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S U M M A R Y

In the context of the simulation of wave propagation, the perfectly matched layer (PML)

absorbing boundary layer has proven to be efficient to absorb non-grazing incidence waves.

However, the classical discrete PML cannot efficiently absorb waves reaching the absorbing

layer at grazing incidence. This is observed, for instance, in the case of thin mesh slices,

or in the case of sources located close to the absorbing boundaries or receivers located at

large offset. In order to improve the PML efficiency at grazing incidence we derive an unsplit

convolutional PML (CPML) for a fourth-order staggered finite-difference numerical scheme

applied to the 3-D viscoelastic seismic wave equation. The time marching equations of the

standard linear solid mechanisms used do not need to be split and only the memory variables

associated with velocity derivatives are stored at each time step. This is important in the case

of more than one damping mechanism. Memory storage is reduced by more than 70 per cent in

the PML regions in 3-D simulations compared to split PMLs optimized at grazing incidence.

We validate the technique based on a benchmark performed in a thin mesh slice.

Key words: Numerical solutions; Elasticity and inelasticity; Seismic attenuation; Computa-

tional seismology; Wave propagation.

1 I N T RO D U C T I O N

In the last 30 years, a variety of absorbing layer techniques have been

developed in geophysics and particularly in seismic wave propaga-

tion modelling. They have been adapted to numerical techniques as

different as finite differences, finite elements and spectral elements

in order to reduce reflections at the outer boundaries of the com-

putational domain and efficiently simulate unbounded media at the

local or regional scale. Damping layers or ‘sponge zones’ (Cerjan

et al. 1985; Sochacki et al. 1987), paraxial conditions (Clayton

& Engquist 1977; Engquist & Majda 1977; Stacey 1988; Higdon

1991; Quarteroni et al. 1998), optimized conditions (Peng & Töksoz

1995), the eigenvalue decomposition method (Dong et al. 2005),

continued fraction absorbing conditions (Guddati & Lim 2006),

exact absorbing conditions on a spherical contour (Grote 2000) or

asymptotic local or non-local operators (Givoli 1991; Hagstrom &

Hariharan 1998) have been introduced. However, the local condi-

tions generate spurious low frequency energy reflected back into the

main domain at all angles of incidence, sponge layers require a pro-

hibitive number of gridpoints to be relatively efficient, and paraxial

conditions do not efficiently absorb waves reaching the boundaries

at grazing incidence and can become unstable in some cases, for

instance for a high value of Poisson’s ratio.

As explained for instance in Komatitsch & Martin (2007) and

Martin et al. (2008a), the perfectly matched layer (PML), intro-

duced by Bérenger (1994) for Maxwell’s equations, avoids many

(but not all) of these drawbacks. It has the advantage of having a

null reflection coefficient at all angles of incidence and at all fre-

quencies before discretization by a numerical scheme. It was rapidly

reformulated in a split form with complex coordinate stretching

(Chew & Weedon 1994; Collino & Monk 1998) and adapted to

elastic (Chew & Liu 1996; Collino & Tsogka 2001; Komatitsch

& Tromp 2003; Cohen & Fauqueux 2005; Festa & Vilotte 2005;

Festa et al. 2005; Ma & Liu 2006; Drossaert & Giannopoulos 2007;

Komatitsch & Martin 2007) and poroelastic media (Zeng et al. 2001;

Martin et al. 2008a). Festa & Vilotte (2005) and Festa et al. (2005)

improved the behaviour at grazing incidence in the elastic case by

introducing a split form of the elastic wave equation with PML

for a mixed displacement/velocity–stress spectral-element method

and adding filtering in the PML to damp waves at grazing inci-

dence. In Komatitsch & Martin (2007), we introduced a simpler

unsplit version of such a convolutional PML (CPML) for the elastic

case, and in Martin et al. (2008a) we extended it to the poroelastic

case. This CPML technique has also been extended to heteroge-

neous anisotropic models in the presence of curved interfaces and

a free surface using a high-order finite-element method (Martin

et al. 2008b). Besides the ease of implementation of such an unsplit

method, it also allows one to reduce memory storage in the PML

regions. In this paper, we extend our unsplit finite-difference formu-

lation to the viscoelastic wave equation and discuss its efficiency.
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334 R. Martin and D. Komatitsch

The method is implemented using a fourth-order finite-difference

scheme in space based on an unsplit formulation that involves a But-

terworth filter and convolutional memory variables, as in the elastic

case. The main advantage of this CPML formulation over split PML

formulations such as the generalized frequency-dependent PML

(GFPML) of Festa & Vilotte (2005) lies in the drastic reduction of

memory storage in the PML regions and easier implementation be-

cause the different fields (velocities, stresses and all the attenuation

mechanisms) do not need to be split for each spatial coordinate,

nor do the auxiliary memory variables that are needed in the GF-

PML. Only the derivatives of the stresses and velocities need to be

computed at each time step, which allows one to advance the atten-

uation memory variables in time without splitting each attenuation

mechanism and therefore drastically reduce memory storage in the

PML regions. It is important to notice that in the classical PML or

in split optimized versions such as the GFPML the number of split

variables increases with the number of viscoelastic standard linear

solid (SLS) damping mechanisms, while the number of auxiliary

variables remains the same in our CPML.

2 P H Y S I C A L P RO B L E M U N D E R S T U DY

The displacement field u produced by a seismic source is governed

by the momentum equation

ρ∂2
t u = ∇ · T + f. (1)

The seismic source is represented by the point force f, which may

be written as

f = −δ(x − xs)S(t). (2)

The location of the point source is denoted by xs, δ(x −xs) de-

notes the Dirac delta distribution located at xs, and the source time

function is given by S(t). The distribution of density is denoted by ρ.

The stress tensor T is linearly related to the displacement gradient

∇u by Hooke’s law, which in a pure elastic solid may be written in

the form

T = c : ∇u, (3)

the elastic properties being determined by the fourth-order elastic

tensor c. In an attenuating medium, Hooke’s law (3) is modified

such that the stress is determined by the entire strain history

T(t) =
∫ ∞

−∞
∂t c(t − τ ) : ∇u(τ ) dτ. (4)

The viscoelastic properties of a medium can be modelled in the time

domain in different ways using a series of SLS mechanisms (Liu

et al. 1976), for instance using the rheological model of a general-

ized Zener body (Carcione 2007) or a generalized Maxwell body

(Emmerich & Korn 1987). According to Moczo & Kristek (2005)

these two rheological models are equivalent and we therefore de-

cided to use the Zener body model. In seismic wave propagation

modelling the quality factor Q can often be considered constant over

a wide frequency band and modelled as a series of L SLS mecha-

nisms, with L = 3 commonly used to mimic an almost constant Q

(Emmerich & Korn 1987). In the absorption band the components

of the anelastic tensor for such a series can be expressed in terms of

the relaxed modulus cR
ijkl and the unrelaxed components cU

ijkl, which

are related by

cU
i jkl = cR

i jkl

[

1 −
L

∑

ℓ=1

(

1 − τ ǫℓ
i jkl/τ

σℓ
)

]

. (5)

A stress relaxation time τ σℓ and a strain relaxation time τ ǫℓ
ijkl are

defined for each component and the modulus defect δcℓ associated

with each SLS is determined by

δcℓ
i jkl = −cR

i jkl

(

1 − τ ǫℓ
i jkl/τ

σℓ
)

. (6)

The constitutive relation (4) may then be rewritten in the form

(see e.g. Komatitsch & Tromp 1999)

T = cU : ∇u −
L

∑

ℓ=1

Rℓ, (7)

where for each SLS

∂t R
ℓ = −Rℓ/τ σℓ + δcℓ : ∇u/τ σℓ. (8)

For more details, the reader is referred for instance to Komatitsch &

Tromp (1999) and Moczo et al. (2007). In the classical first-order

velocity–stress formulation, one first rewrites eqs (1), (7) and (8) as

ρ∂t v = ∇ · T

∂t T = cU :∇v −
L

∑

ℓ=1

Rℓ

∂t R
ℓ = −Rℓ/τ σℓ + δcℓ : ∇v/τ σℓ,

(9)

where v is the velocity vector. Bold notations indicate a tensor and

italics notations with sub-indices indicate a tensor component. We

can introduce the expression of the strain rate tensor ε

ǫi j =
1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

, (10)

where indices i and j can be 1, 2 or 3 in 3-D, and the trace of

the strain-rate tensor Tr(ε) =
∑D

i=1 ǫi i where D = 3 is the spatial

dimension of the problem and rewrite the system as

ρ∂tvi = ∂ j Ti j

∂t Ti j = λU δi j Tr(ε) + 2μU ǫi j −
L

∑

ℓ=1

Rℓ
i j

∂t Rℓ
i j = −Rℓ

i j/τ
σℓ + δcℓ

ikǫk j/τ
σℓ. (11)

The frequency-domain form of this system is then

iωρvi = ∂ j Ti j

iωTi j = λU δi j Tr(ε) + 2μU ǫi j −
L

∑

ℓ=1

Rℓ
i j

iωRℓ
i j = −Rℓ

i j/τ
σℓ + δcℓ

ikǫk j/τ
σℓ, (12)

where ω = 2π f denotes angular frequency and where for simplic-

ity we have used the same notation for the fields in the time and

frequency domains.

3 T H E C L A S S I C A L P M L A N D C P M L

F O R M U L AT I O N S

The main idea behind the PML technique consists in reformulating

the derivatives in directions x, y and z in the six layers surround-

ing the physical domain. In practice, eq. (12) is solved based on

the system of equations of the Appendix. The mechanisms Rℓ are

combinations of elemental mechanisms Eℓ, the relaxed parameters

λR and μR and the relaxation times of the different mechanisms,

whose expressions are given in the Appendix according to the model

defined by Carcione (1993).
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Unsplit CPML technique for viscoelastic wave equation 335

3.1 The classical PML in velocity–stress formulation

As for instance in Gedney (1998) and Collino & Tsogka (2001),

a damping profile dx (x) is defined in the PML region such that

dx = 0 inside the main domain and dx > 0 in the PML, and a new

complex coordinate x̃ is expressed as

x̃(x) = x −
i

ω

∫ x

0

dx (s) ds. (13)

In directions y and z, similar damping profiles dy(y) and dz(z) are

defined. Using the fact that

∂x̃ =
iω

iω + dx

∂x =
1

sx

∂x , (14)

with

sx =
iω + dx

iω
= 1 +

dx

iω
, (15)

and deriving a similar expression of ∂ỹ, ∂z̃, sy and sz , one replaces

all x derivatives ∂x , y derivatives ∂y and z derivatives ∂z with x̃

derivatives ∂x̃ , ỹ derivatives ∂ỹ and z̃ derivatives ∂z̃ , respectively.

One then uses the mapping (14) to rewrite eq. (12) in terms of x, y

and z rather than x̃, ỹ and z̃

iωρvi =
1

s j

∂i Ti j

iωTi j = λU 1

sk

∂kvkδi j + μU

(

1

si

∂ivi +
1

s j

∂ jv j

)

−
L

∑

ℓ=1

Rℓ
i j

iωRℓ
i j = −Rℓ

i j/τ
σℓ + δcℓ

im

1

2
(∂mv j + ∂ jvm)/τ σℓ, (16)

where indices i, j and m can be 1, 2 or 3 (equivalently x, y or z)

in 3-D. One subsequently splits the velocity and stress fields and

attenuation mechanisms into three components such that v = v1 +
v2 + v3, T = T1 + T2 + T3 and Rℓ = Rℓ1 + Rℓ2 + Rℓ3 and eq. (16)

writes as follows:

iωρvk
i =

1

sk

∂k Tik, k = 1, 2, 3 (or equivalently x, y, z), i = 1, 2, 3

iωT k
i j = λU 1

sk

∂kvkδi j + μU

(

δik

1

si

∂iv
j + δ jk

1

s j

∂ jv
i

)

−
L

∑

ℓ=1

Rℓk
i j

iωRℓk
i j = −Rℓk

i j /τ
σℓ + δcℓ

im

1

2

(

δmk

1

sm

∂mv j + δ jk

1

s j

∂ jv
m

)

/τ σℓ

vi =
3

∑

k=1

vk
i , i = x, y, z

Ti i =
3

∑

k=1

T k
ii , i = x, y, z

Ti j = T i
i j + T

j

i j , i �= j and i, j = x, y, z

Rℓ
i i =

3
∑

k=1

Rℓk
ii , i = x, y, z

Rℓ
i j = Rℓi

i j + R
ℓj

i j , i �= j and i, j = x, y, z .

(17)

Using an inverse Fourier transform one goes back to the time do-

main and obtains the classical PML formulation of the viscoelastic

equations written in a split form

(∂t + dk)ρvk
i = ∂k Tik, k = 1, 2, 3 (or equivalently x, y, z),

i = 1, 2, 3

(∂t + dk)T k
i j = λU ∂kvkδi j + μU

(

δik∂iv
j + δ jk∂ jv

i
)

−
L

∑

ℓ=1

(

Rℓk
i j + dk

∫ t

−∞
Rℓk

i j dτ

)

(∂t + dk)Rℓk
i j = −Rℓk

i j /τ
σℓ + δcℓ

im

1

2

(

δmk∂mv j + δ jk∂ jv
m
)

/τ σℓ

vi =
3

∑

k=1

vk
i , i = x, y, z

Ti i =
3

∑

k=1

T k
ii , i = x, y, z

Ti j = T i
i j + T

j

i j , i �= j and i, j = x, y, z

Rℓ
i i =

3
∑

k=1

Rℓk
ii , i = x, y, z

Rℓ
i j = Rℓi

i j + R
ℓj

i j , i �= j and i, j = x, y, z . (18)

Unfortunately, as we will show in the section about numerical tests

below, this classical PML formulation is not very efficient after

numerical discretization for waves reaching the absorbing layer at

grazing incidence. Therefore, let us introduce an unsplit CPML

technique improved at grazing incidence for viscoelastic media.

3.2 The unsplit CPML technique improved at grazing

incidence for viscoelastic media

Let us summarize the CPML technique developed in the elastic

case by Komatitsch & Martin (2007) and in the poroelastic case

by Martin et al. (2008a) and let us extend it to the velocity–stress

formulation of the viscoelastic wave equation. The key idea of the

CPML lies in using a more general choice for sx than that of eq. (14)

by introducing the real variables αx ≥ 0 and κx ≥ 1 such that

sx = κx +
dx

αx + iω
. (19)

In the case of an attenuating medium, the wavenumber is complex

and therefore waves are further damped with the additional expo-

nential factor e−Im(kx )κx x inside the PML region, where Im(kx ) is

the imaginary part of the wave number. Therefore, the waves are

damped further when κx increases in the CPML layer from 1 at its

base to a maximum value κmax at its top. However, as described

in the next section, from a numerical point of view κx cannot be

increased too drastically because the reflection coefficient of waves

impinging on the boundary would increase because of the staircase

discretization of sharp variations of the profile of the κx function.

Therefore, at low frequencies (and therefore long time periods),

waves are more attenuated, while at high frequencies the CPML

behaves very similarly to the classical PML.

Denoting by s̄x (t) the inverse Fourier transform of 1
sx

, ∂x is re-

placed with

∂x̃ = s̄x (t) ∗ ∂x . (20)

After calculating the expression of s̄x (t) and after some algebraic

operations [see eqs (17) and (18) in Komatitsch & Martin (2007)],
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336 R. Martin and D. Komatitsch

we obtain

∂x̃ =
1

κx

∂x + ζx (t) ∗ ∂x . (21)

with

ζx (t) = −
dx

κ2
x

H (t) e−(dx /κx +αx )t , (22)

where H is the Heaviside distribution. As we have null initial

conditions, the convolution term at time step n can be approxi-

mated following the recursive convolution method of Luebbers &

Hunsberger (1992):

ψn
x = (ζx ∗ ∂x )n ≃

N−1
∑

m=0

Zx (m) (∂x )n−(m+1/2) (23)

with

Zx (m) = −
dx

κ2
x

∫ (m+1)�t

m�t

e−(dx /κx +αx )τ dτ = ax e−(dx /κx +αx )m�t .

(24)

Setting

bx = e−(dx /κx +αx )�t and ax =
dx

κx (dx + κxαx )
(bx − 1)

(25)

and developing Z(x) in eq. (23), the convolution term can be viewed

as a recursive sum. Therefore, we can update the memory variable

ψx of the derivative of variable f (velocity or stress) along direction

x at each time step based on

ψn
x ( f ) = bxψ

n−1
x ( f ) + ax (∂x f )n−1/2

. (26)

This formulation can be easily implemented in an existing finite-

difference code without PML by simply replacing the spatial deriva-

tives ∂x with 1
κx

∂x + ψx and advancing ψx in time using the same

time evolution scheme as for the other (existing) variables.

The memory storage needed to implement CPML for the vis-

coelastic wave equation for one damping mechanism is similar

to the first-order velocity–stress formulation of the more classi-

cal PML, as can be seen in Table 1 which gives the number of

arrays inside each PML layer. However in the case of more than

one damping mechanism the CPML is more advantageous because

time-evolution equations of damping mechanisms do not need to be

split and only the space derivatives of velocities need to be stored

at each time step, as is the case for the calculation of velocities.

On the contrary, for split PMLs or the GFPML all the solid mecha-

nism equations need to be split along the three directions, which is

expensive in terms of memory storage in the PML regions.

Table 1. Maximum number of arrays needed in the PML regions to imple-

ment a 3-D elastic or viscoelastic rheology for the classical PML technique

without storing the total field, that is, the sum of the split components, which

is then recomputed in each loop; the optimized split GFPML; and the clas-

sical PML technique, storing the total field; and the CPML technique. This

maximum number is reached in regions in which all the PML layers are

present, that is, in the corners of the domain. For comparison, we also recall

the number of arrays needed when no absorbing conditions are implemented

in the finite-difference technique.

No PML PML PML GFPML CPML

No total With total

Elastic 9 24 33 48 19

Viscoelastic 21 84 111 168 39

Furthermore, the classical PML requires an extra memory vari-

able to handle the dissipative term that is not present in the CPML

formulation, the CPML being essentially based upon the complex

change of variable for first derivative calculations independently of

the presence or absence of dissipative terms. The CPML technique

requires 39 arrays in 3-D while the classical PML requires 111 ar-

rays in 3-D, which means a gain of 64 per cent in the PML regions,

and the optimized GFPML requires 168 arrays in 3-D, that is, the

gain is then 76 per cent in the PML regions. If we denote by α the

number of arrays inside the computational domain without PML

and β the number of arrays inside the six PML regions the ratio of

memory storage in the PML versus memory storage in the whole

computational domain is

2αNpml(N X ∗ NY + NY ∗ N Z + N X ∗ N Z )

β ∗ N X ∗ NY ∗ N Z

=
2αNpml

β

(

1

N X
+

1

NY
+

1

N Z

)

. (27)

As β = 21, α = 39 and Npml = 10 in this study, we obtain a

memory storage ratio of about 37( 1
N X

+ 1
NY

+ 1
N Z

).

4 N U M E R I C A L T E S T S

4.1 Model and test description

We consider simulations in 3-D for thin slices surrounded by CPML

layers of a thickness of 10 gridpoints each. The size of each grid

cell is �x = �y = �z = 3.5 m. The medium is heterogeneous and

consists of two layers with a flat interface. The upper layer has a

relaxed pressure wave speed cR
p = 3000 m s−1, a shear wave speed

cR
s = 2000 m s−1 and a density ρ = 2000 kg m−3 and the lower part

has a relaxed pressure wave speed cR
p = 2500 m s−1, a shear wave

speed cR
s = 1450 m s−1 and a density ρ = 1500 kg m−3. All the at-

tenuation mechanisms are taken from Carcione et al. (1988). They

correspond to very strong attenuation with constant quality factors

Qp ≃ 30 and Qs ≃ 20. The values of the relaxation times are

τ 1
ǫ1 = 0.03253, τ 1

σ1 = 0.031146, τ 2
ǫ1 = 0.033257, τ 2

σ1 =
0.030465, τ 1

ǫ2 = 0.003253, τ 1
σ2 = 0.003114, τ 2

ǫ2 = 0.003325 and

τ 2
σ2 = 0.003046.

We use a slice of 735 m × 2800 m × 770 m surrounded by six

CPML layers. The interface is located in the middle of the model at

y = 1400 m. The grid (including the CPML layers) has a total size

of 210 × 800 × 220 = 37 million gridpoints. The time step �t of

our explicit time scheme must obey the Courant–Friedrichs–Lewy

(Courant et al. 1928) stability condition

CFL = max

(

cU
p �t

√

1

�x2
+

1

�y2
+

1

�z2

)

≤ CFLmax, (28)

where cU
p is the pressure velocity of the unrelaxed material, equal

to 3249 m s−1 in the upper layer as in Carcione (1993) and to

2707 m s−1 in the lower layer. We select a time step �t =
0.35 ms (i.e. a CFL number equal to 0.54, slightly below the max-

imum value CFLmax = 1/
√

D ≃ 0.577). The simulation is per-

formed for 100 000 time steps, that is, for a total duration of 35 s.

The source is a force tilted at 45◦ and located at point (xs = 55m,

ys = 560 m and zs = 385 m) close to the left CPML layer, at 20

gridpoints from its base, in order to generate pressure and shear

waves impinging the CPML layers at different angles of incidence.

The time variation of the source is a Ricker wavelet (i.e. the second

derivative of a Gaussian) with a dominant frequency f 0 = 18 Hz,

shifted in time by t0 = 1.2/ f 0 = 0.066 s in order to have null initial
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Unsplit CPML technique for viscoelastic wave equation 337

conditions. The size of the mesh being too large to be run on a

single processor, we implement the finite-difference algorithm on a

parallel computer with hybrid message-passing (MPI) and shared-

memory (OpenMP) programming using IEEE double precision in

order to be able to compute small residuals of total energy accurately

in the next sections.

Following Gedney (1998) and Collino & Tsogka (2001), the

damping profile in the PML is chosen as dx (x) = d0( x

L
)N along

Figure 1. Snapshots of the vy component of the 3-D velocity vector in a 2-D cutplane located in the middle of the grid along the z-axis for a viscoelastic

medium corresponding to a thin slice with CPML conditions with αmax = π f 0 and κmax = 1 implemented on its six sides, at time 0.175 s (top panel), 0.525,

0.875, 1.225 and 1.575 s (bottom panel). We represent it in red (positive) or blue (negative) when it has an amplitude higher than a threshold of 1 per cent of

the maximum, and the normalized value is raised to the power 0.30 to enhance small amplitudes that would otherwise not be clearly visible. The black cross

indicates the location of the source and the green squares the position of receivers at which seismograms represented in the left-hand column of Figs 3–5 are

recorded. The four vertical or horizontal black lines represent the edge of each PML layer. The black line dividing the medium represents the interface between

the two media. No spurious wave of significant amplitude is visible, even at grazing incidence. The snapshots have been rotated by 90◦ to fit on the page.

the x axis, dy(y) = d0( y

L
)N along the y-axis and dz(z) = d0( z

L
)N

along the z-axis where L is the thickness of the absorbing layer,

N = 2 and d0 = − (N+1)cU max
p log(Rc)

2L
≃ 1147.5, cU max

p being equal to

the maximum unrelaxed speed of the pressure wave and Rc being

the target theoretical reflection coefficient, set to 0.1 per cent here.

As in Roden & Gedney (2000), we make αx , αy and αz vary linearly

in the PML layer between a maximum value αmax at the beginning

of the PML and zero at the top. As in Festa & Vilotte (2005),
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338 R. Martin and D. Komatitsch

we take αmax = π f 0, where f 0 is the dominant frequency of the

source defined above, and we compare the results with αmax = 0 and

κ = 1 which is very similar to the classical PML case of Collino

& Tsogka (2001) because the Butterworth filter is then suppressed,

as mentioned in Komatitsch & Martin (2007). We make κx , κy and

κz vary from 1 at the base of the PML to a value κmax at the top of

Figure 2. Snapshots of the vy component of the 3-D velocity vector in a 2-D cutplane located in the middle of the grid along the z axis for a viscoelastic

medium corresponding to a thin slice with CPML conditions with αmax = 0 and κmax = 1 implemented on its six sides, at time 0.175 s (top panel), 0.525,

0.875, 1.225 and 1.575 s (bottom panel). We represent it in red (positive) or blue (negative) when it has an amplitude higher than a threshold of 1 per cent of

the maximum, and the normalized value is raised to the power 0.30 to enhance small amplitudes that would otherwise not be clearly visible. The black cross

indicates the location of the source and the green squares the position of receivers at which seismograms represented in the right-hand column of Figs 3–5 are

recorded. The four vertical or horizontal black lines represent the edge of each PML layer. The black line dividing the medium represents the interface between

the two media. Compared to Fig. 1, spurious waves appear at grazing incidence along the edges of the model and send spurious energy back into the main

domain. The snapshots have been rotated by 90◦ to fit on the page.

the CPML with a polynomial variation of degree N = 2

κxi
= 1 + (κmax − 1)

( xi

L

)N

, xi = x, y, z. (29)

A series of simulations is performed with different values of κmax:

1, 7 and 20. On the external edges of the grid, that is, at the top of

C© 2009 The Authors, GJI, 179, 333–344

Journal compilation C© 2009 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
7
9
/1

/3
3
3
/7

3
8
5
9
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Unsplit CPML technique for viscoelastic wave equation 339

each PML, we impose a Dirichlet condition on the velocity vector

(v = 0 for all t). The vertical component of the velocity vector is

recorded at three receivers located close to the edges of the grid

in the XY plane located at NZ/2, in (x1 = 555 m, y1 = 1060 m

and z1 = 385 m), (x2 = 55 m, y2 = 2660 m and z2 = 385 m) and

(x3 = 555 m, y3 = 2660 m and z3 = 385 m) in order to analyse the

effects of the boundary conditions on waves propagating at grazing

incidence.

4.2 Shifted and non-shifted CPML

Let us compare the efficiency of CPML with shifting of the poles

to CPML without shifting. Fig. 1 shows snapshots of shifted CPML

with αmax = π f 0 and κmax = 1 at different times. Waves propagate

in all directions and undergo reflection and transmission at the

interface between the two media. The snapshots do not exhibit

significant spurious oscillations, even at grazing incidence, while

non-physical spurious oscillations arise in the case of the non-shifted

CPML with αmax = 0 (Fig. 2). As we will now see, these oscillations

coming mainly from the left PML layer because of the position of

the source are drastically attenuated for all values of κmax in the

shifted case while they are gradually attenuated in the non-shifted

case when κmax is increased form 1 to 20, although still remaining

important in the case of αmax = 0 for κmax = 20.

To get more insight on the accuracy of both methods, in Figs 3–5,

we show comparisons between shifted or non-shifted CPMLs and a

reference solution computed with the same numerical scheme on a

very large grid with no absorbing boundary conditions. Shifted and

non-shifted CPMLs are tested with κmax = 1, 7 or 20. For all these

values the error is small in both the shifted and non-shifted cases

at point (x1, y1) (Fig. 3). Only comparisons for κmax = 1 are shown

here because the results are extremely similar for κmax =7 and 20.

On the contrary the solution with non-shifted CPML is signif-

icantly distorted at point (x2, y2) (Fig. 4) for κmax =1 or 7 while

the solution is much more accurate in the shifted case. However, if

κmax = 20 the calculated waveform is much more accurate in both

cases although some slight discrepancies and small errors in the

amplitude are still present in the non-shifted case. At point (x3, y3)

(Fig. 5) solutions are very similar in both the shifted and non-shifted

cases and for all values κmax and fit the reference solution very well.

Figure 3. Left-hand column: time evolution of the vy component (solid line) of the velocity vector at the first receiver (located not too far from the source and

close to the opposite PML layer) with CPML using αmax = π f 0 and κmax = 1 compared to a reference solution (medium dashed) computed in a much larger

domain for the numerical experiment of Fig. 1. The dotted lines represent the difference multiplied by a factor of 10 in order to visualize small errors that

would otherwise not be clearly visible. At this receiver located close to the PML layer, very small discrepancies are observed between all curves (including the

difference between seismograms with and without frequency shift) for values of κmax = 7 or 20 (not shown here), that is, making κmax increase from 1 to 20

does not significantly change the solution. This illustrates the good efficiency of the CPML for all values of κmax. Right-hand panel: same comparison when

CPML with no shift of the poles in the stretching function (i.e. αmax = 0) is used in the numerical experiment of Fig. 2. For all values of κmax, the results are

very similar to the CPML result obtained with frequency shift.

In the non-shifted case, amplitudes are slightly improved using

κmax = 7 or 20 compared with κmax = 1.

In summary, the functions κi help to improve the solution in

terms of phase and amplitude as can be observed in all the seismo-

grams. However, κmax should not be increased too much because

the limited number of points in the damping direction of each PML

region cannot accurately sample large and rapid variations of the κi

functions.

4.3 Energy decay with CPML

Let us study the decay of total energy in the mesh in order to analyse

more precisely the efficiency of the CPML, including at grazing

incidence. After some algebraic manipulations of the equations we

have

1

2

d

dt

[

∫

�

ρ ‖v‖2 + TR :ε +
L

∑

l=1

τσ l (δcl )−1Rl :Rld�

]

= −
L

∑

l=1

∫

�

τ 2
σ l (δcl )−1 dRl

dt
:

dRl

dt
d�, (30)

where TR is the relaxed stress tensor. Using the fact that the tensor

δcl is strictly positive definite, the quantity

E =
1

2

∫

�

ρ ‖v‖2 + TR :ε +
L

∑

l=1

τσ l (δcl )−1Rl :Rld� (31)

is positive and represents an energy. In Fig. 6, we represent the time

decay of that total energy E in the inner part of the model (i.e. in

the medium without the six CPML layers) for αmax = 0 and π f 0

and increasing values of κmax for the simulation presented in Fig. 1,

and we summarize the measurements in Table 2. We compare the

evolution of total energy over 14 500 steps (5.075 s) and a longer

time period of 100 000 steps (35 s) using non-shifted and shifted

CPML to experimentally test the numerical stability of CPML,

because it is known that in numerous PML models, for instance in

the case of Maxwell’s equations, weak or strong instabilities can

develop for long simulations (Abarbanel et al. 2002; Bécache &

Joly 2002; Bécache et al. 2004).

In all these simulations, the source injects energy into the system

for approximately 0.15 s. Then the energy carried by the direct,
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340 R. Martin and D. Komatitsch

Figure 4. Left-hand column: time evolution of the vy component (solid line) of the velocity vector with CPML with αmax = π f 0 and κmax = 1 (top panel), 7

(middle panel) or 20 (bottom panel) at the second receiver located close to the left PML in the upper layer compared to a reference solution (medium dashed)

computed in a much larger domain with no absorbing conditions for the numerical experiment of Fig. 1. The dotted line represents the difference. At this

receiver located close to the PML layer, some small discrepancies are observed between the two curves for a value of κmax = 1, but they become less important

when κmax is increased to 20. This illustrates the good efficiency of the CPML at large offset and close to the base of the PML when a frequency shift is

introduced and when high values of κmax are used. Right-hand column: same comparison when CPML with no shift of the poles in the stretching function

(i.e. αmax = 0) is used in the numerical experiment of Fig. 2. At grazing incidence large spurious oscillations develop and the pressure and shear waves are

significantly distorted. A value of κmax = 20 gives slightly better results than 1 or 7.

reflected and transmitted pressure waves and shear waves is gradu-

ally absorbed by the CPML layers, and after approximately 2 s all

waves should have disappeared and there should remain no energy

in the medium. All the remaining energy is therefore spurious and

is a good measurement of the efficiency of the absorbing boundary

layer. For simulations performed with αmax = 0, at 2 s a total energy

of 8.86 J remains in the case of κmax = 1, while for κmax = 7 or 20

the value of energy is, respectively, 1.875 and 0.1 J (i.e. a factor of

4.72 or 88.6 smaller). Then, at 5 s, total energy decreases to a value

of 1.36 × 10−3 J for κmax = 1, and to values of 1.4 × 10−3 and

9.93 × 10−4 J for κmax = 7 and 20, that is, factors of 0.97 or 1.37

smaller. Then, for medium (14 s) and longer (35 s) time periods

total energy reaches very similar values, respectively, in the range

of 1.12 × 10−7 to 1.24 × 10−7 J and 1.27 × 10−10 to 1.3 × 10−10 J

for the different values of κmax considered.

In the case of the shifted CPML for αmax = π f 0 (Fig. 6), total

energy is smaller than in the case of αmax = 0 presented above. At

2 s, similar values of total energy of 3.52 × 10−4, 2.33 × 10−4

and 3.18 × 10−4 J remain in the respective cases of shifted CPML

with κmax = 1, 7 or 20 (i.e. a factor of 25 170, 8046 or 314 smaller

compared to αmax = 0). At 5 s, total energy decreases to values

of 3.96 × 10−5, 2.82 × 10−5 and 4.16 × 10−5 J, respectively for

κmax = 1, 7 or 20, that is, a factor of 34, 50 or 24 smaller. Then,

for a medium time period (14 s), energy reaches closer values of

5.32 × 10−10, 1.72 × 10−10 or 5.19 × 10−10 J for κmax = 1, 7 or 20,

respectively.

To experimentally analyse long time stability from a numerical

point of view, in Fig. 6 we also show the evolution of total en-

ergy over 35 s (i.e. 100 000 time steps) in the case of the shifted

CPML for the experiments of Figs 1 and 2. It decreases very rapidly

and non-linearly and no instabilities are observed on this semi-

logarithmic curve, which means that the discrete CPML is stable

up to 100 000 time steps, reaching final values of 4.44 × 10−22,

5.34 × 10−23 or 2.78 × 10−22 J, respectively for κmax = 1, 7 or 20,
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Unsplit CPML technique for viscoelastic wave equation 341

Figure 5. Left-hand column: time evolution of the vy component (solid line) of the velocity vector with CPML using αmax = π f 0 and κmax = 1 (top panel),

7 (middle panel) or 20 (bottom panel) at the third receiver located in the upper layer close to the right PML compared to a reference solution (medium dashed)

computed in a much larger domain with no absorbing condition for the numerical experiment of Fig. 1. The dotted line represents the difference. At this

receiver located close to the PML layer, some discrepancies are observed between the two curves for values of κmax = 1, but they become less important when

κmax is increased to 20. This illustrates the good efficiency of the CPML when a frequency shift is introduced and for large values of κmax. Right-hand column:

same comparison when CPML with no shift of the poles in the stretching function (i.e. αmax = 0) is used in the numerical experiment of Fig. 2. At grazing

incidence small spurious oscillations appear and the pressure and shear waves are distorted, but less than at the second receiver located at grazing incidence

and vertically above the source. A value of κmax = 20 gives slightly better results than 1 or 7.

while total energy reaches a much higher value of around 1.3 ×
10−10 J in the non-shifted CPML case as mentioned above. Very

large total energy reduction factors of 3.4 × 1012, 4.1 × 1013 and

2.1 × 1012 are therefore obtained for αmax = π f 0 and κmax = 1, 7

or 20.

It is worth mentioning that weak oscillations appear at medium

and long times in spite of the fact that total energy decays very

quickly in average. This illustrates the fact that re-injections of

energy in the main domain and damping phenomena occur at long

time periods beyond approximately 4 s due to the introduction of

the variables αi that improve the solution at grazing incidence and

also at large offset (i.e. at points located far from the source) at

the expense of the generation of a small amount of low frequency

energy reflected off the CPML regions and coming back into the

main domain. This has also been observed for PML applied to

Maxwell’s equations.

5 C O N C LU S I O N S

We have introduced an unsplit CPML boundary condition for the

viscoelastic seismic wave equation that is particularly useful when

two or more SLS mechanisms are used (which is always the case in

practice; usually three or more are used). This method is well suited

for waves impinging the boundary at grazing incidence. For only

one mechanism, this CPML has approximately the same memory

storage as the classical PML but absorbs waves at grazing incidence

much better than PML. Memory storage is reduced by 40 per cent in

the PML regions compared to the split GFPML of Festa & Vilotte

(2005) and by more than 70 per cent when two mechanisms are

used.

Furthermore, the attenuation mechanism time-marching equa-

tions do not need to be split. As a consequence, in these mechanism

equations only the modified gradient of the velocities and its CPML
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342 R. Martin and D. Komatitsch

Figure 6. Left-hand panel: decay of total energy with time in the main domain (i.e. without the six PML layers) for medium (5 s, top panel) and longer (35 s,

bottom panel) time periods on a semi-logarithmic scale for the simulations of Figs 1 and 2. Solid, long dashed and medium dashed lines correspond to CPML

for αmax = 0 and κmax = 1, 7 or 20, respectively. Right-hand panel: same curves as in the left-hand column but for αmax = π f 0. To study the stability of the

shifted CPML at longer times, we make the experiment of Fig. 1 last for 100 000 time steps (i.e. 35 s, bottom panel). The amount of spurious total energy that

remains in the mesh decreases continuously and reaches values as low as 4.44 × 10−22, 5.34 × 10−23 or 2.78 × 10−22 J, respectively for κmax = 1, 7 and 20.

No instabilities are observed on this semi-logarithmic scale, which means that the discrete CPML is stable up to 100 000 steps. Spurious total energy is smaller

by 12–13 orders of magnitude for the shifted CPML compared to the non-shifted CPML.

Table 2. Value of total energy (in Joules) in the mesh when CPML is implemented for two values

of αmax (0 or π f 0) and κmax (1, 7 or 20) at different times (2, 5, 14 and 35 s). Using αmax = π f 0

the spurious total energy remaining in the mesh is drastically reduced by 2 to 3 orders of magnitude

in the first few seconds of the simulation and by 12–13 orders of magnitude after a longer time

period of 35 s.

Time 2 s 5 s 14 s 35 s

αmax = 0, κmax = 1 8.86 1.36 × 10−3 1.24 × 10−7 1.3 × 10−10

αmax = 0, κmax = 7 1.875 1.4 × 10−3 1.14 × 10−7 1.28 × 10−10

αmax = 0, κmax = 20 0.1 9.93 × 10−4 1.12 × 10−7 1.27 × 10−10

αmax = π f 0, κmax = 1 3.52 × 10−4 3.96 × 10−5 5.32 10−10 4.44 × 10−22

αmax = π f 0, κmax = 7 2.33 × 10−4 2.82 × 10−5 1.72 × 10−10 5.34 × 10−23

αmax = π f 0, κmax = 20 3.18 × 10−4 4.16 × 10−5 5.19 × 10−10 2.78 × 10−22

auxiliary variable need to be computed once at each time step, which

further reduces memory storage in the PML regions compared to

the classical split PML or split GFPML.

Experimentally, stability is ensured for 100 000 time steps, and

reduction factors up to 13 orders of magnitude are obtained in

terms of remaining spurious total energy. Increasing the values of

κmax from 1 to 20 increases the accuracy of the calculations for both

the shifted and non-shifted CPML.
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Bécache, E. & Joly, P., 2002. On the analysis of Bérenger’s perfectly matched
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A P P E N D I X : T H E

V E L O C I T Y – F O R M U L AT I O N O F T H E

V I S C O E L A S T I C WAV E E Q UAT I O N

Detailed expressions of the velocity–stress formulation of the vis-

coelastic wave equation using SLS relaxation mechanisms are given

for instance in Carcione (1993). Using the same notations and de-

veloping eq. (12) one gets

∂tρvx = ∂x Txx + ∂y Txy + ∂z Txz

∂tρvy = ∂x Txy + ∂y Tyy + ∂z Tyz

∂tρvz = ∂x Txz + ∂y Tyz + ∂z Tzz

∂t Txy = μU (∂yvx + ∂xvy) +
L

∑

ℓ=1

Rℓ
xy

∂t Txz = μU (∂zvx + ∂xvz) +
L

∑

ℓ=1

Rℓ
xz

∂t Tyz = μU
(

∂zvy + ∂yvz

)

+
L

∑

ℓ=1

Rℓ
yz

∂t Txx = (λU + 2μU )∂xvx + λU (∂yvy + ∂zvz) +
L

∑

ℓ=1

Rℓ
xx

∂t Tyy = λU (∂xvx + ∂zvz) + (λU + 2μU )∂yvy +
L

∑

ℓ=1

Rℓ
yy
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∂t Tzz = λU (∂xvx + ∂yvy) + (λU + 2μU )∂zvz +
L

∑

ℓ=1

Rℓ
zz

∂t E
ℓ
1 = −Eℓ

1/τ
1
σℓ + �φ1ℓ

∂t E
ℓ
11 = −Eℓ

11/τ
2
σℓ +

(

∂xvx −
�

D

)

φ2ℓ

∂t E
ℓ
22 = −Eℓ

22/τ
2
σℓ +

(

∂yvy −
�

D

)

φ2ℓ

∂t E
ℓ
12 = −Eℓ

12/τ
2
σℓ + (∂yvx + ∂xvy)φ2ℓ

∂t E
ℓ
13 = −Eℓ

13/τ
2
σℓ + (∂zvx + ∂xvz)φ2ℓ

∂t E
ℓ
23 = −Eℓ

23/τ
2
σℓ + (∂zvy + ∂yvz)φ2ℓ,

(A1)

where

� = ∂xvx + ∂yvy + ∂zvz (A2)

is the compressional component of the wave field,

λU = (λR + 2μR)MU1 − 2
D
μR MU2

μU = μR MU2

φνl =
(

1 −
τ ν
ǫl

τ ν
σ l

)

/τ ν
σ l (A3)

are the unrelaxed (i.e. high frequency) Lamé parameters and

MUν , ν = 1, 2, are the relaxation functions, where ν = 1 is the

compressional mode and ν = 2 is the shear mode. The expression

of MUν , ν = 1, 2 is

MUν = 1 −
Lν

∑

ℓ=1

(

1 −
τ ν
ǫl

τ ν
σ l

)

, ν = 1, 2 (A4)

where τ ν
ǫl and τ ν

σ l are given relaxation times. The L1 memory vari-

ables e1l correspond to the L1 standard mechanisms that describe

the anelastic compressional wave while the memory variables e11l ,

e22l , e12l , e13l , e23l correspond to the L2 mechanisms of the shear

wave.

The solid mechanisms Rℓ
mn can be expressed as a combination of

elemental mechanisms Eℓ
i j

Rℓ
xx = (λR + 2μR/D)

(

Eℓ
1 + 2μREℓ

11

)

Rℓ
yy = (λR + 2μR/D)

(

Eℓ
1 + 2μREℓ

22

)

Rℓ
zz = (λR + 2μR)Eℓ

1 −
2

D
μR

(

Eℓ
11 + Eℓ

22

)

Rℓ
xy = μREℓ

12

Rℓ
xz = μREℓ

13

Rℓ
yz = μREℓ

23. (A5)
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