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Object. This study is aimed at constructing a deep learning architecture of the autoencoder to integrate multiomics data and
identify the risk of patients with stomach adenocarcinoma. Methods. Patients (363 in total) with stomach adenocarcinoma
from The Cancer Genome Atlas (TCGA) cohort were included. An autoencoder was constructed to integrate the RNA
sequencing, miRNA sequencing, and methylation data. The features of the bottleneck layer were used to perform the k-means
clustering algorithm to obtain different subgroups for evaluating the prognosis-related risk of stomach adenocarcinoma. The
model’s robustness was verified using a 10-fold cross-validation (CV). Survival was analyzed by the Kaplan-Meier method.
Univariate and multivariate Cox regression was used to estimate hazard risk. The model was validated in three independent
cohorts with different endpoints. Results. The patients were divided into low-risk and high-risk groups according to the k
-means clustering algorithm. The high-risk group had a significantly higher risk of poor survival (log-rank P value = 2:80e − 06
; adjusted hazard ratio = 2:386, 95% confidence interval: 1.607~3.543), a concordance index (C-index) of 0.714, and a Brier
score of 0.184. The model performed well both in the 10-fold CV procedure and three independent cohorts from the Gene
Expression Omnibus (GEO) repository. Conclusions. A robust and generalizable model based on the autoencoder was proposed
to integrate multiomics data and predict the prognosis of patients with stomach adenocarcinoma. The model demonstrates
better performance than two alternative approaches on prognosis prediction. The results might provide the grounds for further
exploring the potential biomarkers to predict the prognosis of patients with stomach adenocarcinoma.

1. Introduction

Stomach cancer is responsible for approximately 769,000
deaths in 2020 and is the fifth most common cancer and the
fourth cause of global cancer-related mortality [1]. Stomach
adenocarcinoma is the most prevalent histological subtype
and has increasing incidence and mortality rates in recent
years [2]. Compared to early diagnosis, the 5-year overall sur-
vival (OS) rate of stomach adenocarcinoma drops to less than
30% because of recurrence andmetastasis at an advanced stage
[3, 4]. Identification of the patients with high risk of stomach
adenocarcinoma could help guide the future development of

targeted treatment strategies and improve prognosis. There-
fore, it is essential to develop a model for risk identification.

As the result of technological advancement and decreasing
costs, high-throughput sequencing technology generated a
large amount of multiomics data, which contains a wide spec-
trum of omics such as genome, transcriptome, and epige-
nome, and provides an opportunity to identify the risk of
stomach adenocarcinoma at different molecular levels. Since
single-omics data could only provide limited information,
multiomics data could provide a holistic view of the biological
system through identifying important biomarkers and provid-
ing biological information at multiple levels [5–7].Therefore,
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integration of multiomics data would provide better risk iden-
tification for patients with stomach adenocarcinoma.

Deep learning, also called deep neural network (DNN),
is a new category of machine learning methods and widely
used in many fields [8–11]. Deep learning consists of multi-
ple layers containing multiple artificial neurons which have a
weight and a shift value updated during backpropagation to
minimize global loss function [12, 13]. An autoencoder is an
unsupervised deep learning framework which is aimed at
reconstructing its original input through a series of nonlin-
ear transformations. The hidden layer could represent the
information of the input layer. Compared to other methods
for dimension reduction, the autoencoder is considered to fit
a complex nonlinear relationship well. In recent years, many
researchers paid attention to using autoencoder to integrate
the information of multiomics and identifying the subtype of
patients with cancer [14–16]. Some of the studies stacked the
matrices of all multiomics data and then constructed one
autoencoder to extract the latent information and to per-
form a clustering algorithm. Other studies constructed auto-
encoders for each type of the multiomics data and then
stacked the nodes from each autoencoder for clustering.

In this study, an autoencoder was constructed to integrate
multiomics data of patients from The Cancer Genome Atlas
(TCGA) cohort with stomach adenocarcinoma to identify
the risk and predict the prognosis, including mRNA expres-
sion, miRNA expression, and CpG methylation. The bottle-
neck layer was thought to represent the information of
multiomics data, and then, the univariate Cox proportional
hazard (Cox-PH) model was used to select the nodes in the
bottleneck layer related to survival. The k-means clustering
algorithm was performed to obtain the subgroup of patients
with stomach adenocarcinoma. A Kaplan-Meier curve was
drawn for survival analysis, and the log-rank method was used
for statistical testing. The obtained subgroup was compared
with two alternative approaches: principal component analysis
(PCA) and similarity network fusion (SNF). A 10-fold cross-
validation- (CV-) like was performed to assess the robustness,
and three independent cohorts from the Gene Expression
Omnibus (GEO) repository were used to validate the perfor-
mance of the prognosis model.

2. Literature Review

Since more information could be provided by multiomics
data compared to single-omics data, many algorithms were
proposed to integrate different types of omics data, such as
similarity network fusion (SNF) [17] and iCluster [18]. This
section highlights the studies identifying subgroups of
patients with cancer using a deep learning-based model to
predict the prognosis and identify potential prognostic bio-
markers. Table 1 presents the review on applications of an
unsupervised deep learning model in subgroup identifica-
tion and prognosis prediction for patients with cancer.

To compare the performance of different deep learning
autoencoders for cancer subtype identification using multio-
mics data, Franco et al. [27] performed four autoencoders
(vanilla, denoising, sparse, and variational) on four types of
cancer (glioblastoma multiforme, GBM; colon adenocarci-

noma, COAD; kidney renal clear cell carcinoma, KRCC;
breast invasive carcinoma, BIC) from TCGA datasets. The
study concluded that generally vanilla and variational auto-
encoders showed the best performance to identify different
subgroups, in spite of the varied performance of different
autoencoders on different datasets.

Besides, some deep learning frameworks were proposed
to integrate multiomics data of patients with cancer to iden-
tify the subgroup and predict the prognosis. A framework to
integrate multiomics data by a denoising autoencoder for
accurate cancer prognosis prediction (DCAP) was proposed
by Chai et al. [28]. The framework was applied in 15 TCGA
datasets and presented superior accuracy and robustness.

Poirion et al. [29] proposed an ensemble framework of
deep learning and machine learning approaches, named
DeepProg, to robustly predict the survival subgroups of
patients. DeepProg presents superior predictive accuracy
and robustness on 32 cancers from TCGA datasets.

Yang et al. [30] proposed Subtype-GAN, which uses a
generative adversarial network (GAN) to extract latent vari-
ables and uses consensus clustering and the Gaussian Mix-
ture model to identify tumor samples’ subgroups. The
result proved the well performance in ten TCGA datasets.

Some of the frameworks involve other types of informa-
tion beside multiomics data to obtain the subgroup and pre-
dict the prognosis. Liu et al. [31] proposed deep learning
fusion clustering (DLFS) to integrate multiomics data on
TCGA-BCRA dataset for breast cancer subgroup detection.
DLFS involves both clustering loss and classification loss
into the total loss of the whole framework. Classification loss
is calculated based on prior biological knowledge.

Zhao et al. [32] proposed a scalable and interpretable
multiomics deep learning framework named DeepOmix to
identify the relationships between multiomics data and the
survival data and to incorporate some prior biological infor-
mation. The output layer of DeepOmix consists of survival
time and status, and patients would be divided into high-
and low-risk subgroups based on the output layer. More
and more types of data like single-cell RNA sequencing data
or spatial transcriptomics data would be available for the
DeepOmix framework in the future.

However, only few studies constructed a deep learning-
based model for detecting the subgroups of patients with
stomach adenocarcinoma to predict the prognosis and iden-
tify the prognostic biomarkers.

3. Materials and Methods

3.1. Data Collection and Preprocessing. In this study, TCGA-
Assembler package [33] in R was used to derive the multio-
mics data of 363 patients with stomach adenocarcinoma
from the TCGA cohort, including RNA sequencing (RNA-
Seq) data (UNC IlluminaHiSeq_RNASeqV2; Level 3),
microRNA sequencing (miRNA-Seq) data (BCGSC Illumi-
naHiSeq_miRNASeq; Level 3), and DNA methylation data
(JHU-USC HumanMethylation450; Level 3). For mRNA
and miRNA data, features which have zero value in more
than 20% samples were excluded. And then, samples which
have zero value in more than 20% features were excluded.
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For DNA methylation data, average methylation β-value of
all CpG within the gene promoter region, which is defined
as 1500 base pairs (bp) upstream of transcription start sites
(TSS) of genes, was calculated as the promoter methylation
values. Promoter features which have missing value in more
than 20% samples were excluded, and samples which have
missing value in more than 20% promoter features were
excluded. And then, the missing values were imputed by
the impute package (https://bioconductor.org/packages/
release/bioc/html/impute.html) in R. All the features
obtained above were unit scaled by samples as follows:

vnormed = v
1
vk k22

, ð1Þ

where v is a vector of samples and kvk22 is the l2 norm of v.

To validate the performance, three independent cohorts
obtained from the GEO dataset were used. The first cohort
was obtained from GSE15459 [34–39], which derived the
RNA-Seq data of 192 samples using the Affymetrix Gene-
Chip Human Genome U133 Plus 2.0 Array. The patients
of GSE15459 were recruited from the National Cancer Cen-
ter and hospitals of the National Healthcare Group. The sec-
ond cohort was obtained from GSE26253 [40, 41] Illumina
HumanRef-8 WG-DASL v3.0 dataset with 432 samples.
Samples of the GSE26253 cohort were from Samsung Med-
ical Center and passed the RNA quality control. The third
cohort was obtained from the GSE84437 [42] Illumina
HumanHT-12 V3.0 expression beadchip microarray dataset
with 433 samples. Total RNA of samples from GSE84437
was extracted from the fresh-frozen gastrectomy specimens
at the Yonsei University Severance Hospital (South Korea)
between 2000 and 2010. According to the annotation file

Table 1: Deep learning applications in subgroup identification and prognosis prediction for patients with cancer.

Ref. Datasets Omics data Deep learning model Validation cohort

[14]
TCGA-
HCC

mRNA
miRNA

DNA methylation
Autoencoder

LIRI-JP cohort
NCI cohort

miRNA GSE31384 cohort
E-TABM-36 cohort
Hawaiian cohort

[15]
TCGA-
ESCC

mRNA
DNA methylation

Autoencoder with early-fusion strategy and joint
multimodal representation strategy

E-GEOD-53624
E-GEOD-53624

[16]
TCGA-
HNSCC

mRNA
miRNA

DNA methylation
Autoencoder

E-GEOD-26549
E-GEOD-27020
E-GEOD-65858

[19]
TCGA-
PRAD

mRNA
miRNA

DNA methylation
Autoencoder —

[20]
TCGA-
BLCA

mRNA
miRNA

DNA methylation
Autoencoder GSE84525

[21]
TCGA-
COAD

mRNA
miRNA

DNA methylation
Autoencoder

E-GEOD-17538
E-GEOD-39582
E-GEOD-28722

[22]
TCGA-
BRCA

mRNA
CNV

Autoencoder —

[23]
TCGA-
LUAD

mRNA
miRNA

DNA methylation
CNV

Autoencoder

GSE81089
GSE63805
GSE63384

TCGA-LUAD CNV (lack of mRNA,
miRNA, or methylation information)

[24]
TCGA-
OV

mRNA/RNA-seq, CNV,
DNA methylation

VAE, MMD-VAE —

[25]
TCGA-
PAAD

mRNA
miRNA

DNA methylation
Autoencoder —

[26]
TCGA-
STAD

mRNA
DNA methylation

BiDNN
E-GEOD-62254
E-GEOD-26253

CNV: copy number variation; VAE: variational autoencoder; MMD-VAE: maximum mean discrepancy variational autoencoder; BiDNN: bidirectional deep
neural network.
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Figure 1: Continued.
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from each platform, average expression of all probes corre-
sponding to one gene symbol was calculated as the mRNA
expression value. Unit scaling was also performed on each
cohort. OS, disease-free survival (DFS), and the response of
fourfold increase from the baseline of the heterotopic tumor
size were used as the endpoint of the three cohorts.

3.2. Autoencoder Construction. Autoencoder is an unsuper-
vised feedforward neural network. According to the previous
study [14], more hidden layers contribute little to the final per-
formance but lead to a large amount of calculation. Thus, an
autoencoder with three hidden layers was implemented using
the Python library Keras. The number of nodes of hidden

layers was set to 2000, 500, and 2000 (Supplementary
Table S1). Though the model with 5000, 500, and 5000 nodes
in each hidden layer provided the lowest log-rank P value and
the highest concordance index (C-index), the model was not
chosen because of its bad performance in the 10-fold CV
procedure (Supplementary Table S2). The layer with 500
nodes named the bottleneck layer was thought to contain the
representation features. Autoencoder reconstructs its input
layer x by a series of nonlinear transformations. In this study,
tanh was used as the activation function of each layer. A loss
function of the mean square error was used to measure the

error between input layer x and output layer x′: Lðx, x′Þ =
ðx − x′Þ2. However, to avoid overfitting, a batch normalization

Input layer

Hidden layer
(2000)

Bottleneck layer
(500)

Hidden layer
(2000)

Output layer

RNA-Seq
(16699 features)

Methylation
(18992 features)

miRNA-Seq
(390 features)

Loss function: L(x, xʹ) = (x – xʹ)2 Optimizer: Adam

(b)

Figure 1: Architecture of autoencoder and overall workflow. (a) The workflow of overall study. (b) The architecture of autoencoder to
integrate multiomics data.

Table 2: Clinical information of TCGA and three independent cohorts.

Item
TCGA
(n = 363)

GSE15459
(n = 192)

GSE26253
(n = 432)

GSE 84437
(n = 433)

Age (years; mean ± sd) 64:98 ± 10:55 64:37 ± 13:24 60:06 ± 11:58
Gender (female/male) 125/238 67/125 137/296

Race (Asian/Black or African American/White/not reported) 84/12/236/31

Time (days; median) 463 574 1735 2087

Status (0/1)a 219/144 97/95 255/177 224/209

Stage (I/II/III/IV/-) 46/118/161/28/10 31/29/72/60/0 68/167/130/67/0

Pathologic T stage (T1/T2/T3/T4) 18/72/168/105 11/38/92/292

Pathologic N stage (N0/N1/N2/N3/NX/-) 112/95/72/76/6/2 80/188/132/33/0/0

Pathologic M stage (M0/M1/MX) 327/19/17
aStatus 1 means reaching the endpoint. For TCGA and GSE15459, the endpoint is OS. For GSE26253, the endpoint is DFS. For GSE84437, the endpoint is the
response of the fourfold increase from the baseline of the heterotopic tumor size.
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Figure 2: Continued.
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layer was appended after the hidden layer. Moreover, an
adaptive momentum (Adam) algorithm was used with 32
epochs.

3.3. Selection of Representation Features and k-Means
Clustering. For each representation feature obtained from
the bottleneck layer, a univariate Cox proportional hazards
(Cox-PH) model was built using survival package in R, and
the features with P value greater than 0.10 were screened
out. The k-means clustering algorithm was applied to the
remaining features. Silhouette index [43] and Calinski-
Harabasz criterion [44] were calculated to determine the
optimal number of clusters, and the label of each patient
was obtained. On account of the labels being related to the
prognosis risk of stomach adenocarcinoma, we used “sub-
group” instead of label or cluster. Kaplan-Meier survival
curves of different subgroups were drawn, and log-rank P
value, C-index, and Brier score were calculated.

3.4. Supervised Classification. To verify the robustness of the
subgroup obtained from the k-means algorithm, internal
and an external validations were performed.

In order to ensure sufficient sample size of the test set, a
10-fold CV-like procedure [14, 15, 21] was used to partition
the TCGA dataset into a training set and a test set in the
internal validation. Through the 10-fold CV-like procedure,
363 samples were randomly split into 5 folds, and then, ten
different combinations of 3 folds (training sets) and 2 folds
(test sets) were obtained. For each of these ten combinations,
a different autoencoder was built using the data from the
training set, and k-means clustering was performed to obtain
the subgroup labels. Then, the top 50 mRNA, 30 miRNA,
and 50 methylation features were selected based on the P
value of analysis of variance (ANOVA) to build a support
vector machine (SVM) model. Three single-omics data and
the multiomics data were used to build a SVM model,
respectively. Subgroup labels of samples from the test sets
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Figure 2: Selection of the best cluster K according to silhouette index and Calinski-Harabasz score: (a) silhouette index; (b) Calinski-
Harabasz score.

7Computational and Mathematical Methods in Medicine



log–rank P = 2.8e–06
C index = 0.714
Brier score = 0.1840.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Subgroup
+
+

Low–risk
High–risk

136 102 55 22 15 10 4 2 2 2 1

227 136 47 23 8 5 3 1 1 1 0High–risk

Low–risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
bg

ro
up

Number at risk

(a)

Figure 3: Continued.
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were predicted by the SVM classifier. Then, log-rank P value,
C-index, and Brier score were calculated to evaluate the
robustness of the prognosis model.

In the external validation, the mRNA features within
both the TCGA cohort and the independent cohort were
firstly selected. Then, like in the internal validation, a SVM
classifier was built using the top 50 mRNA features, which
were selected by the P value of ANOVA, of the whole TCGA
cohort. The subgroup labels of three independent cohorts
were predicted, and the log-rank P value, C-index, and Brier
score were calculated.

However, two scaling steps were applied before con-
structing a SVM classifier whether in training sets, test sets,
or the independent cohort. For the mRNA and methylation

features, median scale normalization and robust scale nor-
malization were performed. And for miRNA features,
median scale normalization and unit scale normalization
were performed. Unit scale normalization was shown in
the aforementioned procedure, and the median and robust
scale normalization were performed as follows:

median scale normalization : xscaled =
x −median xð Þð Þ

mad xð Þ ,

robust scale normalization : xwhitened =
xi −mean25−75 xið Þ

sd25−75 xið Þ , xi ∈ x
� �

,

ð2Þ
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Figure 3: Kaplan–Meier curves for OS time between two different subgroups of TCGA cohort obtained from different approaches: (a)
autoencoder; (b) PCA; (c) SNF.
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where x = ðx1,⋯, xnÞ is a vector of feature and madðxÞ =
medianðfjxi −medianðxÞj, xi ∈ xgÞ.

All SVM classifiers were constructed using the e1071
package (https://CRAN.R-project.org/package=e1071) in R,
and 5-fold CV was used to perform a grid search of the best
hyperparameters. C-index and Brier score were calculated
using the survcomp package [45] in R.

3.5. Alternative Approaches. Two alternative approaches
were used to compare with the autoencoder. In the first
approach, principal component analysis (PCA) was per-
formed and the number of principal components was set
to the same as the bottleneck layer. Then, a univariate
Cox-PH model was built for each principal component,
and the k-means clustering was performed to obtain the

Table 3: Identification for risk factor using univariate and multivariate Cox-PH model.

Factors
Univariate Multivariate

HR 95% CI z P valuea HR 95% CI z P valueb

Subgroup 2:81e − 06
Low risk 1.000 — — — 1.000 — — —

High risk 2.392 (1.642, 3.485) 4.545 5:51e − 06 2.386 (1.607, 3.543) 4.312 1:62e − 05
Age 1:08e − 02

<65 1.000 — — — 1.000 — — —

≥65 1.538 (1.102, 2.148) 2.528 1:15e − 02 1.982 (1.389, 2.829) 3.769 1:64e − 04
Gender 7:59e − 02

Female 1.000 — — —

Male 1.386 (0.965, 1.992) 1.767 7:72e − 02
Race 5:22e − 01

Not reported 1.000 — — —

Asian 0.812 (0.430, 1.534) -0.641 5:21e − 01
Black or African American 1.478 (0.636, 3.434) 0.907 3:64e − 01
White 0.919 (0.544, 1.552) -0.316 7:52e − 01

Pathologic T stage 3:23e − 02
T1 1.000 — — — 1.000 — — —

T2 3.032 (0.716, 12.845) 1.506 1:32e − 01 1.935 (0.433, 8.637) 0.864 3:87e − 01
T3 4.457 (1.093, 18.180) 2.083 3:72e − 02 4.233 (0.846, 21.18) 1.756 7:90e − 02
T4 4.902 (1.188, 20.231) 2.198 2:80e − 02 4.738 (0.93, 24.147) 1.872 6:12e − 02

Pathologic N stage 5:95e − 03
N0 1.000 — — — 1.000 — — —

N1 1.560 (0.973, 2.50) 1.847 6:47e − 02 1.583 (0.794, 3.154) 1.305 1:92e − 01
N2 1.628 (0.976, 2.71) 1.868 6:17e − 02 1.646 (0.718, 3.771) 1.178 2:39e − 01
N3 2.430 (1.520, 3.890) 3.708 2:09e − 04 2.390 (1.041, 5.485) 2.055 3:99e − 02
NX or missing 1.812 (0.432, 7.600) 0.812 4:17e − 01 1.566 (0.352, 6.970) 0.588 5:56e − 01

Pathologic M stage 1:04e − 01
M0 1.000 — — —

M1 1.785 (0.936, 3.410) 1.759 7:86e − 02
MX 1.627 (0.759, 3.490) 1.251 2:11e − 01

Stage 3:20e − 03
I 1.000 — — — 1.000 — — —

II 1.362 (0.706, 2.630) 0.923 3:56e − 01 0.586 (0.221, 1.556) -1.072 2:84e − 01
III 2.084 (1.130, 3.850) 2.350 1:88e − 02 0.518 (0.142, 1.892) -0.996 3:19e − 01
IV 2.946 (1.406, 6.170) 2.863 4:20e − 03 0.842 (0.232, 3.057) -0.262 7:93e − 01
Missing 3.760 (1.319, 10.72) 2.479 1:32e − 02 1.457 (0.349, 6.082) 0.516 6:06e − 01

aBoth log-rank P value of each univariate Cox-PH model and P value of each variable were calculated. bScore test for the multivariate Cox-PH model P value
1:15e − 07.
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Table 4: CV-like performance of SVM classifier on training set and test of TCGA cohort.

Datasets Omics type
Log-rank P value

(geo.Mean)
C-index Brier score

Training 3-omics 3:51e − 03 0:677 ± 0:042 0:216 ± 0:009

Test

3-omics 3:19e − 03 0:644 ± 0:030 0:209 ± 0:006
mRNA only 3:56e − 03 0:636 ± 0:020 0:208 ± 0:008
miRNA only 1:81e − 03 0:631 ± 0:017 0:201 ± 0:006

Methylation only 2:63e − 03 0:653 ± 0:016 0:213 ± 0:004
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Figure 4: Continued.
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subgroups which indicated to the prognosis-related risk. In
the second approach, similarity network fusion (SNF) [17]
was used to construct sample similarity matrices for each
of the omics data types using pairwise correlation. Through
the fused network of samples, the optimal numbers and sub-
group labels were obtained according to the spectral cluster-
ing algorithm. The SNF was implemented using the SNFtool
package in R.

3.6. Bioinformatics Analysis. Differential expression analysis
was performed between different subgroups of the TCGA
cohort. For mRNA and miRNA data, the DESeq2 package
in R was used to identify the differentially expressed genes

(DEGs) and miRNA expression. The features of the mRNA
or miRNA which satisfy the criteria of jlog 2FCj > 1 and
false discovery rate ðFDRÞ < 0:05 were considered to be sig-
nificant. For methylation data, beta value was transformed
intoM value using the lumi package [46] in R, and then, sig-
nificant differentially methylated genes (DMGs) were identi-
fied in the criteria of jM value differencej > 1 and FDR < 0:05
using moderate t-test with the limma package [47] in R.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
enriched analysis was performed for the significant DEGs,
which were obtained from the differential expression analy-
sis, with the threshold of FDR < 0:05, using the clusterProfi-
ler package [48, 49] in R.

High−risk

Low−risk

Su
bg

ro
up

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (years)

N
on

−r
es

po
ns

e p
ro

ba
bi

lit
y

100 91 84 75 66 63 60 52 48 39 25 16 6 1

333 288 242 215 181 166 146 121 110 97 65 30 9 0

Number at risk

log–rank P = 4.1e−03
C index = 0.635
Brier score = 0.278

Subgroup
+
+

Low–risk
High–risk

(c)

Figure 4: Kaplan–Meier curves between two different subgroups of three independent cohorts: (a) GSE15459; (b) GSE26253; (c) GSE84437.
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4. Results

4.1. Two Significant Subgroups Were Identified according to
the TCGA Cohort. The workflow of overall study is shown
in Figure 1(a). From the TCGA-STAD project, the total
number of patients with stomach adenocarcinoma included
in this study was 363. The clinical information of the TCGA
cohort is shown in Table 2. After preprocessing, 16,699
genes from RNA-Seq, 390 miRNAs from miRNA-Seq, and
18,992 genes from DNA methylation data were obtained as
input features. Three omics data were stacked as the features
of the input layer. The architecture of the autoencoder is
shown in Figure 1(b).

The representation features obtained from the bottle-
neck layer were selected using the univariate COX-PH
model, and the cut-off of P value was set to 0.10. Then,
104 features were thought to be related to survival and used
to implement the k-means clustering. According to the sil-
houette index and the Calinski-Harabasz criterion, K = 2
could be considered as the optimal number of clusters

(Figure 2). Thus, two subgroups were obtained (Supplemen-
tary Table S3).

Furthermore, prognostic difference between these two
subgroups was assessed using the Cox-PH model. The log-
rank P value, C-index, and Brier score were 2:8e − 06,
0.714, and 0.184, respectively (Figure 3(a)). However, 104
features were obtained after a dimension reduction method,
PCA, and k-means clustering were performed. The log-rank
P value, C-index, and Brier score were 2:05e − 03, 0.649, and
0.206, respectively (Figure 3(b)). And a SNF was constructed
with number of neighbors K , hyperparameter sigma, and
number of iteration T setting to 14, 0.3, and 27, respectively.
The log-rank P value, C-index, and Brier score were 8:91e
− 04, 0.653, and 0.200, respectively (Figure 3(c)). Thus, the
subgroup obtained from the autoencoder performed better
than those from two other alternative approaches.

4.2. Cox-PH Model including Subgroups and Other Clinical
Features. As the univariate Cox-PH models (Table 3)
showed, subgroup (log-rank P value 2:81e − 06), age (log-
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Figure 5: Heat map for the top 10 DEGs, differentially expressed miRNAs, and DMGs: (a) DEGs; (b) differentially expressed miRNAs; (c)
DMGs.
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rank P value 1:08e − 02), pathologic tumor (T) stage (log-
rank P value 3:23e − 02), pathologic node (N) stage (log-
rank P value 5:95e − 03), and stage (log-rank P value 3:20e
− 03) were identified as risk factors related to OS time.
The multivariate Cox regression model also found the same
result (adjusted HR 2.386; 95% CI 1.607-3.543; P value
1:62e − 05) after the adjustment of age, pathologic T stage,
pathologic N stage, and stage.

4.3. Internal Validation to Assess the Robustness of the
Subgroups. Since the two subgroups of the TCGA cohort
were obtained from k-means clustering, a 10-fold CV-like
procedure was performed to assess the robustness. In each
fold, ANOVA was performed to select the top 50 mRNA,
30 miRNA, and 50 DNA methylation gene features associ-
ated with the obtained subgroup (Supplementary Table 4).

The remaining features were used to build a SVM classifier
which used the subgroup obtained from the autoencoder as
the true label. For the training set, a C-index of 0:677 ±
0:042, a low Brier score of 0:216 ± 0:009, and a significant
log-rank P value of 3:51e − 03 were generated (Table 4).
For the test set, a C-index of 0:644 ± 0:030, a low Brier
score of 0:209 ± 0:006, and a significant log-rank P value of
3:19e − 03 were generated (Table 4). SVMs using each
three-single omics features were also built, and impressive
performances were also produced. For the test set based on
mRNA features only, a C-index of 0:636 ± 0:020, a Brier
score of 0:208 ± 0:008, and a log-rank P value of 3:56e − 03
were generated (Table 4). For the test set based on miRNA
features only, a C-index of 0:631 ± 0:017, a Brier score of
0:201 ± 0:006, and a log-rank P value of 1:81e − 03 were
generated (Table 4). For the test set based on methylation
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Figure 6: KEGG pathway enrichment analysis.
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features only, a C-index of 0:653 ± 0:016, a Brier score of
0:213 ± 0:004, and a log-rank P value of 2:63e − 03 were
generated (Table 4).

4.4. External Validation in Three Independent Cohorts. To
prove the performance of the classificationmodel at predicting
prognosis outcomes, three independent cohorts, GSE15459,
GSE26253, and GSE84437, were used. The clinical informa-
tion of the three cohorts is shown in Table 2. 14,881, 14,920,
and 10,973 common mRNA features were used to select the
top 50 mRNA features associated with the subgroup obtained
from the prognosis model based on the autoencoder for the
three independent cohorts, respectively. The GSE15459 cohort
produced a C-index of 0.615, a Brier score of 0.219, and a sig-
nificant log-rank P value of 1:19e − 02 (Figure 4(a)). The
GSE26253 cohort produced a C-index of 0.609, a Brier score
of 0.314, and a significant log-rank P value of 3:84e − 02
(Figure 4(b)). The GSE84437 cohort produced a C-index of
0.635, a Brier score of 0.278, and a significant log-rank P value
of 4:10e − 03 (Figure 4(c)).

4.5. Bioinformatics Analysis. Differential analysis was per-
formed to detect the differentially expressed genes (DEGs),
differentially expressed miRNAs, and differentially methyl-
ated genes (DMGs). 1839 upregulated and 56 downregulated
genes were obtained with a criterion of jlog 2FCj < 1 and
FDR < 0:05. 27 differentially expressed miRNA were
obtained with the same criterion as DEGs. 1323 DMGs were
obtained with a criterion of jM value differencej > 1 and
FDR < 0:05. The top 10 DEGs (CLDN6, TF, ETNK2,
CLEC2L, RSPO4, CHGB, RBFOX3, PDLIM4, APBB1,
PPP1R14A), differentially expressed miRNAs (hsa-mir-483,
hsa-mir-675, hsa-mir-187, hsa-mir-337, hsa-mir-654, hsa-
mir-145, hsa-mir-133a-1, hsa-mir-133b, hsa-mir-218-2,
hsa-mir-99a), and DMGs (CBX7, NPAS1, BDNF, MAD2L2,
BAIAP3, INSRR, CYB5R1, RRP15, LHX4, ATP1B2) are
shown in Figure 5.

As the result of implementation of KEGG pathway
enrichment analysis, the upregulated and downregulated
DEGs were significantly involved in 30 and 8 signaling path-
ways, respectively (Figure 6 and Supplementary Table S5).

5. Discussion

Wide popularity and poor prognosis of stomach adenocarci-
noma make it an urgent request for risk identification. In
previous studies, deep learning-based unsupervised methods
were implemented using multiomics data and obtained bet-
ter prognosis performances [14–16]. The autoencoder is an
architecture of deep learning which is able to fit a complex
nonlinear relationship between the input layer and the out-
put layer. The representative features from the bottleneck
layer could reflect the information of multiomics data well,
and the deep learning-based model overcomes the problem
of high dimension of the multiomics data. In this study,
two subgroups were identified using an autoencoder deep
learning architecture. Difference of survival probabilities
between two subgroups was significant, and the model fit-
ness performed well. Performance of the model based on

the autoencoder was better than those of two alternative
approaches, PCA and SNF. It suggested that a deep
learning-based method like autoencoder could utilize the
information of multiomics data better through capturing
the nonlinear relationship than the traditional dimension
reduction method like PCA, and the model based on an
autoencoder could produce a more accurate prediction of
prognosis than the model which constructs and fuses a sim-
ilarity network to have a comprehensive view of a biological
process in specific diseases like SNF. The deep learning-
based model would contribute to predicting the prognosis
of patients with stomach adenocarcinoma and identifying
the potential prognostic biomarkers.

According to the 10-fold CV-like validation, the robust-
ness of the model identifying the subgroups has been veri-
fied. In addition, the subgroup could be considered as a
risk factor according to the univariate and multivariate
Cox-PH model. Moreover, the model was validated in three
independent cohorts with different endpoints, and each
cohort produced a significant log-rank P value. Regretfully,
GSE26253 and GSE84437, with an endpoint of DFS and
response of fourfold increasement of tumor size, respec-
tively, produced a high Brier score, indicating high error of
the model fitting on survival data. This suggests that the
endpoint of OS would be more suitable in prognosis predic-
tion using autoencoder-integrating multiomics data.

In fact, Xu et al. [26] have already used a deep learning
architecture of bidirectional deep neural networks (BiDNNs)
to integrate RNA-Seq and DNA methylation data of patients
with gastric cancer to obtain two subgroups associated with
prognosis-related risk. The model based on the autoencoder
shows a better performance than that on BiDNNs, in log-
rank P value (2:80e − 06 vs. 9:05e − 05, respectively) and
C-index (0.714 vs. 0.673, respectively). This may indicate
that complex architecture could not provide a better perfor-
mance. Information from miRNA expression may also play
an important role in the model based on the autoencoder
to show its robustness. Both studies provide guidance for
personalization of medical services.

DEGs, differentially expressed miRNAs, and DMGs
between two subgroups were obtained and provided an
opportunity to be used as potential prognostic biomarkers
or candidate therapeutic targets in future clinical practice.
Differential analysis and enrichment analysis were practiced
to understand the difference between two subgroups at the
molecular level. Some studies have revealed the relationship
between the top 10 DEGs, DMGs, and stomach adenocarci-
noma. Expression of CLDN6 indicates poor prognosis of
gastric cancer [50–52]. RBFOX3 was considered to be asso-
ciated to the growth and progression of gastric cancer [53].
CBX7 was thought to be related to the proliferation and
metastasis of the gastric cancer cell and be able to reveal
the prognosis [54–56]. BDNF expression was reported to
be associated with poor prognosis of gastric cancer [57,
58]. CLDN6, TF, CLEC2L, and APBB1 were also identified
as top 10 DEGs, and no common top 10 DMGs were found
in the previous study using the model based on BiDNNs
[26]. Low has-miR-337-3p expression was reported to be
related to lymph node metastasis of human gastric cancer
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[59]. hsa-miR-145 and hsa-mir-133a-1 were considered to
serve as an underlying prognostic indicator for the patient
with stomach adenocarcinoma [60]. Little was known about
the relationship between the other 7 of the top 10 differen-
tially expressed miRNAs and stomach adenocarcinomas.

However, only RNA-Seq, miRNA-Seq, and DNA meth-
ylation data were used in this study. This might not provide
sufficient information of the biological process, and more
omics data could be included in the further study. Regret-
fully, no independent cohort with miRNA-Seq and DNA
methylation data has been found to use in the external vali-
dation. Moreover, the poor interpretability of deep learning
may prevent the prognosis model from being widely used
in clinical practice, and a more theoretic approach is
required to explain how the model works.

6. Conclusions

Prognosis-related risk was evaluated based on the architec-
ture of the autoencoder, and the patients were divided into
low-risk and high-risk groups. The high-risk group had a
significantly higher risk of poor survival with an adjusted
HR of 2.386, a log-rank P value of 2:80e − 06, a C-index of
0.714, and a Brier score of 0.184. The robustness of the prog-
nosis model was successfully validated using a 10-fold CV-
like procedure, and the performance was verified in three
independent cohorts. The model based on the autoencoder
has a better performance than PCA (log-rank P value: 2:05
e − 03; C-index: 0.649) and SNF (log-rank P value: 8:91e −
03; C-index: 0.653) on prognosis prediction. DEGs, differen-
tially expressed miRNAs, and DMGs between two sub-
groups were uncovered. The results might provide the
foundation for further exploring the potential biomarkers
to predict the prognosis of patients with stomach
adenocarcinoma.
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