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ABSTRACT

A numerical method is developed for solving the 3D, unsteady,
incompressible flows with immersed moving solids of arbitrary
geometrical complexity. A co-located (non-staggered) finite
volume method is employed to solve the Navier-Stokes
governing equations for flow region using arbitrary convex
polyhedral meshes. The solid region is represented by a set of
material points with known position and velocity. Faces in
the flow region located in the immediate vicinity of the solid
body are marked as immersed boundary (IB) faces. At every
instant in time, the influence of the body on the flow is
accounted for by reconstructing implicitly the velocity the IB
faces from a stencil of fluid cells and solid material points.
Specific numerical issues related to the non-staggered
formulation are addressed, including the specification of face
mass fluxes, and corrections to the continuity equation to ensure
overall mass balance. Incorporation of this immersed boundary
technique within the framework of the SIMPLE algorithm is
described. Canonical test cases of laminar flow around
stationary and moving spheres and cylinders are used to verify
the implementation. Mesh convergence tests are carried out.
The simulation results are shown to agree well with experiments
for the case of micro-cantilevers vibrating in a viscous fluid.

INTRODUCTION

Over the last two decades, unstructured mesh methods have
become the default for the solution of industrial fluid flow
problems because of their versatility in handling complex
geometries. Fluid-structure interaction problems an important
area of application, and address areas as diverse as in-cylinder
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combustion, flexible-wing aerodynamics, biological flows,
micro-electro-mechanical systems (MEMS), among others. In
many of these applications, interactions between the fluid and
structure may cause extreme deformation and displacement,
which may, in turn, significantly change the fluid field. The
challenge is to develop accurate and stable numerical methods
to address this class of large-displacement problems.

Among the most widely-used techniques for moving-
body and fluid-structure interaction problems is the class of
Arbitrary Lagrangian-Eulerian (ALE) methods whereby the
fluid is treated in an Eulerian framework, but the motion of the
mesh (and the solid) is treated in a Lagrangian one; the mesh is
deformed as the body moves and deforms [1,2]. The advantage
of the technique is that the fluid-solid interface is crisply-
defined and the implementation of interface boundary
conditions is straightforward. However, extreme mesh
deformation requires either partial or complete re-meshing, with
attendant algorithmic complexity and errors due to mesh
skewness and interpolation between meshes.

Fixed-grid methods provide an antidote to re-meshing.
In these approaches, the fluid flow is computed on a
background mesh, and the solid body is moved across it. A
variety of techniques have been developed to capture fluid-solid
interaction. In the volume of fluid (VOF) technique {3], for
example, the solid (or a secondary fluid) is represented by a
volume fraction or VOF which is unity in the solid and zero in
the fluid. The VOF is tracked through an advection equation,
and a single volume-averaged velocity field is computed; the
discretization requires the specification of volume and phase
area fractions, which are found through surface reconstruction
[4]. The level set method [5] tracks the interface implicitly
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Fig 1: Definition of fluid, solid and immersed boundary (IB)
cells and faces.

through the zero level of the level sct function. Though these
types of fixed grid methods arc casy to implement and can
handle complex interface evolution, they lose surface definition
over time, and interface boundary conditions are difficult to
implement. The cut-cell method [6] avoids interface smearing
by considering the actual intersection between the interface and
the cells through which it passes. Grid cells adjacent to the cells
containing the interface are then modified to make the interface
a face in the mesh. Though these practices avoid smearing, they
engender significant geometric complexity.

The immersed boundary method (IBM) has found
increasing use in recent years;  a recent review of the field has
been given in [7]. IBM was originally developed by Peskin [8]
to simulate flow through heart valves. In the original
formulation, the deformable valve wall was represented as a set
of nodal forces which were incorporated in the fluid momentum
equations as line forces. A smeared delta function was used to
represent them, resulting in a fuzzy interface spread over
several cells. A number of variants of the method have since
been developed [7). In recent work, Mohd-Yusof {9] and Fadlun
ct al [10] dispensed with the idea of incorporating equivalent
forces in the uid momentum cquation to represent the action of
the interface. Instead. fluid nodes closest to the interface are
identiticd, and a velocity interpolated from the interface and an
appropriate interior fluid neighbor is imposed on these near-
interface nodes. More recently, Gitmanov and Sotiropolous [11]
represented the interface using triangular unstructured meshes
to facilitate the identification of a sharp interface. This idea was
combined with the material point method to solve for the solid
stress and deformation field in [12], coupled to an IBM
treatment of fluid-structure interaction.

In nearly all the work cited above, the underlying fluid
mesh 15 Cartesian; the presumption is that the only reason for
geqmclric complexity is the solid, whether stationary, moving or
Qct\vrnling, In general purpose applications, however, there is
nterest  in - supporting 2 fully-unstructured  fluid  flow
computation for a variety of reasons. The Quid flow itself may
require local mesh adaption due to shocks or boundary layers,
and this is best facilitated by unstructured meshes, Furthermore,
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the industrial user frequently requires versatility in the
underlying solver. He or she may use boundary-conforming
unstructured solution-adaptive meshes where convenient and
suitable, and IBM-like formulations when fluid flow in the
presence of large-scale solid motion and deformation is
involved. It is therefore desirable to have these features
integrated in a single numerical formulation capable of handling
all mesh types. Moreover, local mesh adaption to improve the
accuracy of recent immersed boundary formulations requires
the underlying flow solver to support unstructured data
structures [ 13 ]. For these reasons, there is interest in
generalizing IBM to  arbitrary unstructured  meshes.
Furthermore, with the proliferation of non-staggered pressure-
based methods for fluid flow, there is interest in integrating
immersed boundary techniques with widely-used algorithms
such as SIMPLE [14], particularly in the versatile unstructured
finite volume form.

In this paper, we develop an immersed boundary
formulation consistent with a cell-centered unstructured finite
volume scheme used widely in flow computations {15]. The
solid deformation and motion are to be computed using a
material point method [ 16]. Consequently the baseline
algorithm is developed by representing the solid as a collection
of material points moving across a background unstructured
mesh. Details of the development of immersed boundary
treatment in a non-staggered framework are presented. The
method is applied to a variety of stationary and moving body
problems and show to perform satisfactorily, either by

comparison to analytical results or to conformal-mesh
computations.

GOVERNING EQUATIONS
The equations goveming the incompressible flow of a
Newtonian fluid are given by:

V-(pV)z()

0 )]
5;(pV)+V-(pVV)=—Vp+V-r+fb

with boundary conditions
Vsz(r,t) only

Here t is the Newtonian stress tensor. The overall domain
comal:ning the fluid and solid is denoted by €, while that
Cor}laming the fluid is denoted by Q; and that containing the
solid by .. The boundary demarcating the two is denoted by
[ b Tt.xe.motion of this boundary is assumed to be prescribed a
priori in this paper through a spatial and time-dependent
boundary velocity Vy(r,t).

The momentum equation in (1) is recast in the form of
a convection-diffusion equation as:

oV
pE—+V-(pVV)=—Vp+V-;NV+j;,+S (2)
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Here, S is the vector of source terms (V T=V.uv V).

FORMULATION

QOverview of Finite Volume Scheme

The basic scheme used in the formulation is that described in
[15]. The computational domain is discretized into arbitrary
unstructured convex polyhedra, referred to henceforth as
control volumes or cells. All unknowns, including pressure,
velocity and scalars, are stored at cell centroids. The
momentum, continuity and scalar transport equations are
integrated over the control volumes to yield cell balances of
convective, diffusive, unsteady and source terms. Second-order
discretization operators are then applied to convert these cell
balances into nominally-linear algebraic equations which are
solved using an algebraic multigrid scheme. A collocated
formulation is employed for pressure and velocity, similar to
that of Rhie and Chow[17]. The SIMPLE algorithm [14] is
employed for pressure-velocity coupling. For unsteady
situations, a second-order implicit formulation is employed.

Determination of Immersed Boundary Faces and Velocities

The fluid flow is solved on  background unstructured
polyhedral mesh. The solid body is represented by a collection
of material points whose motion is computed using the Material
Point method (MPM) [16]. The position of the material points
ry(t) and their velocities V(( ry, t) are assumed known at each
time instant. The material points (MP) are located on the
background unstructured mesh using an octree search [18]. All
cells which contain no material points are labeled fluid cells. All
cells containing at least one material point, and at least one of
whose face neighbors is a fluid cell are labeled immersed
boundary (IB) cells. The rest are labeled solid cells; solid cells
contain at least one material point, and are surrounded by face
neighbors which also contain at least one material point.
Furthermore, all faces shared by IB cells and fluid cells are
marked as IB faces. These markings are illustrated in Fig. 1.

Once the cells and faces are marked, the next step is to
interpolate from the set of fluid and material point velocities to
obtain the interpolated velocity that will serve as the boundary
condition on the fluid cells. In a co-located framework, there
are two choices: we may interpolate either the cell-centered
velocity of the IB cell, or the face-centered velocity of the IB
face. In a finite volume scheme, boundary conditions are posed
most easily on faces. Therefore, in this paper, we interpolate
from a neighborhood of fluid-cell and material point velocities
to obtain the velocity vector at IB faces.

In the current implementation, a sampling radius is
prescribed, typically based on the length scale of the local IB
cell. A neighborhood of fluid and IB cells around the centroid of
the IB face falling within the sampling radius is chosen. A linear
least-squares interpolation of the material point and fluid cell-
centered velocities within this neighborhood is performed, and
the IB face velocity V, in Fig. 2 determined. From this IB
velocity vector are computed the mass flow rate into the fluid

Fluid Cell

S
)
@

1B Cell

Fluid Cell

Fig. 2: Nomenclature associated with fluid cell CO and C1
and IB face for momentum and mass balances.

cell neighboring the IB face, as well as the values of the
velocity components convected by the mass flow rate.

Discretization of Momentum Equation

The treatment of interior fluid cells is that developed in [15]
and is described briefly here for completeness. Then the
modifications made to admit immersed boundaries are
described. In keeping with a non-staggered mesh formulation,
velocity and pressure are stored at the cell centroid. Pressure is
also stored at all cell faces for convenience.

Consider the fluid cell shown in Fig.2, which has at
least one IB face. The momentum equation (Eq. (2)) is
integrated over the cell C0, and the divergence theorem applied.
This yields a balance of the unsteady, convective, diffusive and
source terms which may be written as:

(V) (Vs _
At

[Z mV, + Z D, - Z pfAf+(f;+S)AV0}

Jaces f Jaces f Jaces [

&)
Here, V), is the velocity vector stored at the centroid of cell CO.

All quantities superscripted nt1 are values at the current time
level, while those superscripted n are those at the previous time.
A fully-implicit scheme is employed whereby the left hand side
of Eq. (3) is evaluated at the current time.

Treatment of Interior Faces. We consider first the treatment of
interior faces, such as that between two fluid cells CO and C1 in

Fig. 2. In Eq. (3), n'1f is the mass flow rate at the face f

entering the cell C0, and V% is the velocity vector at the face. At
interior faces, the face velocity vector is determined using a
second-order accurate upwinding scheme [15].

The diffusion term D¢ at an interior face is decomposed
into its primary and secondary components, as described in
[15], and written as:



A A (V, _ VO)
iz olys,
Here, A, is the outward-pointing arca vector at face f; and e is

the unit vector aligned with the linc connccting the centroids of
the two cells on cither side of the face, as shown in Fig. 2. The
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D, =

quantity § ;s the secondary gradient term, described in [15]

and is zero for an orthogonal mesh.

The pressure gradient term at interior faces requires
the determination of the face pressure py. [t is found by linear
interpolation from the cell-centercd valucs, in keeping with the
non-staggered formulation described in {15]. The last two terms
in Eq. (3) are cvaluated at the cell centroid using velocity
gradient evaluations obtained through lincar least-squares
reconstruction [ 19] of the velocity field.

To prevent checkerboarding, the face mass flow rate

1 , atinterior faces is found using an added dissipation scheme
similar to that of Rhic and Chow {17] and described in [15]. For
the face fbetween cells CO and C1 in Fig. 2, the face mass flow
rate is written in terms of a face normal velocity Vf.n pointing

outward from cell CO, and defined as:

¥ ’ — p, =D,
’ I = ,)lnmr.n +d/ (Vp'e; —.(_IZJTQJ (5)

Here, ¥inearn is the lincarly interpolated  face-normal velocity
computed from the cell-centroid velocity vectors of cells CO
and C1. The sccond term is the added dissipation term; the
coellicient d; is found through momentum interpolation {17]

and is described in (15]. The term ﬁp is the average pressure
gradient at the face, computed from the cell-centered pressure
gradients in cells CO and C1. The face mass flow rate m , into

the fluid cell is computed as:

m,=-pV, A 6
Treatment of IR Faces.  We now consider the treatment of the
18 face shown in Fig. 2. The eonvective momentum flux in Eq.
{M1s modified to use the lincarly-interpolated 1B velocity Vy in
Fig. 2 rather than a second-order upwinded value V. Similarly,
the face mass {lux on the [B face is computed as:

g = /7
m, =-pV, A4,

M
Here. 11, and py,  are the mass flow rate and fluid density at
the 1B face centroid and A, is the arca vector pointing from the
fluid to the 1B cell in Fig.2.
The diffusive term in Eq. (4) is modified as:
A, A, (V=Y

)
S
A-ey ds, T ®
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For the evaluation of pressure gradient term, the face pressure
on the IB face is found by linear reconstruction, using the cell

pressure py and the pressure gradient Vp, in the CO cell as:

Py =Dy + VD, -ds,ey, ©)
Treatment of IB and Solid Cells. Fluid momentum equations are

not solved in IB and solid cells, and the fluid velocity vector
and pressure in these cells is never used.

Discretization of Continuity Equation
The treatment of fluid cells follows the formulation described in
[15]. For cell CO in Fig. 2, the continuity equation is integrated
over the control volume, yielding a balance of mass flow rates.
In a co-located formulation, the discrete continuity equation is
written in terms of the face normal velocity defined in Eqns. (5)
and (6) as:

Y i+ S, AV, ==Y pV, A+ 8,8V, =0
Jaces [ Jaces [

(10)

Eq. (10) is written only for fluid cells in the domain; no

continuity equation is solved in IB  and solid cells. For fluid

cells with IB faces, Eq. (7) replaces Eq. (6) in writing the face
mass flow rate expression in Eq. (10).

The S,, term in the above equation is the volumetric

mass source in the cell, and is normally zero. In the immersed

boundary formulation for an incompressible flow, it is required

that:
Z mf = Rm,toml :O

B&
boundary faces

However, numerical interpolation errors in finding the 1B face
velocity may lead to Eq. (11) not being satisfied. A number of
remedies for this problem have been proposed in the literature
[20,21]. In the present work, the net mass imbalance Ry ora 1S
distributed in a volume-weighted fashion in the fluid cells in the
domain. Thus, the corrective mass source term is computed as

SmAVO = Rm total __A—I{O—— (12)
ey AV
Sluid cells
In all computations performed in this paper, the normalized
mass imbalance over the domain is found to be less than 0.01%
at convergence.

(1

PRESSURE CORRECTION EQUATION

The SIMPLE algorithm is used to the momentum and continuity
equations in the fluid domain. In keeping with the procedure
described in [15], the face normal velocity field after the

solution of the momentum equations, V;n,

discrete mass balance. Therefore, a normal velocity correction
corresponding to Eq. (5) is applied, and is defined as:

does not satisfy

Copyright © 2009 by ASME



Vip=Via+ Vf”n
4 !
o—d (pl"'po) (13)
fon f dS
The IB face velocities are not expanded in term of a pressure
correction, but are included as nominally-known mass flow
rates in the continuity balance. Substituting Eqns. (6), (7) and
(13) in Eq. (10) yields the pressure-correction for each fluid
cell i in the domain:
nb
a,p, = Zaijp;. +b, (14)
j=1

Here, j is the index of the cell sharing a face with cell i; nb is
the total number of such cells. The term b; contains the mass
imbalance in cell i [15]. The mass flow rates corresponding to
the IB face velocities, as well as the corrective source term (Eq.
12) therefore appear in b;

In keeping with the SIMPLE procedure, once the
pressure correction equation, Eq. (14), is solved, the cell
pressure, and face mass flow rate are corrected as:

. d, ,
P=p, ta, '_S'po
’ ’ (15)
(p1 - po)

ds

Here, starred values represent quantities based on the solution
of the momentum equations, and a, is the pressure under-
relaxation coefficient [14]. In addition to the corrections applied
in Eq. (15), the cell-centered velocity vector is also corrected in
the manner described in [15] to promote convergence. IB face
velocities are not corrected after the solution of the pressure
correction equations.

m

;= m, ~prAsd,

OVERALL SOLUTION PROCEDURE
The overall solution procedure for an unsteady computation
consists of the following steps.

1. Establish the state at time level n. Initialize solution
variables, including cell-centered velocities, face mass
flow rates and cell and face pressures. Initialize the
positions and velocities of material points.

2. Establish the state of material points at time level n+/
by moving material points over the time step At based
on the material point velocity vector at time n. Update
material point velocities at time level n+/ based on the
prescribed motion of the solid.

3. Locate the positions of the material points on the
background unstructured mesh. Mark cells as fluid,
solid or IB, and cell faces as interior, IB or boundary.
Compute geometric interpolation factors at n+/ using
linear least-squares relating IB face velocities to the
material point and fluid cell-centered velocities.
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4. [Ifitis the first time step, copy the fluid velocities, face
mass flow rates and cell pressures from time level # to
time level n+1 to establish the initial guess at n+1/.

5. Compute IB face velocities from prevailing solid and
fluid cell-centered velocities.

6. Discretize and solve the fluid momentum equations in
the fluid cells.

7. Discretize and solve the pressure correction equations
in the fluid cells.

8. Correct face mass flow rates, cell pressures and cell-
centered velocities.

9. Check for convergence within time step n+l. If
unconverged, go to step 5. If converged, go to step 10.

10. Check if the desired number of time steps have been
completed. If incomplete, copy the state at level n+/
to level » and go to step 2. If complete, stop.

RESULTS

In this section, we demonstrate the immersed boundary scheme
on a variety of problems to verify the performance of the
algorithm and software and to validate its performance against
experiments. Our interest is in computing steady and unsteady
flows in microscale applications, and consequently, a number of
low Re problems are considered here.

Verification Test 1: Flow Over Cylinder in Driven Cavity
The lid-driven cavity problem has long been used a test case for
new codes and new solution methods. The standard problem
consists of a fluid contained in a square domain of side L with
three stationary sides; the top wall is imparted a tangential
velocity U, as shown in Fig.3. A variant of this problem is
computed here. A stationary cylinder of radius R is inserted at
the center of the cavity, and is represented by material points.
The interaction between fluid and cylinder is treated by the
immersed boundary scheme described here and the fluid flow is
computed using the finite volume scheme. A steady 2D
isothermal incompressible flow is assumed, with Re=1.0 and
R/IL=5.0

The problem is first solved using the commercial CFD
tool FLUENT with a body-fitted triangular mesh of 1988cells.
Testing with finer meshes established that the velocity profile
was mesh invariant to 0.5 percent. Then the same problem is
solved by the immersed boundary method with four different
meshes: a 50x50 and a 100x100 uniform Cartesian mesh,
and two triangular unstructured meshes of 1988 and 7952 cells
respectively.

Velocity vectors for Re= UL/v=1.0 are shown in Fig. 3
for the body-fitted mesh case, and indicate the formation of a
primary recirculation driven by the top wall, as well as a
secondary recirculation due to the presence of the cylinder.
These features were also captured by the IBM solution.

Copyright © 2009 by ASME



where ¥y, and Vi, arcthe velocities calculated from IBM
1 uen

and FLUENT respectively. V,, is 2 reference value to

pormalize the error. In this case, the reference value takes the
velocity of the top wall (U). The calculated RMS error for each

mesh are inserted in Fig. 4 and 5. It is seen that the IBM results
match FLUENT results well and generally the error is about or
less than 1.0%. Larger deviationa are seen for coarse meshes
because the cylinder surface is not well-resolved by the coarse
Cartesian mesh and this difference is signicantly reduced by
refining the mesh. This cavity cylinder problem has also been
run at Re=0.1 and Re=100 and the results (not shown here)
demonstrate similar accuracy.

I T v T Ml i 1 M

Fig. 3: Velocity vectors =1. i -
8. 3: Velocity vectors at Re=1.0 computed using a body-fitted vol —w—2500quad  RMS = 1.6%

-

triangular mesh, —e— 10000 quad RMS =0.7% ]
—4&--1988 td RMS = 1.3%
08 —vy—7952th RMS = 0.4% T

Fig. 4 and Fig. 5 show the non-dimensional velocity profile at b ¢ Fluent

the horizontal and vertical mid-planes. The length is scaled by 06
the diamerter of the cylinder D and the velocity is scaled by the 2
top wall velocity U. > sl .
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PR i 9, ° RMS=05% ¢ 4 Fig. 5: Velocity profile on the vertical mid-plane at Re = 1.0
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. A J . Yerification Test 2: Flow QOver Stationary and Rotating
oo te Denessener———— - Another fundamental fluid mechanics problem computed is
. N ; . ) n laminar flow past a cylinder, as shown in Fig. 6. The incoming
uo 03 1o 15 20 25 V.elocity profile is uniform, with a velocity U; the cylinder
x/D diameter is D. At low Re (=UD/v), the flow is symmetric about

the horixontal md-plane. As the Reynolds number increases, ;
‘ o . . ) flow begins to separate behind the cylinder causing voriex
Fig. 4: Velocity profile at the horizantal mid-plane at Re = 1.0 Shedding, In this work, we compute low Reynolds flow (Re<10)
where no vortex shedding occurs.
) Fig. 6 shows the non-uniform cartesian mesh employed
in the immersed boundary method. A flow domain is created

To estimate the error between FLUENT and IBM results, we
interpolate the [BM data points to the FLUENT mesh locations

and calculated the root mean SQYMTC(RMS) error as surrounding the cylinder. The upstream length is 5D and the
i ('mu ey ) downstream section is 20D. The width of the flow domain is
" < Wl'", 10D. The inlet condition is velocity inlet with uniform profile.
M = B — (16) The outlet is prescribed to be at a uniform static pressure. The
;] ]

top and bottom surfaces are stationary non-slip walls.

90
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- A o -
Fig. 6: Non-uniform cartesian mesh for flow past a cylinder
using immersed boundary method.

First we simulate a steady flow past a stationary
cylinder immersed in an bounded uniform flow at Re=1.0. The
problem is first solved using FLUENT with a body-fitted
mesh of 4356 triangular cells. It is then solved by the immersed
boundary method using a Cartesian mesh of 5000 cells, as
shown in Fig. 6.

Fig. 7 (left) shows the stream function for the flow
over a stationary cylinder. Fig. 8 shows the velocity comparison
between FLUENT and IBM results on different vertical lines in
the domain. The velocity is scaled by inlet velocity U and the
length is scale by cylinder diameter D. Using the inlet velocity
U as reference, the RMS error between the FLUENT and the
IBM results is around 1%. Fig. 9 shows the velocity comparison
at the horizontal centerline of the cylinder. The RMS error is
less than 1%.

Fig. 7: Stream function for flow past a stationary (left) and
rotating (right) cylinder.

Next, we simulate the flow past a circular cylinder
rotating about its axis at a rotational speed ®, corresponding
to a roational Reynolds number Re,=(wD*v)=10; in addition to
the rotational motion, there is an incoming flow with a
Reynolds number Re=1.0, as before. The stream function
for this case is shown in Fig. 7 (right). Similar to stationary
case, the velocity comparison with respect to the body-fitted
mesh case is illustrated in Figs. 10 and 11 on multiple vertical
and horizontal locations. A reference velocity ¥, , =5U is

used in the estimate of RMS error and the error is less than 1%.
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Fig. 8: Velocity profile on different vertical lines in the domain
for flow over a stationary cylinder.
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Fig. 9: Velocity profile on horizontal center line for flow over a
stationary cylinder.
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Verification Test 3: Stokes Flow Qver Sphere

The fast verification test is the Stokes flow past a stationary
sphere. The well-known analytical solution to this problem {22]
is grven in spherical coordinates

k)
u, =Ucos()[l-—-3-2+-!—p—}
4r

3
16 r amn
3
u,=-Usind l—§-2~-1—23-
r 32r
The corresponding drag force is given by
F, =3rmuDU (18)

Here, D is the sphere diameter, and 7 is the distance from a
pont to the origin, € is the azimuthal angle in the x-y plane
from the x axis with 0<0<2x. U is the uniform free stream
velocity, g is Quid viscosity. In this study, computations are
perfvrmed lor Re (<UD 0,02,

One of the difliculties encountered in solving this
problem is the proper specification of outer boundary
conditions, Because of the vanishingly-small Reynolds number,
very large domains are necessary 1o capture the effect of an
unconstrained free-stream flow. To avoid this difficulty, an
alternative problem specification is chosen. A relatively small
domain of size 5D about the sphere is chosen, and the exact
analytical velocity solution is imposed at the boundaries. Mesh
dependence studies are carried out using three uniform
Cantesian - meshes:  30x30x30 50x50x50 and
100100100, The sphere occupies 20% of the domain in
any gnen coordinate direction; thus the approximate cube
ovcupred by the sphere is6x6x 6, 10x10x10, 20x20%20.
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The velocity profile computed from .IBM using the
100x100x100 mesh is shown in Fig. 12 and is compared 0to
analytical solution (Eqn. 16). The RM‘S error is less than 1%.
The drag forces calculated by IBM using the tpree meshes are
shown in Table 1. The analytical drag force is calculated by

Egn. 17. The error of IBM result with respect to the analytical
value is also shown in the table.

10 T T T ¥ 1 T T 1 T T
[ o s IBM-Ur RMS = 0.8% 1
e IBM-Utheta RMS =0.8% ]

ob —— Stokes-Ur

o7t —— Stokes-Utheta .
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s

04} 4

03 .

02} B
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0.0 A 1 1 1 " L 1 i .

30 25 20 -15 -1.0 05 00 05 10 15 20 25 30

x/D
Fig. 12. Velocity profile for flow over a sphere.

Table 1. Mesh dependence of drag force

Mesh size 27,000 | 125,000 1,000,000
Fp/(0.5pUD’) 835 870 905

LError yvith res;_)ect to 1% 7 4% 3.7%
analytical solution

It can be seen that an error of 3.7% persists in the drag force
even on a 100x100x100 mesh. Closer examination of the
results reveals that the deviation is primarily due to the lack of

adequate geometric resolution of the sphere, as seen in the Fig.
13.
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Fig. 13. Projection of IB cells on x-y plane for
100x100x100 cell mesh for flow over sphere.
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The above three verification problems indicate that the
immersed boundary method developed here demonstrates good
accuracy for the range of problems computed. The error of the
IBM is found to be mainly related to how well the real solid
surface is approximated by the IB cells/faces. This type of error
can be significantly reduced by locally refining the mesh; this
type of hanging-node refinement is accommodated
straightforwardly in our unstructured mesh framework.

Validation Test: Flow Around Freely-Vibrating Cantilever

To validate the immersed boundary method, we consider the
vibration of a microcantilever in a fluid, as shown in Fig. 14.
Our objective is to predict the damping coefficient as a
function of the ambient pressure assuming that the continuum
limit is valid. Experimentally-measured damping coefficients
for ambient pressures ranging from atmospheric to near-
vaccuum are available in [23]. In the computations performed
here, the motion of the material points is prescribed a priori; the
fluid flow and the resulting damping coefficient are computed
using IBM.

Fig. 14. An illustration of the vibrating cantilever system.

Damping Ratio. As the cantilever vibrates, it experiences a
damping due to flow around it. The quality factor or Q factor is
defined in terms of the ratio of the energy stored in the system
to that of the energy dissipated in one cycle:
Energy stored

Q=2rx (19)

Energy dissipated per cycle

Higher Q indicates a lower rate of energy loss relative to the
stored energy of the oscillator; consequently, the oscillations die
out more slowly. The damping ratio, indicated by { , is related
to the Q factor by

(20)

Here the derivation of the damping ratio for cantilever is briefly
described, and is taken from [Error! Bookmark not defined.].
We then describe the post-processing technique used to obtain
the damping ratio.
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For a one-degree-freedom damped harmonic oscillator
as shown in Fig. 15, the governing ordinary differential
equation is

mx(t) +cx(f) +kx(t) =0 21
where m is mass, ¢ is damping coefficient, and k is spring
constant.

xir)

Fig. 15: An illustration of a one-degree-freedom harmonic
vibrating and damped system.

We define the natural frequency of the harmonic

oscillator as @, =+vk/m and the damping ratio

c ¢
N

X(t)=V-¢’” and substituting into Eq. (20) yiclds

Jwt

. Assuming that the velocity takes the form
2ma,

+k/(jo)-e™™ +ce’™ =0 (22)
Solving the above ODE yields the frequency of the oscillator as
a function of the damping ratio:

W=, -1) (23)

We wish to define a damping ratio similar to that for the 1D
oscillator case. According to Euler-Bernoulli beam theory, the
governing equation for a 2D cantilever is

it )

: ot

Jjome

+EIViw(x, y,0) = p(x,y,1) (24)

where p, is the cantilever density and 4 is the beam thickness.

E is the elastic modulus and 7 is the second moment of area, w

is the displacement and p is force per unit arca on the cantilever.
We assume that the cantilever velocity takes the form

Wix, y,1) = A(x, y)e’™ (25)

where A(x, y) is the mode shape. The force is written in the

complex form

p(x,y,0)=[pg(x,y)+ j- p;(x, )™ (26)
Substituting Eq. (25) into Eq. (13) yiclds:
jw[phA(v",}’)_P/ (-x’y)/a)]ejM + (27)

1/ (jw)-D,V*A(x, y)e’™ = p,(x,y)e™
Re-arrangement of Eq. (26) yields a form similar to Eq. (21)
joM, e +K, | (jo)-e™ +C, e =0 (28)
with
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M, = [[Axlphd(x.7) =P () oldsdy  (29)

C,, = - [JAG.)ps(x iy (30)
C

== 31

TN 3D

The resonant frequency of the cantilever @, is given by
cyperiments {Error! Bookmark not defined.}.

If we neglect the mode shape variation by
assuming A(x,) to be constant, the damping ratio may be
simplicd as

- [[pacixey
'C =
20,{ phLb- f{(p, I wydsdy|

The real and imaginary parts of the complex force are
caleulated by

Gh

NT
Pe —_--;Vlf oj p(fyxcos(w,1)dt (32)
‘ NT
=T j pln)xsin(w,t)dr (33)

o

where T is the period of the force signal and A is the number of
eyceles.

Problem Specification. A cantilever with width b=35um,
thickness #r=1.0um and a length L =100um is considered.

The simulation domain is taken to be a rectangular box with
dimensions L =200um LY =150umand LZ =200um , as

shown in Fig. 15, The outer boundaries are assumed to be
stationary walls. The domain is filled with air at T=238K.
At ambient pressure P =101325Pa
T=2%8K aif

.

and a temperature
properties  take  the  values
w=179x10"kg/m-s and p=1.225kg/m’. The variation
of density with pressure is assumed to follow the ideal gas law.
Computations are performed for ambient pressure values
ranging {rom 1.1145x10" to 8.3593x10' Pa, corresponding to
eyperiments described in [23).

In the simulation, the caatitever is assigned a normal
velogity of w=1,_cos{ent) . From experimental mesurement,
the amphtude of the velocity, V. is small enough to keep the
Revnolds number much less than unity.  In keeping with this,
we assume b =0.00lm/s everywhere on the cantilever.
The unsteady evolution of the flow is computed until a periodic
steady state 1s reached. Atthis point, the resultant pressure force
on the cantilever i1s computed each time step by integrating the
flund pressure on the IB faces enveloping the beam susface. The
force signal is recorded as a function of time, and Eq. (31) is
wied o compute  the damping coefficient. Fig. 16 shows one
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period of the prescribed VEIOUEy S T o T
force exerted on the cantilever.
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Fig. 16: One period of the prescribed velocity and the resultant
force on the cantilever.

In Fig. 17, the measured quality factor for que 1 of
cantilever vibrationis compared to predictions using the
immersed boundary method. Computations using 1BM are made
only at pressures at which the continuum Navier-Stokes
equaitons are valid. Table 2 shows the exact values compu}erl,
as well as the measured experimental values. Our computations
are found to be within 5.4% of experiment. The experimental
error has been estimated to be 1.0%in [23].
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Fig. 18. Comparison of computed and measured quality factors
for cantilever vibration in Mode 1.
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Table 2. Quality factor comparison with experiments in [23].

Pressure (Pa) 11145 22531 45862 83593

Q (EXP) 211.86 | 169.46 | 135.87 | 107.76

Q(IBM-FVM) | 21942 | 178.62 | 140.19 | 111.84

Error 3.6% 5.4% 3.2% 3.8%
CONCLUSIONS

In this paper, an immersed boundary scheme for the
computation of fluid-structure interaction has been described.
The scheme employs an unstructured finite volume scheme for
an incompressible flow, and a material point method for the
deformation and motion of the solid. Only prescribed solid
motion is considered in this initial implementation.

The computational scheme addresses issues specific to
the implementation of the immersed boundary method within a
non-staggered pressure-velocity framework. It is applied to a
variety of fluid-structure interaction problems involving
prescribed solid motion, and shown to perform satisfactorily.
Research is underway to include two-way coupling between
fluid and structure within this framework, and results from this
effort will be reported in due course.

NOMENCLATURE
aj coefficient in discrete equation
A(xy) mode shape

A4 outward-pointing area vector

b mass imbalance term in pressure correction equation
b cantilever width

c damping coefficient

‘(;eq equivalent damping coefficient

momentum interpolation coefficient
ds centroid-to-centroid distance
D diffusion flux vector at cell face
23 unit vector along line connecting cell centroids
E elastic module
f body force vector
Fp drag force
h cantilever thickness
1 momentum
J imaginary unit
k spring constant
L cantilever length
m
ME‘

mass flow rate

g equivalent mass
n time level
p pressure
)4 pressure correction
Q quality factor
’

distance between two points

R0 total mass imbalance in fluid domain

velocity vector
velocity vector of material point

Re Reynolds number
S source vector in momentum equation
S secondary gradient vector
Sm mass source in continuity equation
t time
T temperature
vV
Vs
14

.  momentum-interpolated face normal velocity

w cantilever displacement
Greek Symbols

a under-relaxation coefficient
p fluid viscosity

p fluid density

T stress tensor

6 angle

I damping ratio

1) frequency

AV cell volume

Subscripts and Superscripts

immersed boundary face

cell face

real part of a complex number
imaginary part of a complex number
associated with cell CO

associated with cell C1
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