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The water loss detection and location problem has received great attention in recent years. In particular, data-driven methods
have shown very promising results mainly because they can deal with uncertain data and the variability of models better
than model-based methods. The main contribution of this work is an unsupervised approach to leak detection and location
in water distribution networks. This approach is based on a zone division of the network, and it only requires data from
a normal operation scenario of the pipe network. The proposition combines a periodic transformation and a data vector
extension together with principal component analysis of leak detection. A reconstruction-based contribution index is used
for determining the leak zone location. The Hanoi distribution network is employed as the case study for illustrating the
feasibility of the proposal. Single leaks are emulated with varying outflow magnitudes at all nodes that represent less than
2.5% of the total demand of the network and between 3% and 25% of the node’s demand. All leaks can be detected within
the time interval of a day, and the average classification rate obtained is 85.28% by using only data from three pressure
sensors.
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1. Introduction

Water resources are one of the most important assets in
modern society. Water distribution networks (WDNs)
deliver drinking water to different types of consumers
all around the world (Łangowski and Brdys, 2017).
WDNs are non-linear dynamic systems formed by supply
systems, pipe networks and water control elements and
are governed by main physical laws, a system layout and
consumer demand.

As pipe networks degrade because of system ageing
and other phenomena, distribution systems experience
different kind of faults. Among them, damage to
the network infrastructure provokes pipe bursts and
leaks that cause water losses with severe economic
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and environmental consequences to the water companies
(Colombo and Kamey, 2002). Service disruptions
represent a risk to consumer health because of the possible
water scarcity. Moreover, water losses have a negative
impact on the water companies’ operational performance,
customer service and reputation (Romano et al., 2013).

Water loss detection and location strategies are
usually based on inference methods, which build models
to represent the behavior of district metered areas (DMAs)
by using measurement data from permanently installed
sensors. These tools are cost-effective, noninvasive and
do not require a survey of the whole DMA by trained
personnel (Romano et al., 2010). The basic idea behind
inference-based fault detection and isolation is to make
a decision about the DMA behavior by comparing the
measurements with the model output signals. Inference
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methods can be divided into two types: analytic and
data-driven.

Analytic approaches (often referred to as
model-based) use fault detection and isolation (FDI)
methods by developing an analytic model of the DMA
based on the main physical laws describing its operation.
The identification of an analytical model is not an easy
task for real DMAs because of the amount of parameters,
constraints and uncertainties involved.

Data-driven approaches adopt a pattern recognition
philosophy by assuming that the faults affect some
observable system variables and that historical data are
available. These methods have found great applicability
in real-life DMAs mainly because they do not need
detailed knowledge about the pipe network parameters
or system layout (Laucelli et al., 2016). Furthermore,
in recent years an increasing amount of historical data
from WDNs is available given the widespread use of
modern instrumentation together with supervisory control
and data acquisition (SCADA) systems. Hence, in the
last 10 years various data-driven FDI strategies have
been proposed to cope with the water loss detection and
location.

Neural networks were proposed for water loss
detection in DMAs. Self-organizing maps, feedforward
multilayer perceptrons and binary associative neural
networks were used for leak detection (Aksela et al., 2009;
Mounce et al., 2014). Statistical and signal analysis tools
were developed for the monitoring of DMAs. Principal
component analysis, evolutionary polynomial regression
and clustering based outlier analysis were used for this
purpose (Nowicki et al., 2012; Palau et al., 2012; Laucelli
et al., 2016; Wu et al., 2016). These unsupervised
approaches do not allow the leak location.

Recently, a mixed model-based/data-based approach
has been proposed for water loss detection and location
(Wachla et al., 2015; Soldevila et al., 2016; 2017; Zhang
et al., 2016; Moczulski et al. , 2016). These works suggest
the use of a hydraulic model of the DMA for generating
data sets which are then used for the calibration of a
pattern recognition method. The task of this method is
on-line fault detection and location. These supervised
approaches require historical sets of normal and fault data
for performing the leak detection and location tasks.

Zhang et al. (2016) and Moczulski et al. (2016)
consider the fault location issue as a fault zone location
problem. The zone can be defined as a network subarea
formed by a set of physically interconnected nodes such
that a DMA is divided into different nonoverlapping
zones. Thus, once a fault has been detected, the fault
zone location problem is formulated as the problem of
identifying the zone where a fault is occurring, i.e., a fault
is geographically isolated from the rest of network zones.
In a data-driven framework, the data sets obtained by
simulating the network with specific operation conditions

and a single fault (leakage) with a specific magnitude,
which can occur at different locations (nodes) within a
zone, form a class. Therefore, each class is uniquely
associated with a zone, and multiple classes form the
training and validation data from a pattern recognition
perspective. Supervised tools have then been applied
for fault zone location, e.g., neuro-fuzzy classifiers and
multiclass support vector machines. The main advantage
of this approach over the model-based methods is that
the network uncertainty can be handled while obtaining
a satisfactory FDI performance.

A data set of each fault scenario (leakage location) is
characterized by the network operation conditions, such
as demand pattern variability, measurement noise, and the
fault features (pipe break size, time of occurrence). It is
then assumed that the data sets of each class represent
the most probable conditions for the fault scenario.
Therefore, a vast amount of data must be collected for
each class given the range of possible scenarios, and if the
real leakage features and network conditions differ from
the simulated ones, then the fault location performance
may deteriorate. Moreover, in these works the demand
uncertainty is not explicitly considered, and some of
them assume that multiple flow sensors are installed on
the DMA (Wachla et al., 2015; Moczulski et al., 2016).
Ultimately, obtaining a data set of all the possible leak
scenarios is not a feasible task even for networks with
a model that is available. The drawbacks mentioned
above motivate this paper, and the main contribution is
a fault detection and location approach that considers an
unsupervised method. Moreover, only pressure sensors
are used, because, as indicated by Jung and Lansey
(2015), they have lower costs than flow sensors, and they
can be easily installed and maintained.

The zone division can be performed according
to many different criteria such that each zone is
representative of a demand pattern. This idea has been
adopted by Sanz et al. (2015) such that a model of the
network and a demand calibration process are used for
establishing zones and node membership to each zone.
When a leak occurs, the recalibration of the demands
allows determining a group of candidate nodes. This
approach relies, however, on the availability of an explicit
model of the network with parameters that are difficult
to estimate for real networks. Therefore, in this work it
is considered that the pressure sensors have already been
installed by following the experts’ knowledge, and the
zone division is performed geographically according to
the areas where the sensors are placed such that there is
a one-to-one correspondence.

The unsupervised method combines a preprocessing
procedure with a historical data-based tool such as
principal component analysis (PCA). The main problem
of using traditional data-based tools such as PCA for
fault detection in WDNs is that the assumption of weakly
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stationary signals is not generally satisfied. A previous
work deals with this issue by using the information
of a segmented demand pattern for building multiple
PCA models (Quiñones-Grueiro et al., 2016). Thus,
each model is employed to perform the fault detection
task within a specific time interval where variables are
considered to be stationary. The demand segmentation,
however, can be a difficult task, and it may even be
possible that over some time intervals the stationary
conditions are not satisfied. In addition, the dynamic
features of the variables were not taken into account.
Therefore, for managing these issues, a preprocessing
procedure that transforms the data for achieving weakly
stationary conditions and for dealing with the dynamic
features of the network is used. PCA can then be applied
for leak detection by using a statistic measure such as the
combined index ϕ. The PCA-based leak location strategy
allows estimating the contribution of each variable for
identifying the potential zone where the leak occurs.

The main advantages of this approach are the
following: (i) it only requires hydraulic data from the
DMA operating under normal conditions; (ii) it allows the
detection of leaks with small outflow magnitude compared
with the total demand of the network; (iii) it allows
identification of the leak zone location; (iv) generally,
satisfactory results can be obtained by only using one
pressure head sensor within each zone.

The structure of the paper is the following. In
Section 2, the modeling of WDNs, the consumer demand
and the water losses are presented. In Section 3, the
PCA formulation for fault detection and identification
together with the respective assumptions regarding the
data are presented. The data processing for satisfying
the PCA assumptions is described in Section 4. Thus,
Section 5 depicts the leak detection and location with
an unsupervised approach. Section 6 introduces the
Hanoi network as the case study with the corresponding
demand patterns. The results and discussion are presented
in Section 7, and finally, in Section 8 conclusions and
directions for future work are given.

2. Water distribution networks

2.1. WDN modeling. Two main physical laws for
flow in pipe systems under steady conditions are the
conservation of mass and the conservation of energy.
Therefore, the model of a WDN with N nodes and
t ∈ Z associated with the sampling time under normal
operation conditions can be described mathematically by
the following facts:

• The net inflow must be equal to the net outflow for
any node n ∈ N of the network:

bn∑

i=1

qi(t) = dn(t), (1)

where bn is the number of branches connected to the
node n, qi(t) denotes the flow of the branch i and
dn(t) is the respective demand.

• The sum of pressure heads around any loop of the
network is equal to zero. Thus, a loop with G water
sources and L water drops is modeled by

G∑

g=1

hg(t) +
L∑

l=1

hl(t) = 0, (2)

where pressure heads hg(t) and hl(t) are associated
with sources and drops, respectively.

• The relation between flow q(t) and pressure head
h(t) for any component of the network is modeled
by

h(t) = θqγ(t), (3)

where the parameter θ depends on the specific
component and the exponent γ could have a value
close to 2 (Houghtalen et al., 2010).

2.2. Water losses. The water loss scenarios considered
in this work are single unreported and abrupt faults: the
possibility of one burst with a small to moderate outflow
fn(t) located at any node n of the network. The leakage
outflow caused by a pipe break depends on the node
pressure head hn(t) and the pipe break size. A realistic
approach for expressing this relationship is given by

fn(t) = Cehn(t)
γ , (4)

where the emitter coefficient Ce is associated with the
pipe break size and γ = 0.5 (Rossman, 2000). This
leakage outflow fn(t) has an effect similar to that of the
demand in the mass balance equation for the node, i.e.,

bn∑

i=1

qi(t) = dn(t) + fn(t). (5)

Hence, some features of the demand must be considered
for distinguishing between leaks and demand deviations.
A demand model that describes some of these features is
described below.

2.3. Demand model. Water distribution networks are
demand-driven. In other words, the behavior of the
flows and pressures is conditioned by the consumers’
demand (Olsson, 2006). Moreover, as was previously
shown, the features of the demand play an important
role in the detection of the water losses. Therefore, the
characterization of the demand at each node according to
a model similar to the one presented by Zhou et al. (2002)
is proposed.
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The demand model dn(t) at each node n is formed
by a periodic component for a specific time horizon (daily,
weekly, monthly, yearly) together with an autoregressive
component such that

dn(t) = dnψ (t) + dnξ(t), (6)

where dnψ (t) is a periodic function with period Γ of
τ sampling times. It represents the mean consumption
pattern for each node; dnξ(t) is an autoregressive
stationary function that represents the consumption
uncertainty around the periodic function which is modeled
as

dnξ(t) = φ0 + φ1dnξ(t− 1) + φ2dnξ(t− 2)

+ · · ·+ φpdnξ(t− p) + εn(t),
(7)

where εn(t) is a Gaussian process with zero mean and a
time-dependent autocorrelation. Thus, the variability of
εn(t) changes over the period Γ because of the demand
uncertainty.

The demand model presented in (6) plays an
important role in leak detection and location. First,
the function dnψ (t) is mainly responsible for the
nonstationary behavior of the network variables. The
periodic feature of this term, however, allows formulating
a transformation, presented in the next section, for
obtaining weakly stationary variables. Second, the
dynamic feature of the function dnξ(t) causes the network
variables to also present a dynamic behavior. This fact
motivates the use of methods for leak detection and
location that consider this feature such as the unsupervised
approach presented below.

3. Advanced PCA for FDI

The starting point of PCA is a data set of cardinality m
which is formed by a measurement vector with flows and
pressure head in the case of the WDN

x(t) = [q1(t), q2(t), . . . , h1(t), h2(t), . . . ]
T ∈ R

m. (8)

The historical data set of hydraulic signals is then
organized as a matrix formed by p observations of the
vector x(t), which can be represented as

X =

⎡

⎢⎢⎢⎣

x(1)
x(2)

...
x(p)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

x1(1) x2(1) . . . xm(1)
x1(2) x2(2) . . . xm(2)

...
...

...
...

x1(p) x2(p) . . . xm(p)

⎤

⎥⎥⎥⎦ ∈ R
p×m.

(9)
The goal of the classical PCA method is to find a linear
transformation matrix P ∈ R

m×a that projects each
vector of variables x(t) from X to a space where the
process information in terms of variability is preserved:
x̃(t) = x(t)P ∈ R

a. If there is a certain level

of the information redundancy among the variables, the
dimension of the new space can be reduced such that
a < m, and the transformed variables are called principal
components. The columns of the transformation matrix
P are a eigenvectors associated with the most significant
eigenvalues of the correlation matrix R of the historical
data matrix X .

The fault detection and identification task with the
traditional PCA model assumes the linearity of the process
and the following:

A1: Each variable xi(t) of matrix (9) has a Gaussian
distribution function.

A2: Each variable xi(t) of matrix (9) is weakly
stationary. Furthermore, because of the different
magnitudes of the components of vector x(t), each
variable xi(t) is scaled to zero mean and unit
variance.

A3: The vector x(t) is not time-correlated.

3.1. Fault detection. Fault detection based on PCA
is usually performed by using two distance measures:
T 2 and the squared prediction error (SPE). They are
calculated for an observation vector x(tnew) as

T 2
new = x(tnew)

TPΛ−1PTx(tnew), (10)

SPEnew = rT r, r = (I − PPT )x(tnew), (11)

where I ∈ R
m×m is an identity matrix and Λ is a

diagonal matrix with a principal diagonal that is formed
by a eigenvalues of the correlation matrix in descending
order. The thresholds T 2

α and SPEα for each statistic (10)
and (11) are adjusted for a confidence level α according
to the desired sensitivity for the detector and a boundary
false alarm rate, as explained by Chiang et al. (2001).

T 2 measures the deviations in the principal
component directions, and SPE measures the deviations
with respect to the PCA model. Thus, there is a
complementary nature between these two measures which
can be summarized in a combined index (Yue and Qin,
2001)

ϕnew =
SPEnew

SPEα
+

T 2
new

T 2
α

= x(tnew)
TMx(tnew), (12)

M =
(I − PPT )

SPEα
+

PΛ−1PT

T 2
α

. (13)

The threshold for this statistic ζα is calculated with a
confidence level α as explained by Yue and Qin (2001).
The primary advantage of using the combined index
measure is that it simplifies the fault detection while no
fault information is lost. Therefore, the interpretation of
the index behavior is easier for the system operator than
when the two indexes are used together.



An unsupervised approach to leak detection and location in water distribution networks 287

3.2. Fault identification. When a fault has been
detected, the subsequent task of the system’s operator is
to resolve the possible cause or causes of the anomalous
behavior. This diagnostic stage is challenging when
many variables are related to the process. Thus, the
fault identification goal is to inform the operators and
engineers about which observation variables (symptoms)
are most relevant for diagnosing the fault (Kościelny et al.,
2017), thereby focusing attention on the subsystem(s)
where it is most likely that the fault occurred (Chiang
et al., 2001). In particular, when using the statistic
ϕnew for fault detection, Yue and Qin (2001) propose the
use of a reconstruction-based contribution (RBC) method
for fault identification; the method estimates how much
each variable contributes to taking the statistic out of
its threshold. In recent works, this approach has been
used for the fault diagnosis of real applications with
satisfactory results (Beghi et al., 2016).

The reconstruction of the combined index ϕnew along
a specific variable direction reduces the effect of this
variable over the detection index (Alcala and Qin, 2009).
Thus, the reconstruction of a variable is proportional
to the contribution of that variable to the deviation of
ϕnew. Therefore, the variables that contribute more to the
deviation of ϕnew are supposed to be the variables mostly
associated with the fault.

The reconstruction-based contribution of each
variable i to the deviation of ϕnew is

RBCϕ
i =

(ξTi Mx(tnew))
2

ξTi Mξi
, (14)

where ξi ∈ R
m is a canonical vector that represents the

variable direction, e.g., the direction of the first variable is
ξi = [1 0 0 . . . ]. The derivation of this contribution index
is briefly explained below.

Consider a fault observation x(t) represented by

x(t) = x̂(t) + ξifi, (15)

where x̂l(t) is the fault-free observation, ξi is the fault
direction and fi is the fault magnitude which is unknown.
For estimating the value of the fault-free observation
along each variable direction, the following reconstructed
vector is defined:

z(t)i = x(t)− ξifi, (16)

where fi is the fault magnitude estimated along the
direction of variable i. The value of the detection index
ϕ of a reconstructed vector in a specific direction i is

ϕ(z(t)i) = ‖z(t)i‖2M . (17)

Thus, a reasonable approach for estimating fi is by
minimizing (17), which can be done by taking the first

derivative of ϕ(z(t)i) with respect to fi and making it
equal to zero. This step yields

f̂i = (ξTi Mξi)
−1ξTi Mx(tnew). (18)

The computation of (18) can be performed if ξTi Mξi
is nonzero (complete reconstructability condition). The
reconstruction-based contribution of ϕnew is then

RBCϕ
i = ‖ξif̂i‖2M . (19)

This result is equal to (14). RBC differs from traditional
contributions by a scaling factor which depends on the
variable direction i. Furthermore, ξi does not have to
be necessarily a vector; it can be a column-like matrix
representing a multi-dimensional fault or multiple sensor
faults (Alcala and Qin, 2009).

3.3. Performance evaluation for leak detection and
location. Leak detection analysis is based on three
performance indexes for evaluating the results: false
alarm rate (FAR), fault detection rate (FDR) and fault
detection delay (FDD). The FAR and FDR are defined in
percentages as

FAR =
Fs
Nd

× 100%, (20)

FDR =
Ts
Fd

× 100%, (21)

where ‘Fs’ is the number of times that a fault is detected
when the network is operating normally, ‘Nd’ is the
number of normal samples, ‘Ts’ is the number of times
that a fault is detected when there is actually a fault (leak)
affecting the network operation and ‘Fd’ is the number
of fault samples. The FDD is the time that it takes
for detecting a fault. A fault is detected if the statistic
threshold is exceeded for over two continuous samples or
more.

Leak location analysis is performed once the fault
has been detected in order to identify the zone of
occurrence. The leak location performance is evaluated
within the pattern recognition framework as the fault
classification rate (FCR) which can be defined as

FCR =
1

Cl

Cl∑

i=1

fcri, (22)

fcri =
Csi
Ci

× 100%, (23)

where ‘Cl’ is the number of classes, fcri is the fault
classification rate of class i, Ci is the true number of
observations which belong to class i and Csi is the number
of observations identified as part of class i.

In the context of leak location analysis, the evaluation
consists in determining the classification rate fcri for
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all the leaks that can be considered within each zone.
Therefore, the index fcriis redefined for the leak location
evaluation as

fcr∗i =
1

ni

ni∑

j=1

fcrij , (24)

fcrij =
Csij
Cij

× 100%, (25)

where ni is the number of nodes within the zone i, Cij

is the true number of observations which belong to the i
when a leak at node j is emulated, and Csij is the number
of times that the fault data were identified as part of zone i
when a leak affects the node j within the zone. The index
fcrij then evaluates the performance of the method when
a leak is emulated at node j in zone i.

4. Data processing and augmented space

As previously explained, the application of the traditional
PCA method for fault detection and identification relies
on the assumptions A1, A2 and A3. The hydraulic data
from matrix X do not explicitly satisfy A2 and A3:
the variables are not weakly stationary because of the
periodic component of the demand, and the vector x(t)
is time-correlated because of the dynamic feature of the
demand. Therefore, two processing stages are used here
for satisfying the two assumptions above.

4.1. Periodic preprocessing. The demand represented
by (6) is a periodically stationary process according to
the definition of Papoulis (1991). As the WDN behavior
is demand-driven, it is assumed here that the signals of
flow and pressure head have a similar structure. Thus,
each signal xi(t) is considered as a periodically stationary
process which can be transformed into a weakly stationary
process as described by the following fact.

Proposition 1. (Quinoñes-Grueiro et al., 2017) Let xi(t)
be a periodically stationary process with the structure
given by (6) and

t′ =

⎧
⎪⎨

⎪⎩

t, 0 < t ≤ Γ,

mod(t,Γ), t > Γ,

(26)

where mod(t,Γ) is the remainder resulting from the divi-
sion of t by Γ. The process

x∗
i (t

′) = xi(t
′)− Et′{xi} (27)

is stationary, where the periodic expected value of xi for
t′ can be estimated off-line by

Et′{xi} � 1

J + 1

J∑

j=0

xi(t
′ + jτ) (28)

with large enough J +1 periods of the variable xi(t) and
J ∈ Z.

Proof. From the features of the variable xi(t
′), the set of

equations for J + 1 periods can be written

xi(t
′) = xiψ (t

′) + xiξ (t
′),

xi(t
′ + τ) = xiψ (t

′ + τ) + xiξ (t
′ + τ),

...

xi(t
′ + Jτ) = xiψ (t

′ + Jτ) + xiξ(t
′ + Jτ).

Hence, adding these equations, we get

J∑

j=0

xi(t
′ + jτ)

=

J∑

j=0

(
xiψ (t

′ + jτ) + xiξ(t
′ + jτ)

)

= (J + 1)xiψ (t
′) +

J∑

j=0

xiξ (t
′ + jτ).

By considering the time-varying mean of xi(t
′) given in

(28) and the mean of xiξ(t
′) given by

Et′{xiξ} � 1

J + 1

J∑

j=0

xiξ (t
′ + jτ)

with J large enough, Eqn. (28) is equivalent to

Et′{xi} � xiψ (t
′) + Et′{xiξ}. (29)

Thus, if the time-varying mean (29) for each t′ is
substituted in the transformation equation (27), it is
reduced to

x∗
i (t

′) = xiξ (t
′)− Et′{xiξ}. (30)

�
Note here that the time-varying periodic mean of

xi(t
′) must be obtained a priori from historical data,

as part of the training procedure for FDI tasks. In
consequence, x∗

i (t
′) = x∗

i (t
′ + jτ) with j ∈ Z can also

be considered as weakly stationary. Note here that the
time-varying periodic standard deviation Et′{x2

i } of xi(t
′)

can be straightforwardly calculated by following the same
procedure such that the signal x∗

i (t) is also standardized.
Thus, the resulting data matrix is X∗. The data equivalent
to J ≥ 30 periods of the variable with the largest period
should be available such that the central limit theorem can
be assumed to be valid (Montgomery and Runger, 2014).
Thus, the time-varying mean estimated can be considered
a good approximation of the time-varying mean of each
variable’s population at t′.
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The demand model plays an important role for the
periodic preprocessing because it is assumed that the
demands determine the features of the network variables.
Therefore, investigating the periodicity of the hydraulic
data before the application of the proposed methodology
is recommended. There are methods available in literature
that can be used for determining if a variable has a
periodic behavior, and, in addition, they can be used
for estimating the period. The proposal presented by
Wang et al. (2006) can be used, for instance, to estimate
the period of the hydraulic variables if the structure
represented by (6) is assumed.

4.2. Augmented data space and dynamic PCA.
Pipe networks are dynamic systems, i.e., there is
a time-dependent behavior of the hydraulic signals.
Regardless of the stationary conditions achieved by using
the periodic transformation, the dynamic properties of
the data should be taken into account for fault detection
and location. Otherwise, many false alarms would be
generated by small disturbances, and the detection of the
faults that affect the dynamic behavior of the network
would be delayed or even missed.

In the framework of unsupervised statistical tools
for FDI such as principal component analysis, Ku et al.
(1995) propose to form the following extended data
matrix:

X∗
l =

⎡
⎢⎢⎢⎣

x∗
1(1) . . . x

∗
1(1− l) . . . x∗

m(1) . . . x∗
m(1− l)

x∗
1(2) . . . x

∗
1(2− l) . . . x∗

m(2) . . . x∗
m(2− l)

...
. . .

...
. . .

...
. . .

...
x∗
1(N). . . x∗

1(N − l). . . x∗
m(N). . . x∗

m(N − l)

⎤
⎥⎥⎥⎦ ,

(31)
where l is the number of lags considered such that
X∗

l ∈ R
N×(lm). The importance of this transformation

is that it allows for considering time correlations between
variables when developing a data-based model such as
the PCA model. Thus, the observation vectors x∗

l (t) are
not time-correlated, and the assumption A3 is satisfied.
The application of PCA on the augmented data space is
called dynamic principal component analysis (D-PCA).
Yet as another preprocessing stage was applied before,
the integration of the two processing stages with PCA
will be called periodic dynamic principal component
analysis (P-DPCA). In addition, according to Chiang et al.
(2001), the following amount of data Xth is required for
estimating a reliable PCA model:

Xth =
a+ 2am+ a2

2m
, (32)

where a is the number of PCs and m the number of
variables.

5. Leak detection and location with
P-DPCA

Unsupervised FDI methods do not require fault data for
process monitoring. In this sense, the PCA method and
its variant P-DPCA previously presented only require data
from the normal process operation, and both of them take
into account the linear relationships among the variables.
This last fact is important because even when the sensors
are placed far from each other, the variables are related
because of the time correlation induced by the demand
patterns from period to period.

The leak detection and location is considered here
as a fault detection and identification problem. The fault
detection approach can be performed in two stages. First,
an off-line detection stage encompasses the following
steps:

• Determine the periodic expected value Et′{xi} and
the periodic standard deviation σt′{xi} for each
measured variable xi and t′ by using a sufficiently
high number of J periods of hydraulic data from the
normal process operation.

• Generate a weakly stationary and standardized data
set X∗ of transformed vectors x∗(t).

• Estimate the proper lag number l from the data in
X∗.

• Form the extended matrix X∗
l ∈ R

N×(lm).

• Estimate the PCA parameters (P ∗
l , Λ∗

l and ζα)
according to the number of selected components and
the confidence interval α.

Second, the on-line detection stage involves the following:

• Process the new vector x(t) by using the periodic
transformation and also standardize it.

• Form the extended vector for some
value of l so that we have x∗

l (t) =
[x∗

1(t), . . . , x
∗
1(t− l), . . . , x∗

m(t), . . . , x∗
m(t− l)] .

• Estimate the value of the combined index ϕnew.

• If the combined index exceeds the threshold ζα
for two continuous samples, a fault is detected.
Otherwise, restart the on-line stage.

Once a fault is detected, the goal of the fault
identification method is to recognize the variables most
related to the leak occurrence. Thus, if each variable
is uniquely associated with a zone of the DMA, then
by determining the variable with the major contribution
index the leak zone is identified. When applying the
RBCϕ method for leak zone identification with the vector
x∗
l (t), the contribution of a variable and its lagged values
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Fig. 2. Demand patterns diψ (t) considered for the Hanoi WDN.

are associated with the same zone where the sensor is
located. Hence, their RBCϕ

i are added for finding the total
contribution of the specific zone.

6. Case study

The proposed approach was applied to the WDN from
Hanoi, Vietnam, shown in Fig. 1. The network is formed
by 32 nodes and 34 pipes distributed in three loops and
two branches. No pumping equipment is required for this
facility, and a single reservoir supplies water for the whole
network. Many strategies have been applied for designing
this network, which is fully described by Fujiwara and
Khang (1990). In particular, the design (pipe diameters)
proposed by Sedki and Ouazar (2012) is selected in this
work. The four demand patterns (DPs) shown in Fig. 2
are considered for this network. The DP 1, 2 and 3 are
of a residential type, and they correspond to the nodes in
the loops of the network as presented in Fig. 1. The fourth
DP is of a different type, and it corresponds to the nodes
in the branches: nodes 11, 12, 13, 21 and 22. The nodes

between two loops (surrounded by a dashed line) have an
average demand pattern, e.g., nodes 23, 24 and 25.

6.1. Model simulator. The EPANET package
(Rossman, 2000) together with MATLAB are used to
obtain the simulated hydraulic data from the Hanoi
network. The friction factor is calculated with the
Hazen–Williams equation, and a roughness coefficient
of 120 is used (Houghtalen et al., 2010). The demand
patterns diψ (t) previously shown are simulated with daily
periodicity (Γ = 24 hours). The sampling period
considered for the simulations is 15 minutes, which gives
τ = 96 samples per period for each measured variable.

The consumption uncertainty is represented by

diξ(t) = 0.5diξ(t− 1) + εi(t), (33)

and the variance of εi(t) is assumed as a function
of the periodic demand pattern given by σ2

εi(t) =
0.03diψ(t). Therefore, this time-varying variance allows
emulating the impact of the consumption on the demand
uncertainty, e.g., when there is more consumption, the
demand uncertainty increases. The multiplying factor
of 0.03 means that the uncertainty is considered here to
be proportional to 3% of the total consumption of the
respective node i.

7. Results and discussion

7.1. Sensor placement and zone division. In this
work, it is assumed that the network is already designed
by experience. The number of sensors used for monitoring
the Hanoi network given its area extension and by
considering a low-cost solution is supposed to be three.
The location of measurement points within this network
has not been optimized with respect to any performance
criterion, but it has been selected according to the
operators’ experience: criteria such as the point with the
highest elevation, the points at the edge of the network,
and the points close to the big demands (Zhang et al.,
2016). Therefore, nodes 8, 20 and 31 are selected, i.e.,
x=[h8, h21, h31], because they are points associated with
great demand nodes close to the edges of the network.
Moreover, they cover pressure changes of different areas
of the network.

The clustering of nodes per zone is a division
problem. The zone division of WDN can be performed
according to diverse criteria. For networks which are
already instrumented, and without an explicit model
available, the zone partition can be executed by using
the experts’ criteria as presented by Moczulski et al.
(2016) and Zhang et al. (2016). If an explicit model is
available, the k-means clustering algorithm can then be
used such that the variables (nodes) with a similar pattern
of variability are considered within the same zone (Zhang
et al., 2016).
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from node 31.

A reasonable approach considered in this work is that
the zone division task can be performed according to the
demand pattern associated with each measurement sensor
because the WDN are demand-driven systems such that
the pressure at any component of the network will depend
ultimately on the consumers’ demand (Olsson, 2006).
Therefore, the information regarding the pressure pattern
per sensor (if available) can also be used for determining
the nodes belonging to each zone. Given the number
of sensors considered in this work, three leakage zones
can be isolated. The main purpose of leak zone isolation
is to reduce the search time for the operators given the
enclosed area associated with each zone. Thus, the three
measurement points and the zones of the network are
shown in Fig. 3. Even when zone 2 covers only
three nodes, the distance among these nodes is significant
considering the length of the pipes (more than 1000 m).

Usually, the number of sensors available for

installation in a WDN is small for economic reasons, and
if the size of the network is large, then each zone will have
a larger extension. There are two practical implications of
these facts. First, the larger the network, the more sensors
are required for guaranteeing the detection of leaks with
a small outflow. Second, in case the network is not
instrumented yet, the sensors should be placed such that
the maximum isolation is achieved among the zones. The
zone division and sensor placement within each zone for
detecting all leaks and achieving maximum isolation at the
same time is a subject which has not been yet addressed
to the best of our knowledge. Therefore, it deserves more
attention, but it is out of the scope of this work.

7.2. Method parameters. The Hanoi WDN was
simulated under normal conditions with the given features
of the demands for over 30 days to obtain the training
historical data set. Thus, these pressure data are
preprocessed according to (27) with J = 30. Figure 4
shows the effect of the transformation on pressure data
from node 31 for over 10 periods (960 samples).

Method 1 proposed by Rato and Reis (2013) is used
for the selection of the lag parameter. Therefore, l = 3
because by adding more lags new linear relationships do
not seem relevant given that a small key singular value
and the lowest key singular value ratio are obtained.
After these steps, the data matrix (31) is formed. The
information criterion is used for the selection of the
number of principal components. The desired variability
to be preserved is selected as 85%, and 4 principal
components out of 12 are retained. The thresholds of
the statistics were estimated by considering a confidence
interval of α = 0.05.

7.3. Leak scenarios. A leak scenario is characterized
by the node location, the emitter coefficient, the time of
appearance and the duration. A single leak was simulated
for each node with an emitter coefficient value equal to 10
except for nodes 1 and 2. Node 1 is the source node, and
the pressure head at node 2 is dominated by the pressure
of the reservoir. Because the leak outflow size depends
on the node pressure, it does not have a constant value,
but it varies approximately between 18 [lps] and 40 [lps]
(0.6% to 1.3% of the total demand). This represents less
than 2.5% of the total demand of the network and between
3% and 25% of the node demand. All leaks appear at the
zeroth hour, and each one lasts for 24 hours, which means
that 96 samples are collected. No leak data was used to
tune the parameters of the proposal.

7.4. Leak detection analysis. A total of 30 additional
periods of normal pressure head data are simulated for
testing the FAR. The average FAR obtained per period is
3%, and the behavior of the combined statistic for the 720
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Fig. 6. FDR results for the Hanoi WDN with an emitter coeffi-
cient equal to 10.

hours is shown in Fig. 5. Note that from 2880 samples
only 79 times a fault was detected.

The FDR results are represented in Fig. 6 for this
network. In this work, less than 50% of FDR is considered
unacceptable. Hence, the leaks with varying outflow
rates between 18 [lps] and 40 [lps] are not detected
satisfactorily by the proposal at nodes 3, 4, 16, 17, 18 and
19. On the one hand, the pressure head at nodes 3 and 4 is
still dominated by the reservoir, and pressure changes are
not evident. On the other hand, the other nodes are located
on the border of the two zones defined for this network
such that they are located too far from the measurement
points. In addition, the FDRs obtained for the leaks in
nodes 5, 7 and 20 are 58%, 64% and 50% even when they
are located close to the measurement points. The reason
for these results is that these nodes have a great demand
which dominates the pressure head such that the change
caused by a leak with the outflow simulated in this work
is not too relevant.

The FDD index has an average value between 10 and
15 minutes except for the leaks at nodes 2 and 18 with
45 and 65 minutes, respectively. It is not strange that
almost all the leaks are quickly detected because the time
of appearance is in the early morning when the demand is
relatively constant. If leaks were introduced at peak hours
of consumption, however, the performance indexes would
not be seriously affected as shown by Quiñones-Grueiro
et al. (2017).

Even though the FDR results are not satisfactory
for all leaks, note that they were detected within a time
interval of 24 hours. The low FDR is caused by the
uncertainty effect on the pressure such that because the
high demand variability the leak effect is masked. This
fact occurs especially throughout the high consumption
time intervals and when the consumers’ demand is
changing drastically.

Furthermore, to test the proposed method for leaks
with a greater outflow rate compared with the ones already
simulated, the experiment was repeated with an emitter
coefficient of 14. The resulting leaks have a varying
outflow rate between 35 [lps] and 50 [lps] (1.1% to 1.6%
of the total demand). The FDR results obtained are
satisfactory for all the leaks except for the one in node 19.
The demand in this node has a maximum outflow rate
of 21.6 [lps] which is not significant compared with the
closest nodes: 484.2 [lps] and 306 [lps] for nodes 18 and
3, respectively. This fact causes that the pressure head at
node 19 is governed by the demand of nodes 3 and 18.

If the proposed approach is applied from 12 A.M.
to 5 A.M., when the uncertainty is small, the results
show that the average FDR index increases from 82.42%
to 84.75% for an emitter coefficient equal to 14 (1.1%
to 1.6% of the total demand). Despite the expected
improvement, note that the proposal detects the leaks
continuously. This fact is important given that if a leak
with a significant outflow occurred during the day, it
would remain undetected until the early morning such
that it could represent an important loss of water with an
economic cost and service deterioration.

7.5. Leak location analysis. The leak location
performance results of the proposed method are presented
in Fig. 7 for this network by using the index fcrij for each
node. Unsatisfactory results are considered if fcrij has a
value less than 50%. Hence, the leaks at nodes 16 and 17
cause the worst location results. It is remarked that the
nodes with the worst classification results are located at
the boundary among the zones. This is a reasonable result
given that the effect of the leaks is similarly reflected in
the measurement points of adjacent zones. Finally, the
indexes fcri of the zones are 79.34%, 88.40% and 88.11%,
respectively. The FCR for the proposed method is then
equal to 85.28%.

The performance of the proposed unsupervised
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approach is compared with the supervised one by
assessing two classification methods: the Bayesian
classifier and the K-nearest neighbor, reported by
Soldevila et al. (2017; 2016) respectively. A day of
data which consists of the residuals of the pressure head
at each measurement point was generated for each leak
scenario by considering the same conditions previously
established. The residual is the difference between the
value of the pressure head in normal conditions and under
a leak scenario. The Bayesian classifier is calibrated by
using the Gaussian probability density function, and the
number of neighbors selected for the K-nearest neighbor
(KNN) classifier is 3. These configurations are similar
to the ones used in Soldevila et al. (2016; 2017).
Since the time horizon analysis is not applied for the
unsupervised approach given the importance of detecting
the leaks as soon as possible, it will not be applied
for the supervised methods in order to establish a fair
comparison. For the evaluation of the classification
accuracy a 10-fold cross-validation is performed, and
the fault classification accuracy is estimated for each
zone. The results presented in Table 1 show that for
the conditions of the experiments the proposal achieves
similar performance without requiring data of each leak
scenario.

Table 1. Fault classification rate per zone.
fcr Index

Zone Bayesian KNN Unsupervised approach

1 94.5 91 79.34
2 56.3 68.1 88.4
3 53.7 75.1 88.11

Total 68.16 78.06 85.28

8. Conclusions

An unsupervised approach to water loss detection and
location in water distribution networks is presented. Fault
detection is performed by combining two preprocessing
methods with principal component analysis. A periodic
transformation and a data vector extension method are
applied in the first stage because they process the
non-stationary and dynamic data from WDNs for building
the PCA model. In the second stage, a combined
statistic ϕ which measures the deviations from the
data-based model is used for detecting leaks. The zone
division strategy together with the reconstruction-based
contribution index RBCϕ

i are employed for leak zone
location. The main advantage of this proposal is that it
allows leak detection and leak zone location by only using
data from a reduced number of sensors when the network
operates normally.

The feasibility of the proposed approach has been
tested on the Hanoi WDN. The results show that by
only using three pressure head sensors the leaks with an
outflow rate between 18 [lps] and 40 [lps] (less than 2.5%
of the total network demand) can be detected with an
average detection rate of 72%. The leak location achieves
a classification rate of 85.28%. Future research can focus
on the application to real networks, the development of
zone division strategies for WDNs and methods for sensor
placement within each zone.
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