AN UNSOLVED PROBLEM ON THE POWERS OF $\frac{3}{2}$ *

K. MAHLER

(Received 19 October 1966)

Let α be an arbitrary positive number. For every integer $n \ge 0$ we can write $\alpha(\frac{3}{2})^n = g_n + r_n$,

where

$$g_n = \left[\alpha(\frac{3}{2})^n\right]$$

is the largest integer not greater than $\alpha(\frac{3}{2})^n$, i.e. the integral part of $\alpha(\frac{3}{2})^n$, and r_n is its fractional part and so satisfies the inequality

$$0 \leq r_n < 1.$$

We say that
$$\alpha$$
 is a *Z*-number if

(1) $0 \leq r_n < \frac{1}{2}$ for all suffixes $n \geq 0$.

Several years ago, a Japanese colleague proposed to me the problem whether such Z-numbers do in fact exist. I have not succeeded in solving this problem, but shall give here a number of incomplete results. In particular, it will be proved that the set of all Z-numbers is at most countable.

1

Assume that α is a Z-number. Evidently

$$g_{n+1} + r_{n+1} = \frac{3}{2}(g_n + r_n).$$

Here g_n and g_{n+1} are integers, while r_n and r_{n+1} lie in the interval

$$J = [0, \frac{1}{2}).$$

Hence one of the following two cases must hold.

(A) g_n is an even number, hence $\frac{3}{2}g_n$ is an integer. Since

$$0 \leq \frac{3}{2}r_n < \frac{3}{4}$$

necessarily

$$g_{n+1} = \frac{3}{2}g_n$$
 and $r_{n+1} = \frac{3}{2}r_n$.

* Presented as the 1966 Behrend Memorial Lecture at the University of Melbourne, 14 October 1966.

313

K. Mahler

(B) g_n is an odd number and so both numbers $\frac{3}{2}g_n \mp \frac{1}{2}$ are integers. Since $\frac{3}{2}r_n + \frac{1}{2}$ cannot lie in J, we now must have

$$g_{n+1} = \frac{3}{2}g_n + \frac{1}{2}$$
 and $r_{n+1} = \frac{3}{2}r_n - \frac{1}{2}$

Put

$$\varepsilon_n = \begin{cases} 0 & \text{if } g_n \text{ is even,} \\ 1 & \text{if } g_n \text{ is odd.} \end{cases}$$

The two cases (A) and (B) can then be combined in the one formula

(2)
$$g_{n+1} = \frac{3}{2}g_n + \frac{1}{2}\varepsilon_n, \quad r_{n+1} = \frac{3}{2}r_n - \frac{1}{2}\varepsilon_n.$$

We also see that the case (A) can hold only if

and case (B) if

$$\frac{1}{3} \leq r_n < \frac{1}{2}.$$

 $0 \leq r_n < \frac{1}{3}$

Hence ε_n may also be defined by

$$\varepsilon_n = \begin{cases} 0 & \text{if } 0 \leq r_n < \frac{1}{3}, \\ 1 & \text{if } \frac{1}{3} \leq r_n < \frac{1}{2}. \end{cases}$$

From (2),

$$g_0 = -\frac{1}{3}\epsilon_0 + \frac{2}{3}g_1$$
, $g_1 = -\frac{1}{3}\epsilon_1 + \frac{2}{3}g_2$, \cdots , $g_{n-1} = -\frac{1}{3}\epsilon_{n-1} + \frac{2}{3}g_n$.
Since

$$g_0 + r_0 = (\frac{2}{3})^n (g_n + r_n),$$

it follows from these equations that

(3)
$$g_0 = -\frac{1}{3} \{ \varepsilon_0 + \frac{2}{3} \varepsilon_1 + (\frac{2}{3})^2 \varepsilon_2 + \dots + (\frac{2}{3})^{n-1} \varepsilon_{n-1} \} + (\frac{2}{3})^n g_n$$

and similarly also

and similarly also

(4)
$$r_0 = +\frac{1}{3} \{ \varepsilon_0 + \frac{2}{3} \varepsilon_1 + (\frac{2}{3})^2 \varepsilon_2 + \cdots + (\frac{2}{3})^{n-1} \varepsilon_{n-1} \} + (\frac{2}{3})^n r_n.$$

These equations can be generalised. For this purpose put

$$\alpha_0 = \alpha$$
 and $\alpha_m = (\frac{3}{2})^m \alpha$.

Then

$$(\frac{3}{2})^n(g_m+r_m) = (\frac{3}{2})^n \alpha_m = (\frac{3}{2})^{m+n} \alpha = g_{m+n} + r_{m+n}$$

and it follows in analogy to (3) and (4) that for all suffixes m and n,

(5)
$$g_m = -\frac{1}{3} \{ \varepsilon_m + \frac{2}{3} \varepsilon_{m+1} + (\frac{2}{3})^2 \varepsilon_{m+2} + \cdots + (\frac{2}{3})^{n-1} \varepsilon_{m+n-1} \} + (\frac{2}{3})^n g_{m+n}$$

and

(6)
$$r_m = +\frac{1}{3} \{ \varepsilon_m + \frac{2}{3} \varepsilon_{m+1} + (\frac{2}{3})^2 \varepsilon_{m+2} + \cdots + (\frac{2}{3})^{n-1} \varepsilon_{m+n-1} \} + (\frac{2}{3})^n r_{m+n} .$$

An unsolved problem on the powers of $\frac{3}{2}$

The formula (6) for r_m immediately implies a convergent series for this number. For all r_{m+n} lie in the interval J, while the factor $(\frac{2}{3})^n$ tends to zero as n tends to infinity. It follows therefore that for all suffixes $m \ge 0$,

(7)
$$3r_m = \varepsilon_m + \frac{2}{3}\varepsilon_{m+1} + (\frac{2}{3})^2\varepsilon_{m+2} + \cdots$$

and in particular,

(8)
$$3r_0 = \varepsilon_0 + \frac{2}{3}\varepsilon_1 + (\frac{2}{3})^2\varepsilon_2 + \cdots$$

Here the convergence is in the sense of ordinary real analysis.

Consider next the formula (5) for g_m . The last term $(\frac{2}{3})^n g_{m+n}$ of this formula is a rational number the numerator of which is divisible by at least the *n*-th power of 2. In the so-called 2-adic analysis in the rational number field one considers numbers as small if they are divisible by a high power of 2 in the numerator, and as large if such a power of 2 occurs in the denominator. In this 2-adic sense the sequence of numbers $(\frac{2}{3})^n g_{m+n}$ tends to zero as *n* tends to infinity. We may therefore write

(9)
$$-3g_m = \varepsilon_m + \frac{2}{3}\varepsilon_{m+1} + (\frac{2}{3})^2 \varepsilon_{m+2} + \cdots \quad \text{in the 2-adic sense,}$$

and in particular,

(10)
$$-3g_0 = \varepsilon_0 + \frac{2}{3}\varepsilon_1 + (\frac{2}{3})^2 \varepsilon_2 + \cdots \qquad \text{in the 2-adic sense.}$$

It is rather interesting that the same series converges in two different senses and to two different limits.

From this we can already deduce the fact the set of all Z-numbers is at most countable. For if the integer $g_0 \ge 0$ is given, then, by § 1, the corresponding sequence of integers ε_0 , ε_1 , ε_2 , \cdots is determined uniquely, and so, by (8), also the fractional part r_0 . We may express this result as follows.

(11) For any given non-negative integer g_0 there exists at most one Z-number in the interval $[g_0, g_0+1)$, and this Z-number lies in fact in the first half $[g_0, g_0+\frac{1}{2})$ of this interval.

4

Much more can be said about the possible Z-numbers and their integral parts g_0 .

All the fractional parts r_m , where $r = 0, 1, 2, \dots$, lie by construction in the interval $J = [0, \frac{1}{2})$. This means by (7) that for every suffix *m* the inequality

(12)
$$\varepsilon_m + \frac{2}{3}\varepsilon_{m+1} + (\frac{2}{3})^2\varepsilon_{m+2} + \cdots < \frac{3}{2}$$

is satisfied. In this set of inequalities each of the numbers ε_m , ε_{m+1} , ε_{m+2} , \cdots can assume only either of the two values 0 or 1.

It is then, firstly, immediately clear that for no m simultaneously

$$\varepsilon_m = \varepsilon_{m+1} = 1$$

For this would imply that

$$\varepsilon_m + \frac{2}{3}\varepsilon_{m+1} + (\frac{2}{3})^2 \varepsilon_{m+2} + \cdots \geq \frac{5}{3} > \frac{3}{2},$$

contrary to (12). Therefore

(13) if
$$m < n$$
 and $\varepsilon_m = \varepsilon_n = 1$, then $n \ge m+2$.

From the inequalities (12) one can deduce restrictions on those suffixes m for which simultaneously $\varepsilon_m = \varepsilon_{m+2} = 1$, $\varepsilon_{m+1} = 0$. We omit this discussion because no use will be made of the results so obtained.

5

Denote from now on by

$$M = \{m_1, m_2, m_3, \cdots\}, \text{ where } 0 \leq m_1 < m_2 < m_3 < \cdots,$$

the set of all suffixes *m* for which $\varepsilon_m = 1$. Thus

$$\varepsilon_m = \begin{cases} 1 & \text{if } m \in M, \\ 0 & \text{if } m \notin M. \end{cases}$$

In other words, g_m is even or odd according as to whether m is, or is not, an element of M.

Further put

$$G_k = g_{m_k} \qquad (k = 1, 2, 3, \cdots),$$

so that all the G_k are odd.

On applying the equation (5) with

$$m = m_k$$
 and $m + n = m_{k+1}$

thus with

$$\varepsilon_m = 1$$
, $\varepsilon_{m+1} = \varepsilon_{m+2} = \cdots = \varepsilon_{m+n-1} = 0$,

it follows that

$$G_k = -\frac{1}{3} + (\frac{2}{3})^{m_{k+1}-m_k} G_{k+1},$$

hence that

(14)
$$G_{k+1} = \left(\frac{3}{2}\right)^{m_{k+1}-m_k-1} \frac{3G_k+1}{2}$$

This formula leads to the following algorithm connected with our problem.

We shall use the notation

$$2^a || H$$

6

to denote that H is divisible by 2^{a} , but not by 2^{a+1} .

Put

(15)
$$a_k = m_{k+1} - m_k - 1, \quad H_k = \frac{3G_k + 1}{2}.$$

Then, by (14), the following properties hold.

For every $k \ge 1$,

(16) G_k is odd; H_k is even; $a_k \ge 1$; $2^{a_k} || H_k$; and $G_{k+1} = (\frac{3}{2})^{a_k} H_k$ is odd.

Thus, starting with any odd integer G_1 , these formulae allow to determine successively the integers

 $H_1, a_1; G_2, H_2, a_2; G_3, H_3, a_3; \cdots$

If G_1 was the integral part of a Z-number, then this algorithm can be continued indefinitely. It thus provides a necessary (but not a sufficient) condition for G_1 to be the integral part of a Z-number.

By way of example, if we start with $G_1 = 13$, we obtain the following sequence of integers.

$G_1 = 13$	$H_1 = 20$	$a_1 = 2$
$G_2 = 45$	$H_{2} = 68$	$a_2 = 2$
$G_{3} = 153$	$H_{3} = 230$	$a_3 = 1$
$G_4 = 345$	$H_4 = 518$	$a_4 = 1$
$G_{5} = 777$	$H_{5} = 1166$	$a_{5} = 1$
$G_{6} = 1749$	$H_{6} = 2624$	$a_{6} = 6$
$G_7 = 29889$	$H_{7} = 44834$	$a_7 = 1$
$G_8 = 67251$	$H_8 = 100877.$	

Since H_8 is odd, the algorithm breaks off, and there is no Z-number between 13 and 14.

In spite of much computer work, no integer G_1 is known for which the algorithm does not break off. It is thus highly problematical whether there do in fact exist Z-numbers.

7

If the existence of Z-numbers is assumed, further properties of such numbers can be obtained.

K. Mahler

Let us deal with the possible frequency of Z-numbers! We have already seen that there can be at most one Z-number in each interval between consecutive integers g and g+1 where $g \ge 0$. Thus, for x > 0, there are not more than x+1 Z-numbers between 0 and x. This estimate can now be replaced by a stronger one.

Let us first consider Z-numbers with odd integral parts, say with the integral part G_1 . Put

$$b_k = a_k + 1$$
 and $c_k = a_k - 1$ $(k = 1, 2, 3, \cdots)$

so that by (16),

 $b_k \geq 2$ and $c_k \geq 0$ for all k.

By (15) and (16),

$$G_k = -\frac{1}{3} + (\frac{2}{3})^{b_k} G_{k+1}.$$

On applying this equation repeatedly, we find that

(17) $G_1 = -\frac{1}{3} \{ 1 + (\frac{2}{3})^{b_1} + (\frac{2}{3})^{b_1+b_2} + \dots + (\frac{2}{3})^{b_1+b_2+\dots+b_n} \} + (\frac{2}{3})^{b_1+b_2+\dots+b_{n+1}} G_{n+2}.$ Here

$$B_n = -\frac{1}{3} \{ 1 + (\frac{2}{3})^{b_1} + (\frac{2}{3})^{b_1+b_2} + \dots + (\frac{2}{3})^{b_1+b_2+\dots+b_n} \}$$

is a rational number with an odd numerator and with a denominator which is a power of 3.

8

Let now t be an arbitrarily large positive integer. For the given Znumber there exists just one suffix n such that

(18)
$$b_1 + b_2 + \dots + b_n \leq t < b_1 + b_2 + \dots + b_{n+1}.$$

There further is a unique integer s_n satisfying

 $1 \leq s_n \leq 2^t - 1$

such that

$$B_n \equiv \mathfrak{s}_n \pmod{2^t},$$

i.e. that the numerator of $B_n - s_n$ is divisible by 2^t . It is then clear from (17) that also

(19)
$$G_1 \equiv s_n \pmod{2^t}.$$

The rational number B_n , and so also the integer s_n , depend only on tand on the ordered set of integers b_1, b_2, \dots, b_n . Denote by T(t) the number of ordered sets of integers n, b_1, b_2, \dots, b_n which satisfy the left-hand inequality (18). This number T(t) is then also the number of all residue classes $s_n \pmod{2^t}$ in which there can lie *odd* integral parts G_1 of Z-numbers.

,

One can easily obtain an upper bound for T(t). The left-hand inequality (18) is equivalent to the inequality

$$c_1+c_2+\cdots+c_n\leq t-2n;$$

hence T(t) may also be defined as the number of ordered solutions n, c_1, c_2, \dots, c_n of this inequality where now c_1, c_2, \dots, c_n may run independently over all non-negative integers. For each separate value of n, this inequality has

$$\binom{[t-2n]+n}{n} = \binom{t-n}{n}$$

solutions, and hence, summing over n,

$$T(t) = \binom{t-1}{1} + \binom{t-2}{2} + \binom{t-3}{3} + \cdots$$

where all terms after the $\left[\frac{t}{2}\right]$ -th vanish.

This formula may be written as

$$T(t)+1 = \sum_{n=0}^{t} \binom{t-n}{n} = \sum_{n=0}^{t} \binom{n}{t-n}.$$

By the binomial theorem, it implies that T(t)+1 is the coefficient of z^t in the power series in powers of z for

$$\sum_{k=0}^{t} \{z(1+z)\}^n = \frac{1 - \{z(1+z)\}^{t+1}}{1 - z(1+z)},$$

and hence T(t)+1 is also the coefficient of z^t in the power series for

$$f(z)=\frac{1}{1-z-z^2}.$$

Put

 $A = \frac{1+\sqrt{5}}{2}, \quad B = \frac{1-\sqrt{5}}{2}, \text{ so that } A + B = 1, \quad AB = -1, \quad A - B = \sqrt{5}.$ Then

Then

$$1-z-z^2 = (1-Az)(1-Bz)$$
 and $f(z) = \frac{1}{\sqrt{5}} \left(\frac{A}{1-Az} - \frac{B}{1-Bz} \right)$

On developing here f(z) into a series in powers of z, it follows at once that

(20)
$$T(t) = \frac{1}{\sqrt{5}} \{A^{t+1} - B^{t+1}\} - 1.$$

Actually, T(t)+1 is the (t+1)-st term of the well known Fibonacci sequence.

K. Mahler

[8]

Since trivially B^{t+1} has the limit 0 as t tends to infinity, and since further $A < \sqrt{5}$, it also follows from (20) that, for sufficiently large t,

(21)
$$T(t) \leq \left(\frac{1+\sqrt{5}}{2}\right)^{t}.$$

9

By the definition of T(t), there are T(t) distinct residue classes (mod 2^t) in which the integral part G_1 of a Z-number can lie when it is odd.

Consider next a Z-number $\alpha = g_0 + r_0$ with even integral part g_0 , say

Then

$$\alpha, \frac{3}{2}\alpha, (\frac{3}{2})^2\alpha, \cdots, (\frac{3}{2})^m\alpha$$

 $2^{m}||g_{0}|$

likewise are Z-numbers, and they have the integral parts

$$g_0, \frac{3}{2}g_0, (\frac{3}{2})^2 g_0, \cdots, (\frac{3}{2})^m g_0,$$

respectively. Here $(\frac{3}{2})^m g_0$, $= G_1$ say, is an odd integer divisible by 3^m , and

$$g_0 = (\frac{2}{3})^m G_1, \quad \frac{3}{2}g_0 = (\frac{2}{3})^{m-1}G_1, \cdots, \quad (\frac{3}{2})^m g_0 = G_1.$$

These m+1 products lie in the residue classes

(22)
$$(\frac{2}{3})^{\mu}G_1 \pmod{2^t},$$

respectively, where μ runs over the successive values $\mu = m, m-1, m-2, \dots, 1, 0$. If $\mu \ge t$, then $(\frac{2}{3})^{\mu}G_1$ lies in the residue class $\equiv 0 \pmod{2^t}$.

Thus to every odd residue class $G_1 \pmod{2^t}$ containing the integral part of a Z-number there correspond at most *t* even residue classes (22) in which there are likewise integral parts of Z-numbers.

(23) This implies that there cannot be more than

(t+1)T(t)

odd or even residue classes (mod 2^t) containing the integral part of a Z-number.

10

Trivially,

$$\frac{1+\sqrt{5}}{2} < 2^{0.7}.$$

Thus, as soon as t is sufficiently large, it follows from (21) that there exist at most

An unsolved problem on the powers of $\frac{3}{2}$

 $20.7 \cdot t - 1$

odd or even residue classes (mod 2^t) in which there is the integral part of at least one Z-number.

Denote now by x a sufficiently large positive integer, and choose the integer t such that

$$2^t \leq x - 1 < 2^{t+1}$$
.

Then every residue class (mod 2^t) contains at most two integers $\leq x-1$. Hence there can be at most *two* Z-numbers not greater than x the integral parts of which lie in this residue class. By (23), the number of residue classes which need be considered is only

$$2^{0.7 \cdot t - 1} < \frac{1}{2} x^{0.7}.$$

We obtain therefore the following result.

(24) For sufficiently large x there are at most

 $x^{0.7}$

Z-numbers satisfying

 $0 \leq \alpha \leq x.$

This paper dealt with the numbers α for which the fractional parts r_n defined in § 1 satisfied the inequalities

$$0 \leq r_n < \frac{1}{2}$$
 (*n* = 0, 1, 2, · · ·).

It is possible to establish a similar theory if all the r_n are assumed to lie in some other subinterval $[c, c+\frac{1}{2})$ of [0, 1). It would be very interesting if a similar theory could be established for subintervals of smaller length, or perhaps even of arbitrarily small length.

Naturally, one can consider analogous problems for the products

$$\alpha \left(\frac{p}{q}\right)^n \qquad (n = 0, 1, 2, \cdots)$$

where α is again a positive number, and p and q are integers satisfying

$$p > q \ge 2$$
, $(p, q) = 1$.

Institute of Advanced Studies Australian National University Canberra, A.C.T.

[9]