
An Unsupervised, Online Learning Framework for Moving Object Detection

Vinod Nair James J. Clark
Centre for Intelligent Machines

McGill University, Montreal, QC, Canada H3A 2A7
{vnair, clark}@cim.mcgill.ca

Abstract

Object detection with a learned classifier has been ap-
plied successfully to difficult tasks such as detecting faces
and pedestrians. Systems using this approach usually learn
the classifier offline with manually labeled training data.
We present a framework that learns the classifier online
with automatically labeled data for the specific case of de-
tecting moving objects from video. Motion information is
used to automatically label training examples collected di-
rectly from the live detection task video. An online learner
based on the Winnow algorithm incrementally trains a task-
specific classifier with these examples. Since learning oc-
curs online and without manual help, it can continue in par-
allel with detection and adapt the classifier over time. The
framework is demonstrated on a person detection task for
an office corridor scene. In this task, we use background
subtraction to automatically label training examples. Af-
ter the initial manual effort of implementing the labeling
method, the framework runs by itself on the scene video
stream to gradually train an accurate detector.

1. Introduction

Visual object detection using a learned classifier has be-
come popular in recent years. Working systems for detect-
ing faces [11], [12], [16], handwritten characters [5], and
pedestrians [10], [17], have convincingly demonstrated the
approach’s effectiveness. All these systems use a machine
learning algorithm to train a classifier that can accurately
distinguish tightly cropped images of the object of interest
from all other images. The classifier is essentially a learned
model of the object. This model can be used to detect an ob-
ject instance appearing with arbitrary position and scale in
an image by “scanning” the image with the classifier. Scan-
ning is done by shifting a window of interest over the im-
age and labeling each sub-image defined by the window as
either ‘object’ or ‘non-object’ with the classifier. This is re-
peated at various window scales. The output of the detector

is a bounding box for each object instance in the image.

Currently the popular method for training the image clas-
sifier is to use a supervised learning algorithm (e.g. Ad-
aBoost [16], [17], neural networks [5], [12], support vector
machines [10]) with a large, hand-labeled set of object and
non-object images. This approach has two main drawbacks:
1) Manual labeling: Labeling a large training set by hand
can be time-consuming and tedious. If the above detection
strategy is to scale up well for problems that require a very
large training set (more than a few thousand images), it is
important to keep the human supervisory effort to a prac-
tical level. For example, when training a detector for use
in a large-scale vision system, such as a video surveillance
network with cameras deployed in a few hundred scenes,
it would be highly undesirable to collect and label positive
and negative training images from each scene by hand.
2) Offline learning: All learning occurs offline, i.e. be-
fore the classifier is used for the detection task. So after
the initial training, the classifier remains fixed, and any fur-
ther training “on the job” is not possible. However, in many
detection tasks, incremental, online learning is desirable be-
cause then the classifier needs to know only what is actually
necessary for the specific task. It also enables the classi-
fier to be time-adaptive since online training can continue
as long as the task is performed.

The main contribution of this paper is a detection frame-
work that overcomes the above two limitations for the im-
portant special case of detecting moving objects from video.
The basic idea is to design a substitute for manual labeling
— an ‘automatic labeler’ — that uses motion information
to supply labeled training examples (object and non-object
images) directly from the video used for the detection task.
Then the task video itself becomes the source for a stream
of training examples that an online learner can use to incre-
mentally train a classifier, as shown in figure 1. There is
no need to strictly separate the training phase and the sub-
sequent working phase as in the previous approaches.

Of course, the labeler itself is not a highly accurate clas-
sifier (otherwise there is no need to learn another one). It
may fail often because of random sources of motion in

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Input video frames

Automatic
labeler

Online
learner

Learned
classifier

 Object
 images

 Non-object
 images

Detection
output after
scanning

• • •

• • •

• • •

Figure 1. The proposed framework allows learning and
detection to go on simultaneously.

the video. But if it can automatically recognize when the
motion information is temporarily unreliable for collecting
training data, then the labeling and the online learning can
be stopped during such times. Therefore, accurate learn-
ing is possible even if the labeler fails often, as long as
the training examples are labeled with reasonable accuracy
when the labeler does work. We argue that it is possible
to design such a labeler for moving object detection tasks
based on existing techniques such as background subtrac-
tion. After the initial manual effort of designing the labeler,
the system runs on its own and over time trains an accurate,
task-specific detector.

The framework is described in more detail in section 3
using the example of a person detection task for an office
corridor scene. Since the success of our approach largely
depends on having an effective labeler, we discuss the gen-
eral requirements for such a labeler in any detection task.
We satisfy these requirements for the person detection task
by designing a labeler based on background subtraction.
For online learning we use Winnow [7], which learns a lin-
ear classifier in a Boolean vector space.

Each training image is mapped from its raw pixel form
to a high-dimensional Boolean vector representation that
is suitable for learning with Winnow. This representation
is based on the type of overcomplete, local image feature
set used by Viola and Jones [16]. We use these features
because they enable effective learning and rapid detection.
The expanded Boolean representation converts many non-
linear functions in the original pixel representation into lin-
ear ones, thus making them learnable with Winnow.

We take advantage of Winnow’s ability to ignore ir-
relevant and redundant features to learn accurately in this
large space. Training is made computationally efficient with
the virtual weight algorithm [9], which allows Winnow to
learn without explicitly computing a training image’s high-
dimensional Boolean vector representation.

2. Relation to existing approaches

Many approaches to moving object detection use motion
as their primary source of information. An example is back-
ground subtraction [3], [4], [13], [15], which uses the differ-
ence between a model of the scene background and the cur-
rent image of the scene to classify pixels as foreground or
background. Connected foreground pixels are then grouped
into blobs, and a blob-based object model is used for de-
tection. This strategy of local motion measurement fol-
lowed by a grouping operation to find moving objects is
typical of motion-based methods, e.g. detection using optic
flow. But key issues such as how to distinguish object mo-
tion from other sources of motion, and how to group local
measurements, tend to be dealt with in an ad hoc manner
that may not work well. As a result, in the case of back-
ground subtraction, detection can fail due to sudden back-
ground changes, slow-moving objects, shadows, and ‘holes’
in parts of the foreground that are similar to the background.

The strength of the learned classifier-based detection ap-
proach is that it selects the object model using a learning
algorithm, based explicitly on the model’s ability to dis-
criminate between object and non-object training examples.
Such a model is often better than a handcrafted, blob-based
one at capturing the non-intuitive aspects of the object that
can be important for high detection accuracy.

Our framework essentially combines the above two ap-
proaches to overcome the limitations of both. We use a
hand-designed, motion-based detector to automatically col-
lect labeled training examples that are then used to learn an
accurate classifier. The work of Levin et al. [6] is simi-
lar to ours in that they apply motion information to reduce
the hand-labeling effort. They initially train two classifiers
— one on background difference images and the other on
intensity images — with a small number of hand-labeled
examples. Then the two classifiers use unlabeled data to it-
eratively improve each other. This algorithm differs from
ours in three ways: 1) manual labeling is still necessary (al-
beit a small amount), 2) learning is done in an offline, batch
manner, and 3) training is conceivably computationally ex-
pensive since two classifiers have to be repeatedly learned
over multiple iterations. On the other hand, Winnow allows
fast and efficient learning, as the results in section 5 show.

3. Unsupervised, online learning framework

In this section we further detail our framework with the
example task of detecting people in an office corridor.

3.1. Task description

The corridor (see figure 2) is monitored with a net-
work camera in fixed position. The detector’s task is to

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Figure 2. Example frames used for the detection task.

compute a bounding box for each fully visible person in a
grayscale frame. Network and image compression latencies
restrict the frame rate to about 1Hz. This task is challenging
for simple motion-based detection methods. Large, abrupt
lighting changes occur when an office door opens. Peo-
ple cast strong shadows on the walls. Detection fails when
blobs of nearby people merge. Instantaneous motion is dif-
ficult to measure with optic flow because of the low frame
rate.

3.2. Designing an automatic labeler

Now we explain how the automatic labeler is designed
for this task. First, consider the two requirements that a
labeler should satisfy:
1) Automatic failure recognition: The labeler must be able
to automatically recognize when the motion information is
not reliable enough to obtain correctly labeled training data.
During such times, it can admit failure and temporarily stop.
So it needs to supply accurate training data only when it
can. By satisfying this condition, an effective labeler need
not always be highly accurate.
2) Unbiased labeling: The labeler should not introduce any
biases into the training data it provides that would mislead
the learner. For example, if the labeler systematically fails
to collect a certain type of training data, such a bias may
cause the learner to develop misconceptions about the task
and train an inaccurate classifier.

For the person detection task, we have hand-designed a
simple, heuristic labeler based on background subtraction
that approximately satisfies the above two requirements. A
static, grayscale model of the background is initialized au-
tomatically by averaging ten consecutive frames that do not
contain significant motion, as measured by the thresholded
difference between two consecutive frames. The pixel-wise
difference between the current frame and the background
model is used to classify each pixel as either foreground
or not. The connected foreground pixels are grouped into
blobs. Blobs with approximately the correct aspect ratio
and size are labeled as ‘person.’ Image regions that do not
contain any foreground are labeled as ‘non-person.’

Automatic failure recognition is handled differently for
global and local background subtraction failures. When a
large fraction of the frame persists as foreground, it is usu-

ally indicative of a gross background model failure due to,
for example, a drastic change in scene lighting when an of-
fice door is suddenly opened. In such cases, both the auto-
matic labeling and the online learning are stopped, and the
background model is initialized again as before. Labeling
and learning resume once reinitialization is complete.

Local failures typically occur when two nearby blobs
merge, or when a person is partially segmented because part
of the person and the background have similar intensities.
The blobs resulting from these types of failures usually have
the wrong aspect ratio and size. As a result, the local image
regions containing blobs that do not satisfy the aspect ratio
and size requirements are left unlabeled. No training data is
obtained from such regions.

The overall accuracy of the labeler is poor because it
fails more often than not. But it is still effective because the
training data it provides the online learner is reasonably ac-
curate. Figure 3 shows examples of automatically cropped
person and non-person images. The labeler has processed
the live task video over a period of five weeks to find 1557
person instances. However, almost 11% (168/1557) of these
are actually mislabeled non-person instances. Some exam-
ples are shown in figure 4. The opposite error of label-
ing person instances incorrectly as non-person, while pos-
sible, has not occurred. Since learning occurs online, it is
not practical for a human to inspect the live training data
stream and manually remove the mislabeled examples. So
the learning algorithm must be able to learn accurately de-
spite the label noise.

The labeler satisfies the unbiased labeling requirement
only partially because many of its failures are systematic
rather than random. For example, it systematically fails
to find people wearing clothes with similar intensity as the
background. This bias may affect the learning. On the other
hand, if the absolute intensity of people’s clothes is irrele-
vant for learning the person model, then such a bias will
not matter. Ultimately, the learned classifier’s accuracy on
an independent test set is the best measure for determining
whether any apparent labeling bias really matters. As the
results show (section 5), the classifier has good accuracy

Figure 3. Examples of person and non-person images au-
tomatically cropped and correctly labeled by the labeler.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Figure 4. Examples of cropped images incorrectly la-
beled as ‘person’ by the labeler. Such errors occur when
a partly segmented person, lighting changes, or shadows
momentarily create a person-like blob.

and therefore, the labeler’s biases do not significantly affect
the learning.

3.3. Online learning

Here we give a high-level overview of the Winnow-based
online learning. The details of Winnow, the local image
features we use, and the virtual weight algorithm are given
in section 4.

The main steps of the learning process are given in fig-
ure 5. For each frame, after the automatic labeling step,
scanning is done by shifting a window of interest over it
at various scales. For each subimage defined by this win-
dow at a particular location and scale, the current version of
the Winnow-trained classifier is asked to classify it as either
‘person’ or ‘non-person.’ This is the predicted label. The
label assigned to the subimage by the automatic labeler is
called the true label. If the true label is available (it may be
unavailable due to labeler failure), then it and the subimage
together constitute a single training example for Winnow.
Since Winnow is conservative, it learns from the example
only if the predicted and true labels disagree.

Note that the learning is done “on the fly” while scan-
ning, and there is no need to crop and store any training im-
ages as in the previous approaches. Also, finding represen-
tative negative training examples (referred to as “bootstrap-
ping” [12]) is nicely integrated into this learning scheme. In
each frame, the learner considers a large number of subim-
ages as potential non-person training examples, but learns
from only those that it does not yet know how to classify
correctly. Thus it quickly learns to ignore uninformative
non-person images.

Temporal adaptation of the classifier can be useful in
this task. For example, people’s clothing styles are signifi-
cantly different in the summer (t-shirts, shorts) and the win-
ter (bulky jackets), which affects their appearance. Instead
of learning all possible appearances at once, the learner can
simply adapt the classifier to them when necessary, thus

Initialization:
1. Compute background model (section 3.2).
2. Initialize the state of the classifier (section 4.1).

Online learning algorithm:
For each frame

Automatic labeling: (section 3.2)
3. Perform background subtraction, group
 foreground pixels into blobs.
4. Use the output from step 3 to classify all regions

 in the frame as ‘person’ or ‘non-person’, or as
 unlabeled.

Learning: (sections 3.3 and 4)
5. Scan the frame by shifting a window over
 the frame at various locations and scales.

For each window location and scale while scanning
6. Classify the subimage defined by the
 window using the current classifier state.
7. If the subimage was labeled in step 4, then
 input the subimage, its ‘true’ label from step
 4, and its ‘predicted’ label from step 6 to
 Winnow for learning.

Figure 5. Summary of the unsupervised, online learning
framework.

making more efficient use of the learner’s representational
power. The practical benefits of such adaptation, as well as
its possible transient effects on the accuracy of the classifier,
need to be studied in detail.

Some implementation details related to figure 5:
• The dimensions of the frames we use are 288x216. When
scanning (step 5), the scan window’s size is restricted to be
a multiple of 48x16, and the allowed multiples (or scales)
go from 1.00 to 5.75 in steps of 0.25. The window’s verti-
cal and horizontal shift step sizes are computed as 25% of
its height and width, respectively.
• Non-person subimages in a frame outnumber the person
subimages usually by a factor of O(100). Such a highly im-
balanced dataset is not necessarily a problem because Win-
now learns only when the predicted and true labels disagree.
So only the number of prediction mistakes per class matters,
not the actual number of training examples per class. How-
ever, to reduce computation, we use only 50 non-person
subimages (randomly selected) per frame.
• When to start using the classifier for detection is flexible.
Although the classifier’s output from scanning, computed in
step 6, is available right from the start of training, it may not
be accurate enough for detection purposes until after suf-
ficient training. In practical applications, training may be
considered sufficient after, say, the cumulative number of

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

prediction mistakes reaches a predetermined value, or the
rate of prediction mistakes becomes small.

4. Winnow, features, and virtual weights

This section describes the three main components of the
online learner: 1) Winnow, 2) the local image features, and
3) the virtual weight algorithm.

4.1. Winnow

Winnow is a close relative of the perceptron that learns a
two-class linear classifier for Boolean feature vectors. Like
the perceptron, Winnow maintains one weight per feature,
and classifies a feature vector based on the sign of the dot
product of the weight vector and the feature vector. It uses a
multiplicative update rule for changing the weights, which
allows it to learn quickly in settings with only a few rele-
vant features and many more irrelevant and redundant ones.
It can tolerate the occasional mislabeled example because
the incorrect updates caused by such errors can be reversed
by the subsequent correct examples. For a more detailed de-
scription of the algorithm, see [7]. Examples of its practical
success are [1], [11].

We use the balanced version of the Winnow algorithm
[8], shown in figure 6. It maintains two weights per
Boolean feature, one for the feature itself and the other for
its complement. The weight update multiplier α is the only
parameter to adjust. It controls how quickly the weights are
promoted or demoted. We chose α to be 2 for computational
efficiency, but other values can be used as well.

4.2. Local image features

Learning is performed on the type of local image features
used by Viola and Jones [16], rather than on the raw pixels.
An important advantage of these features is that they can be
computed efficiently at any scale using an integral image.
So, when scanning a frame with the classifier at various
scales, the classifier itself can be ‘resized,’ just by scaling
the features it uses. This makes scanning fast and efficient.
Moreover, these features can support effective learning for
object detection, as shown in [16], [17].

Figure 7 shows an example for each of the five types of
features used in training. The numerical value of a feature is
an integer, computed as the absolute difference between the
pixel sums of the black and white regions. We use a total of
8294 features for all types together. So every subimage en-
countered in a scan (figure 5, step 5) can be thought of as an
8294-dimensional integer vector. Next, we explain how we
map this vector to a high-dimensional Boolean vector space
and use virtual weights with Winnow to learn efficiently in
this space.

N-dimensional Boolean feature vector x ∈ {0,1}N.
N-dimensional weight vectors w+, w- ∈ ℜN.
Thresholds ,+θ −θ ∈ ℜ.
Weight update multiplier α > 1.

Initialization: (fig. 5, step 2)
1,1,1,1 ←−←−←+←+ θθ iwiw for all i.

Prediction: (fig. 5, step 6)

Predict 1 when .
11
∑
=

−+−>∑
=

+++ N

i
ixiw

N

i
ixiw θθ

Update: (only for incorrect prediction; fig. 5, step 7)
If true label is 0:

ix
iwiwix

iwiw αα −←−−+←+ , for all i.

.,/ αθθαθθ −←−+←+
If true label is 1:

ix
iwiwix

iwiw
−−←−+←+ αα , for all i.

./, αθθαθθ −←−+←+

Figure 6. Summary of the balanced version of the Win-
now algorithm (adapted from Littlestone [8]).

4.3. Efficient learning with virtual weights

The virtual weight algorithm maps the integer vector
to a Boolean vector representation in such a way that al-
lows Winnow to learn without explicitly computing this rep-
resentation. Therefore, even if the dimensionality of the
Boolean vector is very high, learning is still efficient.

To understand how the mapping is done, first consider
a simplified version of the problem with only one integer-
valued feature (instead of 8294 of them). Let x denote the
value of this feature. Suppose that x is delimited by the

Figure 7. Examples of the five feature types we use.
The position and size of the features with respect to
the base window size of 48x16 are varied to define an
overcomplete set of 8294 features.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

interval [0, N], without losing generality. Suppose also that
the true image classification function to be learned is linear
with respect to terms of the form x < t and x >= t, where
t is an integer in [1, N]. (For example, a conjunction or a
disjunction of such terms is a linear classification function,
while an XOR of the terms is not.) One way to learn this
function with Winnow is to define a Boolean feature of the
form x < t for each possible threshold t. Such a feature’s
value is 1 if x < t, and 0 otherwise. Then learning can be
performed on these features and their complements. A naive
implementation of this idea is to use two weights per feature
with balanced Winnow. However, this requires maintaining
2N weights (one weight-pair per threshold), which can be
computationally expensive if N is very large.

A more efficient approach is to maintain weights virtu-
ally by storing one weight for an entire interval of thresh-
olds that has the same weight. For example, the balanced
Winnow algorithm in figure 6 starts off with all the weights
set to 1. So, in the simplified version of the problem, the
Boolean features with a threshold in the interval [1, N] all
have a weight of 1 initially. Instead of storing N identical
weight-pairs to represent this situation, the virtual threshold
algorithm stores only one weight-pair and the two limits of
its associated threshold interval.

Now suppose that a training example with the local im-
age feature value x = a is given and Winnow predicts its
label incorrectly. Then in the “Update” step in figure 6, a
Boolean feature’s weight is updated differently depending
on whether its threshold is above or below a. Therefore, in-
stead of storing a single weight-pair for the interval [1, N],
now two weight-pairs have to be stored, one for the interval
[1, a) and the other for [a, N]. So in the worst case, the
number of weight-pairs increases only with the number of
prediction mistakes. When the number of mistakes is much
smaller than N , the savings in memory and computation
are significant compared to explicitly storing and updating
all the weights.

In the learning framework, we apply the same weight
representation technique described for the simple case
above to each of the 8294 local image features simultane-
ously. Training a linear image classifier on Boolean features
of the form x < t (and their complements) is a reasonable
thing to do because these features are the weak classifiers
used successfully by Viola and Jones in [16]. They show
that a linear combination of such features (computed by Ad-
aBoost) can be used to build an accurate classifier for face
detection.

Note that the Boolean vector representation of a training
image never needs to be computed explicitly, which is ad-
vantageous because it has an extremely high dimensional-
ity. We maintain weights virtually for 222,955,814 Boolean
features and their complements, so the feature vector has
a total of 445,911,628 dimensions. However, in our ex-

periments, the number of actual weights maintained during
training reaches a maximum of only about 1.7 million. In-
tuitively, one expects the curse of dimensionality to make
learning very difficult in this space. But Winnow’s ability
to quickly ignore redundant and irrelevant features allows
it to learn accurately and overcome the curse. The same
counter-intuitive strategy of learning a linear function in a
very high dimensional space is used successfully by support
vector machines [2] and tile coding-based linear function
approximation in reinforcement learning [14].

During training, many of the weights become so small
compared to the largest weight that their effect on the out-
put of the classifier becomes negligible. So we prune those
weights and their associated Boolean features, just as in
[1]. This results in large savings in computation and mem-
ory. Pruning essentially integrates feature selection into the
learning process, by throwing away features that do not help
Winnow learn an accurate classifier. In our experiments,
we prune Boolean features with a weight that is 220 times
smaller than the current largest weight. This threshold has
to be chosen carefully: if it is too small, aggressive pruning
may remove many useful features. If it is too high, a large
number of low-weight features may slow down training sig-
nificantly.

5. Person detection results

5.1. Training

To train the person detector, the algorithm in figure 5
is run on the task video stream for a period of five weeks.
During this period, a set of frames containing 1557 person
examples and 77850 non-person examples is used for learn-
ing (these examples contain the label errors mentioned in
section 3.2). Figure 8 plots the learner’s time and mem-
ory use on a Pentium 4 2.5Ghz PC. The graphs show that
the computational requirements of the framework remain
reasonable throughout training. Learning is slow early on
when a large number of weights are maintained, but it be-
comes faster as useless Boolean features are pruned away.
In the end, Boolean features computed from just 529 out of
the initial 8294 local image features remain.

5.2. Testing

We measure the accuracy of the trained detector on a set
of manually collected and labeled test frames (i.e., frames
not used for training) containing 2890 person instances and
852,001 non-person instances. Figure 9 shows the receiver
operating characteristic (ROC) of the detector on this test
set. Each frame is scanned the same way as described
in section 3.3, except with an initial scale of 2.00. This
speeds up the detection significantly for a negligible loss

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

100 300 500 700 900 1100 1300 1500
0

5

10

15

20

25

30

Frame number

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

100 300 500 700 900 1100 1300 1500
0

1

2

3

4

5

6

7

8

9

10

Frame number

T
ra

in
in

g
m

em
or

y
us

e
(M

B
)

Figure 8. Time and space requirements of the online learning algorithm as training progresses on a Pentium 4 2.5Ghz PC.
The number of weights increases rapidly early on when the learner makes a lot of mistakes. Then it starts decreasing as the
weights of many features become small and pruning removes those features. Eventually, the number of features stabilizes.

in accuracy. A 288x216 frame contains 785 windows, and
is scanned in approximately 1.6 seconds. Note that a per-
son instance is almost always detected more than once, but
many false positives are isolated single detections. So sin-
gle detections are ignored, and multiple detections are com-
bined by averaging significantly overlapping detection win-
dows. Figure 10 shows examples of test frames scanned
using the detector.

Although the test results show that reasonable accuracy
can be achieved even with an extremely simple labeler, the
detector’s performance is not entirely satisfactory. For ex-
ample, at a detection rate of 80%, its false positive rate is
0.2%, or 1/500 (about 3 false positives per two frames). In
comparison, Viola et al. [17] report a false positive rate of

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

D
et

ec
tio

n
ra

te

Figure 9. Receiver operating characteristic of the detector
on the test set.

1/15000 at the same detection rate for a pedestrian detec-
tor trained on appearance information with AdaBoost and a
hand-labeled dataset. (Since the two detection tasks are not
identical, this is only a rough comparison.)

The 30-fold higher false positive rate of our detector can
be attributed mainly to the large amount of false positive
noise generated by the automatic labeler. This problem can
be overcome to a significant extent by designing a more ac-
curate labeler. We use a very simple labeler here (in retro-
spect, perhaps too simple), and it can be improved with a
better background subtraction algorithm. With a sharp re-
duction in the false positive training examples, the accuracy
of the detector should improve significantly.

Nevertheless, in many practical applications it may be
difficult to design an automatic substitute for hand-labeling
that never generates any label noise. As a result, it would
not be surprising if a detector trained under our framework
is not as accurate as one trained on manually-labeled images
with a batch learning algorithm. The loss in accuracy is the
price to pay for eliminating hand-labeling. However, we
anticipate that for many applications this price will be small
compared to the savings in human effort.

6. Conclusions

We have proposed a new detection framework for mov-
ing objects based on a learned classifier. It has two main
benefits: 1) manual labeling is completely avoided by using
motion information to collect labeled training images, and
2) training is performed online, so the classifier needs to
learn only what is required specifically for the task, and only
when necessary. By making the classifier scene-specific
and temporally adaptive, its representational capability is

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

used more efficiently. This is in contrast to the previous ap-
proaches that train offline a fixed, scene-independent clas-
sifier with a large, hand-labeled dataset. We have also pre-
sented an efficient method that enables Winnow-based on-
line learning on the kind of features used by Viola and Jones
[16]. The viability of the framework is demonstrated with
an example person detection task.

This framework is particularly useful for applications
such as wide-area video surveillance systems, which use
hundreds of cameras in many different scenes. Instead of
training one general-purpose detector for all possible scenes
with a large amount of hand-labeled data, each camera can
have its own specialized detector automatically trained for
its limited operating environment.

References

[1] A. Blum. Empirical Support for Winnow and Weighted-
Majority Based Algorithms: Results on a Calendar Schedul-
ing Domain. Machine Learning 26, pages 5-23, 1997.

[2] C. Burges. A Tutorial on Support Vector Machines for Pat-
tern Recognition. Data Mining and Knowledge Discovery,
vol. 2, no. 2, pages 121-167, 1998.

[3] A. Elgammal, D. Harwood, and L. Davis. Non-parametric
Model for Background Subtraction. In European Confer-
ence on Computer Vision, 2000.

[4] N. Friedman and S. Russell. Image Segmentation in Video
Sequences: A Probabilistic Approach. Proc. of Conf. on Un-
certainty in Artificial Intelligence, pages 175-181, 1997.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
Based Learning Applied to Document Recognition. Proc. of
the IEEE, vol. 86, no. 11, pages 2278-2324, 1998.

[6] A. Levin, P. Viola, and Y. Freund. Unsupervised Improve-
ment of Visual Detectors Using Co-training. Proc. of ICCV,
pages 626-633, 2003.

[7] N. Littlestone. Learning Quickly When Irrelevant Attributes
Abound: A New Linear-threshold Algorithm. Machine
Learning 2, pages 285-318, 1987.

[8] N. Littlestone. Comparing Several Linear-threshold Learn-
ing Algorithms on Tasks Involving Superfluous Attributes.
Proc. of Int. Conf. on Machine Learning, pages 353-361,
1995.

[9] W. Maass and M. Warmuth. Efficient Learning with Vir-
tual Threshold Gates. Information and Computation, 141(1),
pages 66-83, 1998.

[10] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Pog-
gio. Pedestrian Detection Using Wavelet Templates. Proc. of
Computer Vision and Pattern Recognition, pages 193-199,
1997.

[11] D. Roth, M. Yang, and N. Ahuja. A SNoW-based Face De-
tector. In Neural Information Processing Systems 12, 2000.

[12] H. Rowley, S. Baluja, and T. Kanade. Neural Network-based
Face Detection. IEEE Trans. on PAMI, vol. 20, no. 1, pages
23-38, 1998.

[13] C. Stauffer and E. Grimson. Adaptive Background Mixture
Models for Real-time Tracking. Proc. of Computer Vision
and Pattern Recognition, pages 246-252, 1999.

[14] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[15] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
Wallflower: Principles and Practice of Background Subtrac-
tion. Proc. of ICCV, pages 255-261, 1999.

[16] P. Viola and M. Jones. Robust Real-time Object Detection.
Second Int. Workshop on Statistical and Computational The-
ories of Vision, 2001.

[17] P. Viola, M. Jones, and D. Snow. Detecting Pedestrians Us-
ing Patterns of Motion and Appearance. Proc. of ICCV,
pages 734-741, 2003.

Figure 10. Examples of test frames scanned with the detector.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

