4 

for sample values of p.

7. CONCLUSION

We have considered in this paper a complex queueing system that combines many of the well-

known queueing theory features: batch arrivals, Bernoulli vacation schedule, potential server 

breakdowns, retrials under linear retrial policy, and Bernoulli admission mechanism. A thorough 

steady state analysis yields eventually to various performance measures of the system. We 

Figure 1. Effect of α and p for ϖ = 1
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Figure 2. Variations of Δ as a function of p when θ > 0 for ϖ = 0.1, ϖ = 0.5, and ϖ = 0.9

Figure 3. Variations of Δ as a function of p when θ = 0 for ϖ = 0.1, ϖ = 0.5, and ϖ = 0.9

Figure 4. Variations of Δ as a function of ϖ when θ > 0 for p = 0.1 and p = 0.9

Table 1. Effect of ϖ and p when θ > 0 for α = 0.1

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.3191 0.3210 0.3229 0.3247 0.3266

ϖ = 0.3 0.3209 0.3227 0.3244 0.3262 0.3280

ϖ = 0.5 0.2707 0.2722 0.2737 0.2752 0.2767

ϖ = 0.7 0.1833 0.1843 0.1854 0.1864 0.1875

ϖ = 0.9 0.0672 0.0676 0.0680 0.0684 0.0688



International Journal of Operations Research and Information Systems
Volume 11 • Issue 1 • January-March 2020

105

Table 2. Effect of ϖ and p when θ > 0 for α = 0.5

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.3248 0.3267 0.3285 0.3305 0.3324

ϖ = 0.3 0.3262 0.3280 0.3298 0.3316 0.3333

ϖ = 0.5 0.2752 0.2767 0.2782 0.2797 0.2812

ϖ = 0.7 0.1864 0.1875 0.1885 0.1896 0.1906

ϖ = 0.9 0.0684 0.0688 0.0692 0.0696 0.0700

Table 3. Effect of ϖ and p when θ > 0 for α = 0.9

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.3305 0.3324 0.3343 0.3362 0.3382

ϖ = 0.3 0.3316 0.3334 0.3352 0.3370 0.3388

ϖ = 0.5 0.2797 0.2812 0.2827 0.2843 0.2858

ϖ = 0.7 0.1896 0.1907 0.1917 0.1928 0.1939

ϖ = 0.9 0.0696 0.0700 0.0704 0.0708 0.0712

Table 4. Effect of ϖ and p when θ = 0 for α = 0.1

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.6771 0.6810 0.6850 0.6889 0.6928

ϖ = 0.3 0.6357 0.6394 0.6432 0.6469 0.6507

ϖ = 0.5 0.5450 0.5483 0.5516 0.5549 0.5583

ϖ = 0.7 0.3920 0.3944 0.3970 0.3995 0.4020

ϖ = 0.9 0.1570 0.1580 0.1591 0.1602 0.1613

Table 5. Effect of ϖ and p when θ = 0 for α = 0.5

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.6888 0.6927 0.6967 0.7007 0.7047

ϖ = 0.3 0.6468 0.6506 0.6544 0.6582 0.6620

ϖ = 0.5 0.5548 0.5582 0.5616 0.5649 0.5683

ϖ = 0.7 0.3994 0.4019 0.4044 0.4070 0.4096

ϖ = 0.9 0.1601 0.1612 0.1623 0.1634 0.1645

Table 6. Effect of ϖ and p when θ = 0 for α = 0.9

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

ϖ = 0.1 0.7006 0.7046 0.7086 0.7126 0.7166

ϖ = 0.3 0.6581 0.6619 0.6658 0.6696 0.6735

ϖ = 0.5 0.5648 0.5682 0.5716 0.5751 0.5785

ϖ = 0.7 0.4069 0.4095 0.4121 0.4147 0.4173

ϖ = 0.9 0.1633 0.1644 0.1656 0.1667 0.1678
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presented numerical examples illustrating the effect of some system parameters on the expected 

number of units in the orbit.

This paper can be generalized in various ways. For example, it may be worth investigating how 

the N policy would improve the optimal management of this system. Another possible extension 

would be to consider units that require two consecutive phases of service.
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