
Rüberg et al. Adv. Model. and Simul.

in Eng. Sci. (2016) 3:22 

DOI 10.1186/s40323-016-0077-5

RESEARCH ART ICLE Open Access

An unstructured immersed finite element
method for nonlinear solid mechanics
Thomas Rüberg1,2*, Fehmi Cirak3 and José Manuel García Aznar1

*Correspondence:
thomas.rueberg@gmx.de
1Multiscale in Mechanical and
Biological Engineering (M2BE),
University of Zaragoza, María de
Luna 3, 50018 Zaragoza, Spain
Full list of author information is
available at the end of the article

Abstract

We present an immersed finite element technique for boundary-value and interface
problems from nonlinear solid mechanics. Its key features are the implicit
representation of domain boundaries and interfaces, the use of Nitsche’s method for
the incorporation of boundary conditions, accurate numerical integration based on
marching tetrahedrons and cut-element stabilisation by means of extrapolation. For
discretisation structured and unstructured background meshes with Lagrange basis
functions are considered. We show numerically and analytically that the introduced
cut-element stabilisation technique provides an effective bound on the size of the
Nitsche parameters and, in turn, leads to well-conditioned system matrices. In addition,
we introduce a novel approach for representing and analysing geometries with sharp
features (edges and corners) using an implicit geometry representation. This allows the
computation of typical engineering parts composed of solid primitives without the
need of boundary-fitted meshes.

Keywords: Immersed finite elements, Nonlinear solid mechanics, Nitsche’s method,
CSG modelling, Cut-element stabilisation, Implicit geometry

Background

Conventional finite element methods (FEM) are an irreplaceable tool for the numerical

analysis of a variety of physical and engineering problems. They rely on a conforming

meshwhich approximatelymatches the domain boundary andmaterial interfaces. For this

reason, mesh generation is an essential part of the workflow in FEM-based analyses [1].

Although the procedure is well-established, often the use of a boundary-conformingmesh

can be limiting or even prohibitive. Fluid-structure interaction, large elastic deformations

and shape optimisation are some applications wheremesh entanglement can cause severe

difficulties for conventional FEM.

In the last two decades or so, a number of finite element-based numerical methods

have been introduced in order to eliminate the need for boundary-conforming meshes.

Here, we restrict ourselves to immersed methods, also known as embedded of fictitious

domain methods, that operate with a geometry-independent mesh, in the line of [2–6].

Since the mesh of an immersed domain method does not conform with the boundary of

the physical domain, one of thesemethods’ main difficulties is the application of boundary

conditions. Here, we choose Nitsche’s method [7] for the weak enforcement of Dirichlet

boundary conditions because it gives optimal convergence rates without incurring major
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implementation difficulties. Moreover, the use Langrange multipliers together with its

numerical intricacies, such as the fulfilment of the LBB-condition [8], are avoided. For

alternative approaches, see [4,9–14] among others.

A major difficulty of non-body-fitted methods is the accurate integration of the aris-

ing volume and surface integrals. Here, we make use of a tessellation concept which

allows to incorporate standard, Gauß quadrature schemes. In the course of this develop-

ment, a technique is presented which enables the representation of sharp domain features

by performing constructive solid geometry (CSG) modelling directly on the embedding

mesh. This approach poses a clear advantage in comparison to the conventional methods

of geometry resolution because these sharp features are accurately reproduced and not

chamfered even on coarse meshes.

Another pitfall of immersed finite element methods is the loss of numerical stability in

caseswhere the intersectionof a shape function supportwith thephysical domainbecomes

very small. This issue has been successfully addressed in the context of b-spline finite ele-

ments [6,12,15]. In this work, we build up on this concept of constraining critical degrees

of freedom and apply it to Lagrangian basis functions on unstructured meshes. Note that

Burman et al. [16] introduced an alternative approach, the so-called ghost-penalty stabili-

sation method, which is based on an augmented bilinear form. Strongly related to stability

are the method’s parameters and we show how to choose these parameters in the context

of the introduced stabilisation techniques.

The method we present here is based on our previous works [6,17–19] and related

to [2,3,16,20,21]. Although, as shown in the cited works, the method can be transferred

to many physical applications, we focus on the problem class of nonlinear elasticity.

Weak enforcement of boundary and interface conditions

At first, we present the derivation of the proposed immersed finite element method as

applied to boundary value problems from nonlinear solid mechanics. Using a weighted

residual technique, we obtain the weak form of the problem and give its linearisation.

Similarly, the expressions for material interface problems are subsequently derived.

Boundary value problems of nonlinear solid mechanics

Consider the boundary value problem for nonlinear elasticity in the reference domain

� ∈ Rnd , nd = 2 or nd = 3 (Fig. 1)

n

Ω Ω \ Ω

Fig. 1 Embedded boundary value problem. Domain � embedded into the domain �� with background
mesh
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−Div P(u) = f in �

u = ū on ŴD

t(u) = t̄ on ŴN ,

(1)

where u denotes the unknown displacement field, P is the first Piola-Kirchhoff stress ten-

sor, Div is the divergencewith respect to reference domain coordinates, and t(u) = P(u)n,

with n the outward unit normal vector to�, is the boundary traction. The prescribed data

are the volume force f , the prescribed displacement ū and the prescribed traction t̄ . The

boundary of �, denoted by Ŵ, is composed of disjoint sets, the Dirichlet boundary ŴD and

the Neumann boundary ŴN , where the respective data are given.

In order to construct aweak formof the boundary value problem (1), a weighted residual

approach is taken with the test function v. In mathematical terms, we operate with the

Sobolev spaceH1(�), i.e. the vector fields whose components are all inH1(�), see, among

others, [8] for the precise definition. Different from conventional FEM,we do not employ a

constrained subspace with essential boundary conditions. The weighted residual method

thus becomes:

Find u ∈ H1(�)

R(u, v) = a(u, v) −

∫

�

f · vd� −

∫

ŴN

t̄ · vdŴ −

∫

ŴD

t(u) · vdŴ = 0

∀v ∈ H1(�) , (2)

with

a(u, v) =

∫

�

S(u) : Ė(v)d� . (3)

Here, Ė denotes the variation of the Euler-Green strain tensor (E = 1
2 (F

⊤F − I ) with the

deformation gradient F ) and S = F−1P the second Piola-Kirchhoff stress tensor [22,23].

In the applications section, we work with a compressible Neo-Hooke material with given

energy densityW (E) and for this hyperelastic case, the stress tensor becomes

S =
∂W

∂E
. (4)

Using a Newton method to solve the nonlinear Eq. (2), the k th iteration takes the form

DR(u(k), v)[�u] = −R(u(k), v) and u(k+1) = u(k) + �u , (5)

where D(·)[�u] denotes the derivative in direction of the increment �u, which reads

DR(u, v)[�u] = Da(u, v)[�u] −

∫

ŴD

Dt(u)[�u] · vdŴ (6)

with

Da(u, v)[�u] =

∫

�

(Grad v) : Ĉ(u) : (Grad�u)d� . (7)

In this expression, Ĉ denotes the effective elasticity tensor [22]. For simplicity, it is assumed

here that the prescribed volume and surface forces, f and t̄ , are independent of the dis-

placement u (dead load case). If these assumptions do not hold, the directional derivative

of R(u, v) contains the derivatives of the applied force and traction terms. So far, expres-

sions (2) and, consequently, (5) do not take into account the displacement boundary

condition u = ū on ŴD. Therefore, the approach initially introduced by Nitsche [7] is

adapted here and the following two terms are added to (5)

−

∫

ŴD

Dt(u)[v] · (�u − ũ)dŴ and γ

∫

ŴD

(�u − ũ) · vdŴ (8)
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with the predictor ũ = ū in the first iteration (or the appropriate value in the first iteration

of every load step) and ũ = 0otherwise, corresponding to a displacement-controlledNew-

tonmethod.The scalar γ > 0, necessary for numerical stability, is discussed in “Numerical

stability” section. In summary, the Newton step (5) including Nitsche’s approach to incor-

porate displacement boundary conditions reads

Da(u, v)[�u] −

∫

ŴD

Dt(u)[�u] · vdŴ −

∫

ŴD

Dt(u)[v] · �udŴ

+ γ

∫

ŴD

�u · vdŴ = −a(u, v) +

∫

�

f · vd� +

∫

ŴN

t̄ · vdŴ

+

∫

ŴD

t(u) · vdŴ −

∫

ŴD

Dt(u)[v] · ũdŴ + γ

∫

ŴD

ũ · vdŴ , (9)

where the iteration counter has been omitted for sake of legibility. The added terms (8)

are zero for the exact solution and therefore the method is consistent by construction.

Moreover, for hyperelastic materials expression (9) is symmetric and positive for the right

choice of γ and non-softening material behaviour, see “Numerical stability” section. In

the following, we abbreviate (9) by

A(u;�u, v) = ℓ(u; v) . (10)

Material interfaces

The formalism presented above for the weak incorporation of displacement boundary

conditions can be generalised to interface problems, see also [2,3,13]. For simplicity, let

the reference domain be composed of two subdomains,� = �1∪�2, and let us ignore the

Dirichlet boundary conditions on ∂�. The treatment of such conditions is here essentially

the same as in “Boundary value problems of nonlinear solid mechanics” section.We focus

only on the conditions imposed on the material interface Ŵ = ∂�1 ∩ ∂�2, see Fig. 2. In

each subdomain �i the local equilibrium reads

− Div Pi(ui) = f i in �i . (11)

Let u denote the compound displacement field, such that u|�i = ui, and define the

compound test function v similarly. Moreover, for any compound function g , with g|�i =

g i, the jump across Ŵ is denoted with

�g� = g1 − g2 . (12)

n

Ω1 Ω2

Γ

Fig. 2 Interface problem. Rectangular domain � composed of two subdomains �1 and �2 with common
interface Ŵ
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For later use, also a weighted average {g} is defined on Ŵ as

{g} = βg1 + (1 − β)g2 , (13)

where 0 ≤ β ≤ 1 is some weighting parameter yet to be discussed. On the interface Ŵ the

conditions are

�u� = uŴ and �t(u)� = tŴ , (14)

with prescribed jump functions uŴ and tŴ . These conditions represent the jump in the

solid displacements and the traction equilibrium across the interface. In more complex

situations, such as soft interfaces, a cohesive law can be imposed relating the interface

traction tŴ to the displacement gap �u�, see [24]. Here, we assume that uŴ and tŴ are

prescribed and that they are independent of thedisplacementu.Note that in the evaluation

of the tractions t i the unique normal vector n = n1 = −n2 as shown in Fig. 2 is used,

where this choice is arbitrary.

Repetition of the steps as in the single-domain problem above yields the weighted

residual method for interface problems

Find ui ∈ H1(�i) i = 1, 2, such that

R(u, v) =
∑

i=1,2

(

ai(ui, vi) −

∫

�i

f i · vid�

)

−

∫

Ŵ

�t(u) · v�dŴ = 0

∀vi ∈ H1(�i). (15)

Now the integrand of the interface term is rewritten as follows

�t(u) · v� = [βt1(u1) + (1 − β)t2(u2)] · �v� + [(1 − β)v1 + βv2] · �t(u)�

= {t(u)}�v� + [(1 − β)v1 + βv2] · tŴ
(16)

employing the average term (13) and the interface conditions (14)2. Using a Newton

method to solve the nonlinear problem (15) with (16) requires the directional derivative

DR(u, v)[�u] =
∑

i=1,2

Da(ui, vi)[�ui] −

∫

Ŵ

{Dt(u)[�u]} · �v�dŴ . (17)

The interface condition (14)1 is now incorporated by adding terms akin to (8), namely

−

∫

Ŵ

{Dt(u)[v]} · (��u� − ũŴ)dŴ and γ

∫

Ŵ

(��u� − ũŴ) · �v�dŴ , (18)

to expression (17). Again, the parameter γ > 0 is yet to be discussed in the Appendix A

and we use the predictor ũŴ = uŴ in the first iteration and zero afterwards. In summary,

a step in a Newton iteration to solve the coupled interface problem reads

∑

i=1,2

Dai(ui, vi)[�ui] −

∫

Ŵ

{Dt(u)[�u]} · �v�dŴ −

∫

Ŵ

{Dt(u)[v]} · ��u�dŴ

+ γ

∫

Ŵ

��u� · �v�dŴ =
∑

i=1,2

(∫

�i

f i · vid� − ai(ui, vi)

)

+

∫

Ŵ

{t(u)} · �v�dŴ

−

∫

Ŵ

{Dt(u)[v]} · ũŴdŴ +

∫

Ŵ

{

(1 − β)v1 + βv2
}

· tŴdŴ + γ

∫

Ŵ

ũŴ · �v�dŴ . (19)

Only the first two terms on the right hand side remain in the case of uŴ = 0 and tŴ = 0.

As before, this expression is represented by the equation A(u;�u, v) = ℓ(u; v), see (10),

and we postpone the discussion of the parameters β and γ to Appendix A.
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Immersed finite element method

Finite element discretisation

The linearised weighted residual Eqs. (9) and (19) form the basis of a finite element dis-

cretisation. To this end, a domain �� of a simple shape, typically rectangular, is defined

such that it fully contains the reference domain �. The following finite element discreti-

sation is based on a triangulation of �� instead of a geometry-conforming mesh of �

itself (see Fig. 3). We use piece-wise polynomial basis functions ϕI (x) and write for the

approximated displacement field

uh(x) =
∑

I

uIϕI (x) . (20)

There is no constraint on the chosen finite element space, but if the surfaceŴ overlapswith

the boundary of the embedding domain (that is ifŴ� = Ŵ∩∂�� �= ∅), it can bemore con-

venient to use an essential treatment of displacement boundary conditions [8] along this

boundary. On the other hand, if non-nodal basis functions (like, for instance, higher-order

b-splines) are used as the finite element basis, the above presented weak incorporation of

the boundary conditions works perfectly well on this boundary part Ŵ� too.

Let the support of the basis function ϕI be denoted by supp(ϕI ). Now all coefficients

uI from the approximation (20) are discarded a priori if supp(ϕI ) ∩ � = ∅. By S we

denote the set of the indices of the remaining coefficients and thus {ϕI }I∈S forms the

full basis of the immersed finite element method. This basis is in general not stable [25]

and requires further attention, which is given in “Numerical stability” section. Using the

approximation (20), we reach the final system of equations

Ax = b (21)

with the matrix and vector coefficients

A[I nd + a, J nd + b] = A(u; ebϕJ , eaϕI )

x[J nd + b] = (�uJ ) · eb (22)

b[I nd + a] = ℓ(u; eaϕI )

for the zero-based indices I, J ∈ S, and using the coordinate directions 0 ≤ a, b < nd

(nd being the spatial dimension of the problem) and Cartesian unit vectors ea. Although

this immersed finite element method seemingly leads to the same type of linear system

as a conventional, geometry-conforming FEM, there are technical differences which will

be discussed in the following: the representation of the boundary or interface Ŵ, the

quadrature of elements traversed by this boundary, and the stabilisation of the basis for

Fig. 3 FE discretisation. Geometry-conforming (left) and immersed (right)
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such elements. The choice of the Nitsche parameters γ and β is analysed in the Appendix

A.

Above expressions hold analogously for interface problems. The main difference is that

the two fields u1 and u2 are approximated in fashion of (20) independently on the same

backgroundmesh of�� which encompasses both sub-domains�1 and�2. Consequently,

the elements which are traversed by the material interface approximate both fields since

the FE shape functions of the entire element are used even though the fields are only

defined up to the interface on their respective side of the domain. Using two sets of shape

functions on these elements allows us to represent a discontinuous derivative of the FE

solution and can thus be compared to the element enrichment of XFEM [11]. A good

illustration of this implementation detail can be found in [2].

Signed distance functions

The weak forms introduced in “Weak enforcement of boundary and interface conditions”

section allow us to work with a finite element discretisation which is independent of the

geometry, but still the volume and surface integrals,
∫

�
(·)d� and

∫

Ŵ
(·)dŴ, need geometry

information. To this end, we classify the elements (for instance the quadrilaterals in the

right picture of Fig. 3) by their locationwith respect to the physical domain�. If τI denotes

any such element, we have the three cases:

1 τI ∩ � = ∅, the element is completely outside of � and can be ignored,

2 τI ∩ � = τI , the element is completely inside and its treatment is straightforward as

in any geometry-conforming FEM,

3 τI ∩ Ŵ �= ∅, the element is traversed by the domain’s boundary and requires special

consideration.

Note that elements adjacent to the boundary of the embedding mesh (for instance the left

or bottom boundaries in the right picture of Fig. 3) technically fall into the third category,

but do not pose any difficulty apart from the identification of the element faces which lie

on that boundary.

For above classification it is sufficient to have an oriented representation of the surface

Ŵ = ∂�. Therefore, the surface is either closed or assumed to be extended beyond the

boundaries of ��. Here, we assume that Ŵ is either given analytically or is approximated

by means of a surface mesh composed of surface elements σJ ,

Ŵ ≈ Ŵh =
⋃

J

σJ . (23)

In order to avoid the tedious task of intersecting volume elements τI with surface elements

σJ , an implicit geometry representation is introduced. Therefore, the signed distance

function [26] is used which is defined as

distŴ(x) = s(x)min
y∈Ŵ

|x − y| , with s(x) =

⎧

⎨

⎩

1 if x ∈ �

−1 if x /∈ � .
(24)

In case of interface problems as introduced in “Material interfaces” section, the above

definition of s(x) refers to �1 and �2 instead of � and its complement �� \ �. If Ŵ is

represented by a mesh Ŵh, the signed distance function distŴh with respect to this mesh

is used instead. Moreover, only a piece-wise polynomial approximation of this function is

used
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disthŴ(x) =
∑

K

dKϕK (x) with dK = distŴ(xK ) , (25)

where ϕK are the nodal finite element shape functions (not necessarily the same as in the

approximation (20)) and the coefficients dK represent the value of the signed distance at

the finite element nodes xK .

The representation (23) can be of higher polynomial degree, given by NURBS patches

[1,14,27] or subdivision surfaces [28,29]. But the computationof the coefficientsdK in (25)

and the quadrature described below are non-trivial tasks if the σJ have a degree higher

than linear simplex elements (straight lines in two or flat triangles in three dimensions).

In that case, the computation of the distances dK requires the solution of nonlinear

equations, see, for instance, [30]. In the rest of this work, the σJ are always linear (nd − 1)-

simplex elements.Moreover, once only piece-wise linear elements are used for the surface

representation (23), the optimal convergence rate of any higher-order method is impeded

by this geometry approximation error, see [8].

Figure 4 shows a two-dimensional example where the boundary is composed of three

parts: Ŵ0 is the part of the boundary of � that coincides with the box boundary ∂�� and

does not require any special attention; Ŵ1 and Ŵ2 are separated parts which are immersed

in the background grid. For the computation of the distance function distŴ , it is convenient

to treat Ŵ1 and Ŵ2 separately as shown in the figure. The final distance function is then

composed as the minimal value of these distances,

distŴ(x) = min
(

distŴ1 (x), distŴ2 (x)
)

. (26)

Ω \ ΩΩ

Γ0 = ∂Ω ∩ ∂Ω

Γ1

Γ2

Fig. 4 Distance functions of a composite boundary. Geometric constellation (top left), distance functions of
the boundary parts Ŵ1 (top right) and Ŵ2 (bottom right), composite distance function distŴ (bottom left)
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See also [31] for arithmetic with distance functions. Figure 4 shows the iso-curves of

the individual distance functions distŴi as well as of the composite function distŴ . The

extension of this approach to a larger number of immersed surfaces is straightforward.

Once the function distŴ has been determined, the above classification of volume ele-

ments τI is carried out by means of the nodal values dK of the distance function: if all

dK of the element τI are strictly positive (negative), the element is inside (outside) of the

domain. If a change in sign of the dK occurs, τI is traversed by the immersed boundary Ŵ.

It remains to outline how the coefficients dK for a given surface are computed. In case of

an analytic surface representation by an implicit function, these coefficients are calculated

directly. In case of an immersed surface mesh, one needs to find the surface element σ ∗
K

which contains the point x∗
K closest to xK , see for instance [32] for such basic primitive

tests as the closest point on a triangle to a point.With the knowledge of the closest element

σ ∗
K , it can be decided if xK lies on the positive or the negative side of this element in order

to determine the sign s(xK ) as defined in (24). This decision is based on the premise that

the surface mesh is well oriented. Note that, when the closest point falls on an edge or

a vertex, ambiguities can arise for the decision if a point is inside or outside the surface

mesh [26], see the case shown in Fig. 5.

At the acute corner in the figure, the region of points whose closest point is the vertex B,

is delimited by the outer cone. For all points in this cone, σ1 and σ2 are possible choices as

closest surface element. The cone contains the region ‘a’ in which the points are all outside

with respect to both elements. The points in region ’b’ are outside with respect to one of

the possible closest surface elements and inside with respect to the other. Hence, for this

region the mentioned ambiguity can occur. One solution to this problem is to introduce

angle-weighted vertex normal vectors [26], but this requires extra data structures. Here

we choose the simpler approach shown in Fig. 5: the point xK has a larger distance to the

extension plane of σ2 than to the extension plane of σ1. This distance is given by the inner

product of the element normal vector and the distance vector between the considered

grid point and the closest surface point (here, B). Choosing the element with a larger value

of this distance resolves the ambiguity. The method is also used in three dimensions with

the only difference being a larger set of candidates as closest elements.

Finally, we consider the numerical complexity of the distance function computation. If

there are NŴ elements in the surface mesh and N� nodes in the volume mesh, a brute-

xK

σ1

σ2

B

A

C

b

a

b

Ω

Fig. 5 Signed distance computation in the region of an acute corner. The grid point xK has the vertex B as
closest point on the surface, but it lies on opposing sides with respect to the adjacent surface elements σ1

and σ2 ; based on the larger distance to the tangent planes of the surface elements σi , the element σ2 is
chosen to determine the outside position of the point xK
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force approach requiresNŴ ×N� closest point computations. In many cases, this number

can be substantially reduced by precomputing a bounding box [32] of the surface Ŵh

and assigning a default value for the dK of nodes outside of this box, but the essential

complexity remains of order O(NŴ × N�). Complexity reduction is possible by gener-

ation of a hierarchy of bounding boxes [32] or using so-called marching methods, see

e.g. [33].

Constructive solid geometry modelling

Now,we consider a different approach for integrating finite element analysis with geomet-

ric design, similar to the ideas presented in [34]. Specifically, we consider the construction

of a three-dimensional geometry by means of CSG, see, for instance, [35,36]. An example

of such a modelling process is given in Fig. 6, where one begins with a cube as a workpiece

and performs set operations with other geometric primitives until the desired geometry is

obtained. These operations are commonly union ∪, intersection ∩, subtraction\and the

set complement ()∁. Based onDeMorgan’s laws [36], it suffices to work with the canonical

operations intersection and complement, and represent the other two as compositions

thereof, more precisely A ∪ B = (A∁ ∩ B∁)∁ and A\B = A ∩ B∁.

The conventional finite element approach is to work through such a CSG pipeline,

export a geometry representation and use a mesh generation software to create a body-

fitted volume mesh for the numerical analysis. The direct modification for an immersed

finite elementmethod is to export a surface representation of the geometry and embed this

into the mesh by the methods described in “Immersed finite element method” section.

Here, a third way is suggested in which the set operations are directly applied to the

embedding (non-conforming) volume mesh. As outlined above, it suffice to provide the

complement and intersection operations only. The former is trivially achieved: the use of

a signed distance function generates an in- and an outside partition of themesh, reversing

these partitions gives the complement. For this reason, all that need be explained is the

intersection operation.

A simple two-dimensional example in Fig. 7 demonstrates the intersection operation:

first the intermediate domain �1 is given via the distance function of a straight line Ŵ1,

afterwards a second distance function to the line Ŵ2 yields the final domain � = {x ∈

�� : distŴ1 (x) > 0 and distŴ2 (x) > 0}. For sake of clarity, let us discuss the individual

steps in this picture. First the line Ŵ1 is embedded into the shown 3 × 3-grid which fills

out the square domain ��. The elements τi0 are strictly inside the intermediate domain

�1 = {x ∈ �� : distŴ1 (x) > 0} and form the set I1. The elements τi2 are strictly outside

and form the set O1. Now, the remaining elements form the set C1 and are triangulated

such that the embedded boundary is approximated by triangle edges. The squares are first

Fig. 6 Pipeline of a CSG process. Intersection of a cube with a sphere and removal of three intersecting
cylinders
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C = (C1 ∩ I2) ∪ (I1 ∩ C2) ∪ (C1 ∪ C2)

Fig. 7 Intersection process. Domain partitioning and element tessellation for a straight boundary Ŵ1 (left),
resulting constellation for intersection with another line Ŵ2 (middle); for comparison see the result of the
immersion based on the composite distance function (right)

subdivided into two triangles each and then every such triangle is intersected by means

of the nodal values of the signed distance function distŴ1 [37]. The resulting outcome is

the left picture in Fig. 7 where the red square-shaped marks indicate the location of the

intersection points.

In the second embedding step, the distance function distŴ2 is used which gives rise to

the element sets I2, O2 and C2. All elements which belong to the outside are directly

assigned to the complementary domain ��\�, that is O = O1 ∪ O2. On the other

hand, all elements of I1, which also belong to I2, are inside the final domain �, hence

I = I1 ∩ I2 = {τ20}. Finally, there are the intersection cases. Elements belonging toC1 and

I2 (τ21) keep their status and sub-division. Elements from I1 andC2 (τ10) are subject to the

same decomposition methods as C1. It remains to discuss the situation of the elements

which belong to C1 ∩ C2; the ones which are intersected by both boundaries, and in our

example of Fig. 7 this is the element τ11. In this case, simply the composing triangles are

intersected with Ŵ2 as if they were elements of their own. Proper categorisation of these

simplex shapes defines the final domain � and its complement ��\�, see the middle

picture of Fig. 7.

The advantage of this approach becomes clear when looking at the right picture of

Fig. 7. Shown is the result for the same target domain �, but first the composition of

the individual distance functions distŴi is computed according to expression (26) and

then the element intersections are constructed. Clearly, in the right picture the corner is

chamfered whereas in the above outlined approach this geometric feature is preserved.

This is the distinctive characteristic of the presented idea: by successively embedding the

geometry primitives into the mesh, the sharp features at the primitive intersections are

preserved. It is important to remark that the boundaries Ŵi have been represented exactly

in this example, but this is solely owed to the fact that they are straight lines. In the more

general situation of curved boundaries, they are again represented on the finite element

mesh by piece-wise linear simplex elements. But, even though these surrogate boundaries

do not exactly reproduce the given geometry, the here presented approach still allows to

represent corners or edges at the intersection locations of the original primitives which

lie inside of the finite elements.

The presented method for CSG modelling based on finite element meshes is straight-

forward to extent to three dimensions. In the plane case outlined so far, the rectangular
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elements are subdivided into two triangles which themselves are triangulated in order

to recover the implicit surface in the form of triangle edges. This approach is akin to a

two-dimensional version of marching cubes and in three dimensions we make use of a

similar technique. The used three-dimensional element shapes are either tetrahedrons

or hexahedrons. Figure 8 shows how a hexahedron is decomposed into six tetrahedrons

such that it remains to consider this shape only. Given a tetrahedron with values of the

signed distance function at its vertices we can classify the cases shown in the right part of

the figure. Based on linear interpolation along the edges the zeros of the distance function

are recovered and give rise to two volume tessellations τ−
I and τ+

I whose common faces

form the triangulated surface σI . Using these decompositions, the above outlined inter-

section operations of two geometry primitives can be carried out analogously in three

dimensions.

Alternative approaches for increasing the quality of implicit geometry representations

in the vicinity of sharp features (such as edges and corners) exist. In [38] the operations

of surface reconstruction by means of marching cubes and the distance function com-

putation are combined in order to generate a so-called directed distance field allowing

for a better resolution of surface features. On the other hand, enriched distance func-

tions are presented in [39] where additional edge and vertex descriptors augment the

distance geometry representation. Although both approaches are promising concepts in

the context of immersed finite element methods, they are not further considered in this

work.

We conclude this paragraph by noting that the here used tessellation techniques also

help to construct numerical integration schemes for the elements that are traversed by

the boundary or interface. The cut elements are general polytopes for which quadrature

rules are not easily obtained. There are many techniques that address this problem, such

as moment-fitting [40], surface-only integration [41], and adaptive decomposition of the

integration region [14,42]. But since we have a tessellation in simplex shapes already

available, we use composite Gauß type quadrature rules, see e.g., [11].

Numerical stability

Up to now, it has been shown how to derive an immersed finite element method for

boundary value and interface problems, see (9) and (19), and how to compute the matrix

coefficients of the linear system of equations. But the stable solution of this final system

of Eq. (21) remains to be discussed, especially in view of the method’s parameters γ (for

boundary value and interface problems) and β (for interface problems only).

−

−

+

−

−

+

+

−

−

+

+

+

τ−

I

τ+
I

σI

Fig. 8 Element subdivision. Decomposition of a hexahedron into six tetrahedrons (left) and the fundamental
cases of distance function values
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Sources of instability

As an illustrative example, consider a one-dimensional problem

− αu′′ = f x ∈ (0, xε)

u = 0 x = 0 (27)

αu′ = 0 or u = 0 x = xε

for the domain� = (0, xε) and a constantmaterial parameter α. The boundary conditions

are a prescribed value of u = 0 at the left end and either a zero derivative (homogeneous

Neumann) or a zero function value (homogeneous Dirichlet) at the right end. Let �� =

(0, 2h) be the embedding domain and two linear finite elements of size h are used for

the discretisation, see Fig. 9. First, we consider the case with a homogeneous Neumann

boundary condition at the right end. The left-side boundary condition is going to be

incorporated essentially and the system matrix becomes

KN =
α

h

(

1 + ε − ε

−ε ε

)

. (28)

Obviously, for ε → 1 this matrix recovers the standard finite element matrix for this

problem with its known properties. The eigenvalues of this matrix have the values

λ1,2 =
α

2h

[

1 + 2ε ±
√

4ε2 + 1
]

. (29)

Clearly, the smaller eigevalue goes to zero for the limit ε → 0, that is the case of a vanishing

cut element. As expected, the matrix KN is ill-conditioned for this limit.

We now turn to the Dirichlet case and evaluate the left-hand-side of expression (7) for

this simple test problem. The resulting stiffness matrix has the form (replacing the surface

integrals by point evaluation at xε)

h

α
KD =

(

1 + ε − ε

−ε ε

)

−

(

ε − 1 1 − ε

−ε ε

)

−

(

ε − 1 − ε

1 − ε ε

)

+ γ
h

α

(

(1 − ε)2 ε(1 − ε)

ε(1 − ε) ε2

)

. (30)

Note that the expression for the system matrix has been multiplied by the factor h
α
.

The expressions of the eigenvalues of KD are not easily determined, but the condition

det(KD) > 0 is more workable. Note that since the trace of the matrix is positive and

equals λ1+λ2, the condition of a positive determinant (recall det(KD) = λ1λ2) is sufficient

for positive definiteness. One gets

det(KD) =
1

h2

(

εγ h

α
− 1

)

(1 + ε) > 0 ⇒ γ >
α

hε
. (31)

0 h 2h(1+ε)h

x0 x1 x2xε

ϕ0 ϕ1 ϕ2

Fig. 9 One-dimensional test example. Two linear finite elements with the right boundary inside the second
element
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Fulfilment of this condition guarantees that the matrix is positive definite for a fixedmesh

size h, but unfortunately it implies γ → ∞ for ε → 0. The use of a very large value for γ

can lead to undesired numerical problems.

In the case of the interface problems and formulation (19), the situation is slightly better.

The extra parameter β can be adjusted in a smart way such that a finite value of γ is always

achievable. Such a choice is proposed in [43] where β depends on thematerial parameters

of the subdomains and the sizes of the cut elements, |τI ∩ �i|. Using this approach, the

system matrix has always positive eigenvalues (for the considered problem class) with a

finite value of γ . Nevertheless, the minimal eigenvalue goes to zero for vanishing sizes of

the cut elements. Even though the parameter choices by [43] show a good performance

in terms of the quality of the numerical results, the matrix condition number still cannot

be bounded for a fixed mesh and arbitrary interface locations.

Stabilisation

The above indicated sources of numerical instability all stem from the same situation that

for some degrees of freedom, the intersection of the support of their associated shape

functions with the physical domain becomes very small,

sI = | supp(ϕI ) ∩ �| ≪ h , (32)

where supp(ϕI ) denotes the support of shape function ϕI and h is a measure of the mesh

size on ��. In all above cases, Neumann, Dirichlet, or interface problem, this leads to

severe ill-conditioning of the final system matrix. To solve this problem, the following

approaches have been proposed, among others,

S-1 Discarding all degrees of freedom with support intersection below a certain thresh-

old, sI < εh;

S-2 Adding a face-based stabilisation term [16];

S-3 Constraining degenerate degrees of freedom [6,12].

As reported, among others, in [12], the approach S-1 leads to a loss of approximation

order. Although appealing due to its simplicity, this drawback can be prohibitive in some

applications. An ad-hoc approach to remedy the stability problem is to locally adapt the

finite element mesh in order to avoid the problem of too small values of sI . Even though

simple at first sight, a robust realisation of this idea in three dimensions is not straight-

forward and mesh entanglement needs to be avoided. The support size sI is increased if

specific nodes are moved away from the surface Ŵ, but there is an interesting alternative

in which the points are snapped to the surface thereby generating a conforming mesh,

see [44] for two-dimensional analysis of this idea.

Another approach, S-2, is proposed in [16] where the jump of the function gradients

across certain element faces is added to the weak form in order to guarantee stability

of the method. Other than the result (31), the system matrix stays well-conditioned for

small values of γ in the limit ε → 0. This approach requires to evaluate surface integrals

over interior mesh faces, a technicality which requires additional data structures in many

codes, but does not addmuch to the overall difficulty of implementing an immersed finite

element method. Nevertheless there is a drawback with this approach, since it introduces

another weighting factor whose adjustment is not straightforward: for too small values of
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this factor the stabilisation effect disappears and for too large values themethod’s accuracy

is affected [16].

Finally, we consider S-3 which relies on the concept of coupling degrees of freedomwith

too small supports to other degrees of freedom from the interior of the domain. In order

to outline this approach, the degrees of freedom shall first be classified according to the

size sI of the intersection of their support with the domain, as defined in (32). In “Finite

element discretisation” section, the set S has been introduced which contains all indices

of shape functions for which sI is larger than zero. Introducing a threshold ŝ, the set S is

now decomposed into the disjoint index sets, A and B with definition

A = {I ∈ S : sI ≥ ŝ} and B = {I ∈ S : sI < ŝ} . (33)

The threshold ŝ used in this classification has to depend on themesh size h and should not

be larger than one typical element size. The basic idea of Höllig et al. [12] is to constrain

degrees of freedom from the set B to suitably chosen degrees of freedom from A(J ), a

subset of A,

∀J ∈ B : uJ =
∑

I∈A(J )⊂A

cIJuI (34)

where the coefficients cIJ will be discussed further below. These constraints give rise to

the modified shape function basis

uh(x) =
∑

I∈A

uIϕI (x) +
∑

J∈B

uJϕJ (x)

=
∑

I∈A

uIϕI (x) +
∑

J∈B

⎛

⎝

∑

K∈A(J )

cKJuK

⎞

⎠ϕJ (x)

=
∑

I∈A

uI

⎛

⎝ϕI (x) +
∑

J∈B(I)

cIJϕJ (x)

⎞

⎠ =
∑

I∈A

uI ϕ̃I (x) . (35)

In this reordering of the finite element approximation (20) a new set B(I) is used which

contains all indices J from B, such that I ∈ A(J ). For the implementation of this sta-

bilisation method, it is sufficient to work with expression (34), but the result of (35)

demonstrates that effectively a modified shape function basis {ϕ̃I }I∈A is generated and

illustrates the notion of extended splines as given in [12]. Note also that B(I) = ∅ for all

degrees of freedom that are not in the vicinity of the boundary and in that case ϕ̃I = ϕI ,

so that most shape functions are not affected. Since the support size of the basis functions

ϕ̃I is larger, the bandwidth increases for these degrees of freedom. Therefore, it has to

be remarked that only degrees of freedom in the vicinity of the boundary are affected.

Moreover, the storage requirement of the final system matrix is of course not larger than

it would be for the original (unstable) basis functions ϕI .

There are two open questions when using this approach: (i) the choice of the index set

A(J ) associated to J and (ii) the values of the constraint weights cIJ . The origin of this

approach, as introduced in [12], is to stabilise b-spline discretisations. In this particular

situation, the underlying mesh is logically Cartesian and an explicit expression of the

coefficients cIJ can be given as a function of the multi-indices used to label that grid.

See also [6] for a more intuitive interpretation of the arising extrapolation of Lagrange

polynomials and its efficient implementation. The aim of this stabilisation procedure is to

maintain the convergence order of the method and therefore to not lose the polynomial
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approximation quality of the approximation (20) due to the constraints (34). In other

words, the modified basis functions ϕ̃I introduced in (35) have to represent the same

polynomials as the ϕI themselves.

In order to outline the procedure for obtaining A(J ) and the corresponding coefficients

cIJ , consider the situation depicted in Fig. 10. The degree of freedom uJ , J ∈ B, resides

at node xJ and the size of the intersection of the support (hatched in the picture) with

the domain � is below the threshold ŝ. Searching through the elements in the vicinity of

xJ , one finds the element τK (J ) whose connected degrees of freedom all belong to A. Any

element entirely inside the domain� fulfils this condition. Normally, many such elements

can be found and the closest is selected, where the distance between the element middle

point and xJ is a possible way to measure the proximity. The selected element τK (J ) gives

rise to the index set A(J ) ⊂ A associated with uJ . Formally, we can write

A(J ) = {I ∈ A : supp(ϕI ) ∩ τK (J ) �= ∅} . (36)

Once this set is defined, the weights cIJ are calculated by evaluation of the basis of τK (J ) at

the node xI ,

∀I ∈ A(J ) : cIJ = ϕI (xJ ). (37)

This choice of weights is an extension of the idea given in [15] where the weights are

defined for non-uniform b-splines as dual functionals applied to the polynomials in a

chosen grid element.Here thepoint evaluationof (37) is the correspondingdual functional

of Lagrange polynomials [8]. Note that xJ /∈ τK (J ) and thus cIJ represents an extrapolation

of the polynomial basis spanned in τK (J ) to the outside point xJ , see also Fig. 10. The

stabilisation procedure can be summarised as follows

1 categorise A and B using a threshold ŝ, see (32) and (33)

2 for all J ∈ B

• find τK (J ) with all degrees of freedom from A that is close to xJ ,

• define the constraint coefficients as cIJ = ϕI (xJ ) for all I ∈ A(J )

3 assemble the final system of equations using the constraint equations (34) applied to

test and trial spaces

4 after solving the global system, calculate the constrained degree of freedom uJ with

J ∈ B according to (34).

Γ

Ω

xJτK(J)

Fig. 10 Cut-element stabilisation on a triangular mesh. Node xJ is the location a degree of freedom uJ ,
J ∈ B and the element τK (J) is used for constraining uJ
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With respect to the implementation a few remarks have to be made. The code has to

be able to search the elements in the neighbourhood of a given node. For instance, the

element τK (J ) in Fig. 10 does not lie in the support of ϕJ but in the ring of elements around

that support. Theoretically, for very extreme shapes of Ŵ the nearest τK (J ) to xJ could lie

far away, but here we assume that the mesh is fine enough such that there is always an

element nearby. Cusp-shaped domains are excluded from the onset. In addition, one has

to evaluate the shape functions of τK (J ) at xJ and this requires to find first the reference

coordinate ξJ (outside of the reference element) such that the geometry representation of

the chosen element represents xJ when evaluated at this coordinate, that is xK (J )(ξJ ) = xJ .

Here we restrict ourselves to meshes in which all elements are an affine transformation

of the reference element. Higher-order geometry representations of the volume mesh

are excluded, but they are also not necessary since the mesh, by design of the immersed

method, need not conform to the geometry of �.

Numerical examples

At last, a few numerical examples are presented in order to study and demonstrate the per-

formance of the immersed finite elementmethod as presented here. Unless indicated oth-

erwise, the spatial discretisation of all problems is carried out with linear finite elements.

As shown in the appendix, the Nitsche parameter is chosen as γ = γ0
α
h
with the mesh

widthh, the representativematerial parameterα and adimensionless scalar γ0. Thedefault

choices for this parameter is γ0 = 10 and for interface problems the additional parameter

is chosen as β = 0.5. The threshold ŝ used to distinguish between the degree of freedom

sets A and B in the stabilisation of “Stabilisation” section is set to the size of one element.

Convergence and robustness analysis

At first, the method’s performance under variation of various parameters is assessed.

For this purpose, an essentially one-dimensional Poisson problem is used as depicted in

Fig. 11, left, with a forcing function f (x) = α2 sin(αx1) and α = 3π
2xδ

. The resulting exact

solution is then u(x) = sin(αx1). The signed distance function is distŴ(x) = xδ − x1 and

the boundary is represented exactly. At first, this problem is analysed using a structured

mesh as shown in the figure. Figure 11, on the right, shows the analytic solution (solid
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xδ

x1 = 1

∂2u = 0

∂2u = 0

−∂11u = f(x1)
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Fig. 11 One-dimensional problem. Setup (left) and a comparison of exact with approximate solution and its
derivative for xδ = 6

7 (right)
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black line) along the x1-axis and its derivative (dashed line) for a boundary location at

xδ = 6
7 . The approximations uh and ∂1u

h for a mesh with 5 × 5 elements (red) and a

10× 10 element (blue) are also displayed. One can see that the numerical approximation

uh coincides with the analytic solution at the finite element nodes and, moreover, at the

boundary location at xδ .

The convergence of the method is shown in the left of Fig. 12, where the numerical

errors in L2-norm and H1-seminorm are shown for an approximation with linear and a

quadratic Lagrange polynomials. These results exhibit the expected optimal convergence

rates [8]. In this graph, the boundary location is held fixed at xδ = 6
7 and the mesh width

h is decreased. On the other hand, the right side of Fig. 12 shows the smallest and largest

eigenvalues of the system matrix in dependence of the boundary location for a non-

stabilised implementation and for the stabilisation presented in “Stabilisation” section.

Here, a fixed 40 × 40 mesh is used and the location of the boundary is at xδ = (34 + ε)h

with the parameter 0 ≤ ε ≤ 1. A Neumann boundary condition at xδ is considered and,

hence, one has always a(uh, uh) > 0 and λmin > 0. One can clearly see that λmin ∈ O(ε) for

small ε and for the non-stabilised case (note that the figure shows in fact the inverse 1
λmin

).

Clearly, the matrix condition number grows without bound. The stabilisation as outlined

in “Stabilisation” section, however, guarantees a constant value of λmin well above zero.

The largest eigenvalues coincide for both cases.

Now we turn to the problem with a Dirichlet boundary condition at xδ . Using the same

variation of the location of this boundary as above, Fig. 13 shows the smallest eigenvalue

λmin for the stabilised method and for the non-stabilised method for various values of

γ0 (recall that γ =
γ0
h
). One can see that without stabilisation the considered minimal

eigenvalue changes sign for decreasing values of ε rendering the system matrix indefinite

(and singular when the zero is crossed). In order to force λmin > 0 one can increase

the value of γ0, but for ε → 0 this value grows without bound and one gets effectively

λmax → ∞ which likewise deteriorates the condition number of the matrix, as already

discussed in “Sources of instability” section.

Next, the stabilisation technique is applied to an unstructuredmesh as shown in Fig. 14.

Note that this case is not covered by the original idea of this technique as given by [12]

which was only designed for b-spline basis functions on structured meshes. The left of

Fig. 15 shows the convergence of the stabilised method for linear triangle elements and
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Fig. 12 Neumann problem. Convergence for xδ = 6
7 (left) and smallest and largest matrix eigenvalues for a

fixed mesh width h = 0.025 and various boundary locations xδ = (34 + ε)h
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Fig. 13 Dirichlet problem. Smallest eigenvalue for various boundary locations (h = 0.025 and
xδ = (34 + ε)h)
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Fig. 14 Unstructured mesh. Varying location of the right boundary at xδ

a fixed boundary location. Finally, the location of the boundary is varied again and the

condition number for a Neumann problem is considered in the right of Fig. 15. Whereas

in the non-stabilised case this value shows a very erratic behaviour with large peaks, the

condition number for the stabilised method is almost constant at a low value.

Now, an interface problem is considered. Figure 16 shows the computational domain

that is composed of a circular domain �1 embedded in a square domain �2. On this

10−2 10−1

10−4

10−3

10−2

10−1

100

O(h)

O(h2)

element size h

ap
p
ro

x
im

at
io

n
er

ro
r

L2

H1

0.8 0.82 0.84 0.86 0.88 0.9

103

104

105

boundary location xδ

co
n
d
it

io
n

n
u
m

b
er

|λ
m

a
x
/λ

m
i
n
|

stabilised
not stabilised

Fig. 15 Results for unstructured mesh. Convergence of the Neumann problem on the unstructured mesh
for fixed xδ = 6

7 (left) and the matrix condition number for various boundary locations 0.8 ≤ xδ ≤ 0.9 (right)
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Fig. 16 Interface problem. Computational setup of a square with a circular inclusion (left), convergence
behaviour for different interface weights β (right); note that these curves are not distinguishable

domain, the Poisson problem −αi�u = 4 with material parameters α1 = 1 and α2 =

1000 is solved, subject to Dirichlet boundary conditions on the outer boundary ∂�2. The

geometric parameters are chosen as R = 0.75 and L = 2, respectively. This problem

together with its analytic solution is taken from [2]. In the right graph of Fig. 16 the

convergence behaviour is shown for different values of the interface weight factor β . For

the three considered valuesβ = 0, 0.5 and 1, the curves are indistinguishable. Also optimal

convergence rates are achieved for mesh sizes smaller than h ≈ 0.02.

At last, we consider the influence of the geometry representation. As outlined in “Con-

structive solid geometry modelling” section, we have to approaches available: the use of

a signed distance function representing the entire embedded surface and the successive

embedding of the geometry primitives that form the final model. For simplicity, consider

a square that coincides on two of its edges with the mesh boundary whereas the other two

are represented implicitly. Figure 17 shows the effect of the introduced two approaches in

the left and middle images, respectively. Clearly, the upper right corner is chamfered off

in the first approach, but represented exactly in the second. As a numerical problem we

have chosen −�u = 1 on a unit square subject to u = 0 on the lower and left boundaries

and ∂u/∂n = 0 on the other two boundaries. An analytic solution to this problem is
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Fig. 17 Influence of geometry representation. Implicit representations of a square (left : fully implicit,middle:
mesh-based CSG) together with the contour colours of the solution to a Poisson equation, convergence of L2
error (right)
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available, for instance in [45] in the context of Poiseuille flow in a rectangular channel.

The right graph in Fig. 17 shows the convergence rates for the two types of geometry

modelling. Clearly, optimal convergence rates are obtained for both cases. Nevertheless

the exact representation of the corner leads to a much smoother outcome with lower

approximation errors for coarse mesh sizes.

Mesh-embedded CSG

Here the domain as obtained by the CSG process of Fig. 6 is reconsidered, see also the left

of Fig. 18. The embeddingdomain is�� = (0, 1)3 and equippedwith a uniformhexahedral

mesh. Following the mesh-based Boolean operations as introduced in “Constructive solid

geometry modelling” section, the immersed geometry is obtained by

1 intersection with a sphere of radius 0.65 and centred at (0.5, 0.5, 0.5), and

2 successive subtraction of cylinders around the same centre with radius 0.3 and in the

directions of the xi-coordinate axes.

Thus the domain � is obtained as shown in Fig. 18 and we assume that it is occupied by a

hyperelastic solid. In a first analysis, linearised elasticity is assumed and the convergence

is studied by using fundamental solution of elasticityU (x, y) (see, for instance, [46]) as an

imposed analytic solution with a source point y located outside of the domain. Therefore,

on the bottom (x3 = 0) the boundary displacements ū(x) = U (x, y) are prescribed and

the remaining boundaries are subject to the Neumann condition t̄ = t(U )(x, y). For

simplicity, the material parameters are chosen as λ = 28.85 and μ = 19.23. The right of

Fig. 18 shows the convergence of the displacement solution and of the computed volume

and surface area of the embedded domain. Quadratic convergence is observed for all

considered quantities.

Next, a compressible Neo-Hookean material model [22,23] with large deformations is

used, based on the strain energy density

W (F ) =
λ

2
(log J )2 − μ log J +

μ

2
(trC − 3) , J = det F and C = F⊤F , (38)

with the deformation gradient F = I + Grad u. The material parameters are the same

as in the linearised case above. For the example, the bottom boundary is held fixed and a
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Fig. 18 CSG modelling. Embedded domain (left) and convergence behaviour of the displacement u, the
domain’s volume V and surface area A
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twisting traction field is applied to the top surface with value t̄ = 10(x2 − 0.5, 0.5− x1, 0).

The load is applied in 4 steps and within each step a Newton method is used to obtain

the equilibrium state. The deformed geometry for these four load steps is shown in the

images of Fig. 19 for a 403 grid of linear hexahedron elements.

Composite material

As a last example, the elastic deformation of a fibre-reinforced block of elastic material is

considered. A block of dimension L × 2
5L × L is reinforced by inclined fibres placed with

a main axis separation of L
3 . The fibres are represented by cylinders with radius L

15 . The

three-dimensional setup is shown in the left of Fig. 20 and on the right a two-dimensional

view of the problem is depicted. The bottom surface is held fixed and the top surface

is constrained in normal direction. The left and right surfaces are subject to a constant

traction field t̄ in normal direction. The discretisation is carried out by a fixed mesh of

dimension 50× 20× 50 as indicated on the back faces of the three-dimensional view. For

comparison, we monitor the average horizontal displacement

U1 =
1

|�|

∫

�

u1(x)d� (39)

throughout the composite body for a variety of fibre angles −35◦ ≤ α ≤ 35◦. Both

domains �1 and �2 have the hyperelastic material law according to the energy (38) and

Fig. 19 Large elastic deformation. Load steps 1–4; the surface is coloured by the stress component S33

2/5
L t̄ t̄

α

Ω2 Ω1

L

L
L/3R

u · n = 0

u = 0

Fig. 20 Fibre-reinforced material. Three-dimensional view (left) and front view (right); in this drawing
α = 10◦
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Fig. 21 Computational analysis of fibre-reinforced material. Deformed geometry with fibres coloured by S33
for α = −35◦ (top left), α = 0◦ (top right), and α = +35◦ (bottom left); average horizontal displacement U1
for various fibre angles (bottom right)

the computations are carried out with large deformations. For comparison, a linearised

situation is also considered.

The model parameters are chosen as L = 1 and t̄ = (1, 0, 0). The materials are repre-

sented by the Lamé parameters λ1 = 5.769, μ1 = 3.846, λ2 = 10λ1 and μ2 = 10μ1. Fig-

ure 21 shows the deformed configuration for fibre anglesα = −35◦,α = 0◦ andα = +35◦.

In addition, the analysis of the average horizontal displacement U1 as a function of the

considered fibre angles α is shown for the Neo-Hooke material and linearised elasticity.

Although there are similarities between the large-deformation analysis and the linearised

version, striking differences can be observed too. Most of all, the linear variant is com-

pletely symmetric with respect to the sign of α and has its largest value for α = 0◦. In the

large-deformationvariant, on theotherhand the result is a largerdeformation for thenega-

tive fibre angles and smaller for positive angles.Overall, the bodybehaves less flexibly in the

nonlinear analysis, butwith a strongbias to an increasedflexibility for negative fibre angles.

Conclusions

Immersed finite element methods, that do not rely on a body-fitted mesh, are a promising

alternative to conventional FEM for many applications. Especially in the case of complex

three-dimensional geometries, moving interfaces, or design optimisation such methods
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allow for more flexible geometry processing and remove the repeated interaction with

mesh generation software. Here, we present an immersed FEM for the problem class

of nonlinear elasticity, based on a weak incorporation of Dirichlet boundary conditions

and interface conditions with Nitsche’s method, an implicit geometry representation and

accurate integration of the arising cut elements. We place emphasis on the implementa-

tion details such as the robust computation of the signed distance function and quadrature

by means of tessellation. A common pitfall of non-body-fitted FEM, the loss of numerical

stability in situations with degenerate function support, is analysed and we provide a sta-

bilisation technique that is robustwithout affecting the convergence behaviour.Moreover,

the choice of the parameters in the context of Nitsche’s method are thoroughly discussed.

We demonstrate a way to incorporate sharp features such as edges and vertices in our

method by means of successively embedding the geometry primitives into the analysis

mesh in a similar way as in constructive solid geometry modelling. Based on this idea,

geometry modelling is directly integrated in the finite element analysis and there is no

need for a mesh generation tool. The presented applications emphasise the potential of

this approach,where large deformation analyses are carried out basedon a trivialCartesian

background mesh.

A present shortcoming of the introduced approach is the restriction to linear approx-

imation orders. Although the field approximation used in this FEM can be of arbitrary

order, a gain in convergence order would be impeded by the geometry representation

based on linear facets. In principle, the use of more accurate signed distance functions

and the subsequent adaptation on the quadrature level to account for embedded higher-

order surface representations is feasible.

Finally, we note that the presented method is ideally suited for the incorporation of h-

adaptivity. A combination of this immersed FEMwith hierarchical refinement techniques

as shown, for instance, in [47] would render a powerful analysis toolbox, which yields

accurate numerical predictions based only on the input of geometry primitives.
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Appendix A: method parameters γ and β

In the following, estimates for the parameters γ (Penaltyweighting parameter first appear-

ing in (8)) and β (interface weighting parameter first appearing in (13)) are derived. These

parameters onlymake sense with the Finite Element discretisation as the final goal.With a

slight abuse of notation, the functions used in the following have to be understood as dis-

crete FE solutions, but for simplicity the superscripts, for instanceofuh, havebeenomitted.
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Dirichlet boundary conditions

We develop an estimate for the parameter γ appearing in the linearised weighted residual

equation (9). Thematerial behaviour is assumed to be such that Da(u, v)[�u] is an elliptic

bilinear form. The aim is to show thatA(u;w,w) > 0 for anyw �= 0, where u is the current

displacement solution. This gives

A(u;w,w) = Da(u,w)[w] − 2

∫

ŴD

Dt(u)[w] · wdŴ + γ

∫

ŴD

w · wdŴ

≥ Da(u,w)[w] − 2‖Dt(u)[w]‖ŴD‖w‖ŴD + γ ‖w‖2ŴD

≥ Da(u,w)[w] − 2C
√

Da(u,w)[w]‖w‖ŴD + γ ‖w‖2ŴD

=
(

√

Da(u,w)[w] − C‖w‖ŴD

)2
+ (γ − C2)‖w‖2ŴD

. (40)

Here, ‖w‖ŴD is the L2-norm over the Dirichlet boundary ŴD. The Cauchy-Schwarz

inequality has been used from the first to the second line and, most importantly, the

third line is based on the inverse inequality

C2Da(u,w)[w] ≥ ‖Dt(u)[w]‖2ŴD
. (41)

This type of estimate is also presented in [3] for the case of Poisson’s equation. Knowledge

of the constant C gives rise to the choice γ > C2 which renders the last line in (40)

positive. Inserting the finite element trial functions (20) into (41) leads to the condition

C2Da(u, eaϕI )[ebϕJ ] ≥

∫

ŴD

Dt(u)[eaϕI ] · Dt(u)[ebϕJ ]dŴ (42)

for all coordinate directions ea, 0 ≤ a < nd , and all shape functions ϕI . Obviously, this

condition is only non-trivial if the supports of ϕI and ϕJ overlap each other and intersect

with the Dirichlet boundary ŴD. Therefore, we use the following abbreviations for these

domain and boundary intersections

�IJ = � ∩ (supp(ϕI ) ∩ supp(ϕJ )) and ŴIJ = ŴD ∩ (supp(ϕI ) ∩ supp(ϕJ )). (43)

The left-hand side of (42) can be re-written as

Da(u, eaϕI )[ebϕJ ] =

∫

�IJ

Grad(ebϕJ ) : Ĉ(u) : Grad(eaϕI )d� , (44)

and the right-hand side becomes
∫

ŴIJ

[(

Ĉ(u) : Grad(eaϕI )
)

n
]

·
[(

Ĉ(u) : Grad(ebϕJ )
)

n
]

dŴ

=

∫

ŴIJ

(

Ĉ(u) : Grad(eaϕI )
)

(n ⊗ n) :
(

Ĉ(u) : Grad(ebϕJ )
)⊤

dŴ

≤

∫

ŴIJ

(

Ĉ(u) : Grad(eaϕI )
)

:
(

Ĉ(u) : Grad(ebϕJ )
)

dŴ . (45)

Abbreviating the integrands in (44) and (45) with f �
aIbJ

and f Ŵ
aIbJ

, we obtain for the inverse

inequality

C2

∫

�IJ

f �
aIbJd� ≥

∫

ŴIJ

f Ŵ
aIbJdŴ . (46)

Assuming continuity of the integrands, the mean value theorem of integration states that

two points ξ ∈ �IJ and η ∈ ŴIJ exist such that the estimate becomes

C2 ≥
f Ŵ
aIbJ

(η)

f �
aIbJ

(ξ)

|ŴIJ |

|�IJ |
. (47)
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Without assumptions on the shape functions ϕI and the material behaviour, we cannot

further reduce the ratio of the evaluated integrands. Nevertheless, if α denotes a charac-

teristic material behaviour (for instance the bulk modulus), it is clear from (44) and (45)

that this ratio scales like α2

α
= α. Here, we focus on controlling the second part of the

right hand side of the estimate (47). Using a standard finite element basis, there are con-

stellations in which �IJ → 0, whereas ŴIJ does not decrease: see, for instance the sliver

test case in [16].

Employing the proposed stabilisation technique from “Stabilisation” section, where

critical shape functions are essentially joined with neighbouring ones that have a non-

degenerate support, the above geometric ratio can be safely estimated as

|ŴIJ |

|�IJ |
≈

hnd−1

hnd
=

1

h
, (48)

because the support sizes of the stabilised basis functions ϕ̃I never fall below the stabil-

isation threshold ŝ which is of order hnd . In conclusion, we can state that there exists a

constant γ0 independent of the material and the mesh size h, such that

γ = γ0
α

h
> C2 (49)

and, in turn, A(u;w,w) > 0, see estimate (40).

Interface conditions

Next, we assess the choice of parameters in the linearised weighted residual equation (19)

for the interface problems. To this end, the steps of (40) are repeated in an analogous

manner with the function w = (w1,w2) and yield the estimate

A(u;w,w)

≥
(

√

Da1(u1,w1)[w1] + Da2(u2,w2)[w2] − D‖�w�‖Ŵ

)2
+ (γ − D2)‖�w�‖2Ŵ ,

(50)

which is positive for wi �= 0 and γ > D2. Here, D is the constant of the inverse estimate

D2 (Da1(u1,w1)[w1] + Da2(u2,w2)[w2])

≥

∫

Ŵ

{

βDt(u1)[w1] + (1 − β)Dt(u2)[w2]
}2

dŴ . (51)

Using the “Peter-Paul inequality”with some δ > 0 (that is, the estimate 2ab ≤ δa2+δ−1b2)

one gets

D2 (Da1(u1,w1)[w1] + Da2(u2,w2)[w2])

≥ (1 + δ)β2

∫

Ŵ

(Dt(u1)[w1])
2dŴ + (1 + δ−1)(1 − β)2

∫

Ŵ

(Dt(u1)[w1])
2dŴ . (52)

LetCi denote the constant of (41) for the subdomain�i, choose δ = ((1−β)2C2
2 )/(β

2C2
1 ),

and insert the inverse inequality (41) into the last expression in order to get

D2 ≥ β2C2
1 + (1 − β)2C2

2 . (53)

Based on the discussion abovewe know that the stabilisation technique given in “Stabilisa-

tion” section keeps the values ofCi bounded: thereforeD according to (53) iswell-behaved,

independent of the choice of 0 ≤ β ≤ 1. Nevertheless, in [43] a parameter choice for β

is presented which keeps the value of D bounded even for a non-stabilised finite element

basis. Their choice is, adapted to the notation used here, β = C−1
1 /(C−1

1 + C−1
2 ) and this
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value controls nicely the right-hand-side of expression (53) for unbounded values of Ci

(note that in case of geometric constellations for which C1 is large the counterpart C2 is

small, and vice versa). But it has to be remarked that in certain types of applications (e.g.

fluid-structure interaction [48]) it is convenient to freely choose the parameter β without

stability restrictions. Moreover, this special choice of β maintains A(u;w,w) > 0 for a

finite value of γ , but does not prevent unbounded values of the condition number of the

system matrix. With the here presented stabilisation technique, the choice of β does not

affect stability and γ = γ0(α1+α2)/h provides a safe choice for the characteristic material

parameters αi.
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