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ABSTRACT Hummingbirds in flight exhibit the highest mass-specific metabolic rate of all vertebrates. The

bioenergetic requirements associated with sustained hovering flight raise the possibility of unique amino acid

substitutions that would enhance aerobic metabolism. Here, we have identified a non-conservative sub-

stitution within the mitochondria-encoded cytochrome c oxidase subunit I (COI) that is fixed within

hummingbirds, but not among other vertebrates. This unusual change is also rare among metazoans, but

can be identified in several clades with diverse life histories. We performed atomistic molecular dynamics

simulations using bovine and hummingbird COI models, thereby bypassing experimental limitations

imposed by the inability to modify mtDNA in a site-specific manner. Intriguingly, our findings suggest that

COI amino acid position 153 (bovine numbering convention) provides control over the hydration and activity

of a key proton channel in COX. We discuss potential phenotypic outcomes linked to this alteration encoded

by hummingbird mitochondrial genomes.
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Hummingbirds are distinguished by their use of sustained hovering
flight when feeding upon nectar and insects, when defending their
territories, and when carrying out courtship displays (Hainsworth
and Wolf 1972; Norberg 1996; Altshuler and Dudley 2002). Their
exceptional mobility demands a prodigious level of mitochondrial
ATP synthesis, and indeed, the metabolic rate of hummingbird flight
muscles is exceedingly high (Lasiewski 1962; Suarez et al. 1991; Clark
and Dudley 2010; Fernández et al. 2011). Many physiological and
cellular features of hummingbirds appear to be tailored to their
extreme metabolism, which can be maintained even within hypoxic
environments up to 5000 meters above sea level (Projecto-Garcia
et al. 2013). For example, hemoglobin structure (Projecto-Garcia et al.
2013) and cellular myoglobin concentration (Johansen et al. 1987)

appear to be adapted to the oxygen delivery needs of hummingbirds.
Additionally, the hearts of hummingbirds are larger, relative to their
body size, than other birds and can pump at a rate of more than
1000 beats per minute (Bishop 1997). Beyond ATP synthesis, the
metabolism of these tiny endotherms must also buffer against heat loss
(Lasiewski 1963; López-Calleja and Bozinovic 1995; Suarez and Gass
2002). At the subcellular level, adaptation to the need for increasedATP
and heat production can be readily visualized, since mitochondria in
hummingbird flight muscles are highly, perhaps maximally, packed
with cristae and are found in close apposition to capillaries (Suarez
et al. 1991; Mathieu-Costello et al. 1992). Hummingbirds display an
unexpectedly long lifespan when considering the allometric relation-
ship between body mass and longevity (Calder 1990), but whether the
hummingbird lifespan is linked to its unusual metabolic prowess is
unclear.

Within the mitochondrial inner membrane, electrons progress
through the electron transport chain (ETC), reach the cytochrome c
oxidase (COX) complex, and are then used to reduce oxygen. Proton
movements coupled to electron passage through COX contribute
to the proton motive force (PMF) used for ATP production and
thermogenesis (Wikström et al. 2018; Wikström and Sharma 2018).
While several COX subunits are nucleus-encoded and imported to
mitochondria, the core, catalytic subunits of COX (subunits COI,
COII, and COIII) are encoded by mitochondrial DNA (mtDNA)
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(Johnston and Williams 2016), raising the possibility that unusual
changes to the mitochondrial genome may have contributed to the
remarkable metabolic properties of hummingbirds. Here, we identify
an amino acid substitution in COI that is universal among hum-
mingbirds, rare and unfixed among other birds and vertebrates, and
limited to a small set of disparate clades among metazoans. Atomistic
molecular dynamics (MD) simulations suggest that this substitution
could affect COX function and may contribute to the uncommon
physiological capabilities of hummingbirds.

MATERIALS AND METHODS

Sequence acquisition, alignment, phylogenetic analysis,
and annotation

Mitochondrial proteomes were downloaded from the NCBI RefSeq
database (O’Leary et al. 2016). Taxonomy analysis was performed
using the ’taxize’ package (Chamberlain and Szöcs 2013) and the
NCBI taxonomy database (Federhen 2012), with manual curation
when required. Beyond COI sequences acquired from the RefSeq
database, additional COI barcodes were retrieved from the BOLD
server (Ratnasingham and Hebert 2007).

Alignments were performed by use of standalone MAFFT (version
7.407) (Katoh and Standley 2013) or by T-coffee (version 13.40.5) in
regressive mode (Garriga et al. 2019). For initial alignments of insect
COI barcodes, MAFFT alignment was performed using an online
server (Kuraku et al. 2013; Katoh 2017), and translations of barcodes
using the appropriate codon tables were performed using AliView
(Larsson 2014).

To seekmutations that occurred along the lineage to hummingbirds
and to measure the relative conservation of the relative positions, a
maximum-likelihood phylogenetic tree based upon an alignment of
concatenated sequences of mtDNA-encoded proteins from the RefSeq
database (release 92) was generated by FastTreeMP (version 2.1.11)
(Price et al. 2010), then FigTree (version 1.4.4, https://github.com/
rambaut/figtree/releases) was used to root the resulting tree on the edge
between birds and Bos taurus. The alignment and rooted tree were then
used as input by PAGAN (version 0.61) (Löytynoja et al. 2012) for the
purpose of ancestral reconstruction. The “binary-table-by-edges-
v2.1py” script was used to generate a table that reported upon whether
a given position was mutated along each tree edge, and the “add-
convention-to-binarytable-v.1.1.py” script was used to apply Bos taurus
positional information to the output. The predicted ancestral and
descendant values at the edge leading to hummingbirds were generated
using the script “report-on-F-values-v1.1.py”, and all possible
characters that could be found at each amino acid position of
interest across the entire tree (including Bos taurus) were extracted
by the script “extract-position-values_species_and_nodes-v1.1.py”.
Scripts developed and used during this study can be found at https://
github.com/corydunnlab/hummingbird.

Modeling and simulation

We constructed small and large model systems of bovine mitochon-
drial cytochrome c oxidase from the high-resolution (1.5 Å) crystal
structure (PDB 5B1A) (Yano et al. 2016). The large model system
comprised all thirteen subunits, whereas in the small model only two
catalytic subunits (COI and COII) were included, thereby allowing
longer timescale simulations. Both wild-type and mutant (A153S)
cases were considered within bovine model systems. The larger
protein system was embedded in a multicomponent lipid bilayer
(POPC:POPE:cardiolipin in 5:3:2 ratio) and only single component
bilayer (POPC) was used in the case of the two subunit complex, both

constructed using CHARMM-GUI (Lee et al. 2016). Solvent water
and Na+ and Cl- ions (150 mM each) were added. In both setups,
metal centers were in oxidized states with a water and an hydroxyl
ligand at heme a3 and CuB, respectively. Crosslinked Y244 was
anionic [see also (Malkamäki and Sharma 2019)]. All amino acids
were in their standard protonation states, except E242, K319 and
D364 of COI, which were kept in a neutral state. The CHARMM force
field parameters for protein, water, lipids and metal centers were
taken from (MacKerell et al. 1998; Klauda et al. 2010; Best et al. 2012).

Additional subunit COI/COII homology models of hummingbird
cytochrome c oxidase [both wild-type (S153) and mutant (A153) model
systems] were constructed using bovine structure and the predicted
amino acid sequence of Florisuga mellivora (accession YP_009155396.1).
The MODELER program (Sali and Blundell 1993) was employed, using
the default settings, to construct the homology models.

In order to test the reliability of our homology modeling proce-
dures, we first modeled bovine subunit COI/COII sequences using the
constructed homology model of hummingbird. Upon comparison of
the output with the high-resolution bovine COX crystal structure, we
found RMS deviation of backbone atoms and sidechains to be�0.3 Å
and 1.57 Å, respectively. To consolidate our modeling protocol
further, we performed similar analyses comparing the human struc-
ture [PDB 5Z62, (Zong et al. 2018)] to the constructed bovine model
and the bovine structure to the human homology model. For the
catalytic subunit (91% sequence identity), this resulted in 0.67/0.68 Å
and 1.68/1.88 Å RMSD for the backbone and sidechains, respectively.
Overall, the low RMSD values obtained during comparison of models
and structures suggest that our homology modeling procedure is
quite robust.

All MD simulations were performed with GROMACS software
(Abraham et al. 2015). Prior to production runs, all model systems
were subjected to energy minimization followed by an equilibration
MD. During equilibration, Nose-Hoover thermostat (Nosé 1984;
Hoover 1985) and Berendsen barostat (Berendsen et al. 1984) were
applied. LINCS (Hess 2008) algorithm implemented in GROMACS
was applied to achieve the time step of 2 fs. During production runs,
Nose-Hoover thermostat and Parinello-Rahman barostat (Parrinello
and Rahman 1981) were applied to keep temperature and pressure
constant at 310 K and 1 atm, respectively. The large and small model
systems of bovine oxidase were simulated for 1.5 and 3 ms, re-
spectively. The hummingbird COX wild-type and mutant models
were simulated for 1 ms each, resulting in a total of 11 ms of atomistic
simulations. VMD (Humphrey et al. 1996) was used for the visual-
ization of trajectories and analysis.

Data availability

The authors affirm that all data necessary for confirming the con-
clusions of the article are present within the article, figures, and tables.
Sequence information used for phylogenetic analysis can be found
within the Dryad data repository (https://doi.org/10.5061/dryad.
x69p8czf7). Supplemental material available at figshare: https://
doi.org/10.25387/g3.12356567.

RESULTS AND DISCUSSION

Hummingbird mitochondrial DNA encodes an unusual
cytochrome c oxidase subunit I substitution

We sought specific coding changes within mtDNA-encoded genes
that might be associated with the extreme metabolic capabilities of
hummingbirds. Toward this goal, we used software with the capacity
to predict ancestral sequences (Löytynoja et al. 2012) and software
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developed within the context of this study to identify all mtDNA-
encoded amino acid positions mutated along the lineage leading to
hummingbirds. Consistent with a link between mtDNA alterations
and the unusual metabolic properties of these animals, the lineage
leading to the family Trochilidae exhibits the greatest number of
protein changes when considering 635 internal edges of a bird
phylogenetic tree (Figure 1A). Of those 208 amino acid positions
altered along the edge leading to hummingbirds (Table S1), the most
conserved residue mutated during the establishment of humming-
birds was at COI position 153 (Figure 1B; for convenience, we use the
amino acid numbering associated with the structurally characterized
Bos taurus COI subunit). This non-conservative A153S substitution
was universal among all 15 hummingbird COI sequences obtained
from the RefSeq (O’Leary et al. 2016) database (Table S2). However,
this change was found to be absent from all other birds during
examination of an alignment of 645 Aves COI entries (Figure 1C).

Since COI is the most commonly used DNA sequence barcode for
studying animal ecology and speciation (Hill 2015; Pentinsaari et al.
2016), we next analyzed additional sequences covering the COI
region of interest that were obtained from the Barcode of Life Data
(BOLD) Systems (Ratnasingham andHebert 2007) database. Initially,
we focused upon sequences from the bird order Apodiformes, a taxon
encompassing hummingbirds and swifts. 914 of 915 informative
samples annotated as hummingbird-derived were found to carry a
serine at position 153 of COI (Table S3). The remaining sample is
mis-annotated as hummingbird, as determined by BLASTN analy-
sis of its barcode (Altschul et al. 1990). In contrast, all 110 non-
hummingbird Apodiformes samples harbored the ancestral A153.
Extending our analysis to all informative bird barcodes, only 15/36,636
samples (, 0.1%) not annotated as hummingbird or its parental clade
were divergent from alanine at position 153. Assuming that these COI
alterations were not the result of sequencing or annotation errors, we
found that changes to A153 outside of hummingbirds were not fixed
within each identified genus (Table S4). No other COI change appears
to be universally encoded by hummingbird mtDNA, and position
153 does not contact a nucleus-encoded subunit, suggesting the lack
of a single compensatory change that would lead to substitution
neutrality (Blier et al. 2001). Codons for alanine and serine are
separated by a distance of only one base pair alteration, suggesting
that sequence-level constraints do not explain the singular fixation of
the non-conservative A153S substitution in hummingbird COI. Since
A153 is nearly universal among birds, yet appears to be substituted for
serine in all hummingbirds, the A153S change within hummingbird
COI may be linked to the aerobic capacity and prolonged hovering
flight of these organisms.

Among vertebrates, the cytochrome c oxidase subunit I
A153S substitution is fixed only in hummingbirds

Beyond birds, substitution for alanine at COI position 153 was also
extremely unusual among chordates, a taxon encompassing, and
mostly represented by, vertebrates. Of 4,998 aligned Chordata se-
quences from the RefSeq dataset, only four non-hummingbird entries
suggested a possible change at amino acid 153 (Table S5). Two RefSeq
entries, from the sawtooth eel (Serrivomer sector) and the kuhli loach
(Pangio cf. anguillaris), suggest the presence of the A153S substitution
characteristic of hummingbirds. Another sequence, from the Lake
Patzcuaro salamander (Ambystoma dumerilii), harbored a A153P
substitution, and a COI entry from the air-breathing fish Polypterus

ornatipinnis contained a A153V change. Subsequent analysis of
accumulated COI barcodes from these genera suggested that any
substitution at position 153 is not fixed or that the RefSeq entries are

erroneous (Chen et al. 2017; Smith 2019). The apparent selective
pressure against changes to COI position 153 among vertebrates,
with the exception of the A153S substitution maintained within
the family Trochilidae, is consistent with the hypothesis that
this COX modification supports the extraordinary metabolism of
hummingbirds.

Substitution of A153 within cytochrome c oxidase
subunit I remains rare in metazoans, but has been fixed
within several clades

We proceeded to analyze metazoan COI sequences, and we found
that substitution at A153 remains very rare. Indeed, only 146/7942
(, 2%) of informative RefSeq COI sequences report a substitution
of A153 with any other amino acid (Table S6). In contrast to the
results obtained upon analysis of vertebrate COI sequences, these
changes appear common or fixed in a number of genera, as
supported by analysis of BOLD sequence samples. Of note, a
number of clams harbored changes at A153, including A153G,
A153I, and A153S substitutions, which we speculate could be
associated with the fluctuating oxygen concentrations commonly
encountered by these molluscs (Ivanina et al. 2016). Of the clams
encoding a A153G substitution, Calyptogena magnifica has pre-
viously been demonstrated to exhibit very low COX activity (Hand
and Somero 1983), raising the possibility that G153 could be linked
to diminished aerobic capacity within this clade. Moreover, a
number of tube worms, including the hydrothermal vent resident
Riftia pachyptila, harbored A153S substitutions. Tube worms, like
some clams, are also subject to fluctuations in oxygen concentration
and show resistance to periods of hypoxia (Arndt et al. 1998).
However, R. pachyptila exhibits much higher COX activity than
C. magnifica and maintains aerobic metabolism at low partial
pressures of oxygen (Childress et al. 1984). Within the Caenorhab-
ditis genus, some species, like C. elegans, encode an alanine at COI
position 153, while others, including C. afra, encode serine at the
same position (Table S6). Several nematodes, including Caenorhabditis
worms, can synthesize either ubiquinone, associated with aerobic
environments, or rhodoquinone, associated with anaerobicmetabolism
(Takamiya et al. 1999; Del Borrello et al. 2019; Tan et al. 2020). These
findings suggest that these organisms also encounter fluctuating oxygen
concentrations, prompting further speculation that changes to position
153 are linked to oxygen availability or consumption. The RefSeq
sequences of a diverse set of additional organisms, including beetles,
trematodes, myxozoans, and bees (discussed below), also indicated
substitution from alanine at COI position 153.

Future efforts using worms found within theCaenorhabditis clade,
which are eminently tractable for laboratory work, may provide
experimental insight regarding the outcome of the A153S substitu-
tion. However, we note that it may be challenging to compare the
effects of COI substitutions found and modeled within vertebrates to
the effects potentially manifested in metazoans beyond vertebrates, as
sequence divergence may limit potential interpretation of these
identified substitutions. For example, while bovine and hummingbird
COI, separated by�310 million years (Kumar et al. 2017), are �88%
identical along the aligned region, bovine and bee COI, separated by
more than 700 million years, are only�66% identical, and bovine and
nematode COI, also separated by greater than 700 million years, are
only �60% identical. Given that Bos taurus and the fungus Saccha-
romyces cerevisiae COI are 56% identical along the aligned region, we
would be cautious about interpreting the changes we have identified
here in the context of metazoan clades that are substantially divergent
from vertebrates.
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Figure 1 A rare alanine to serine substitution at bovine COI position 153 is universal among hummingbirds. (A) The edge leading to hummingbirds
exhibits the largest number of changes to mitochondria-encoded proteins when considering all internal edges of a bird phylogenetic tree. This
maximum likelihood tree was generated from an alignment of concatenated mitochondrial proteins from birds and Bos taurus using T-coffee in
regressivemode (Garriga et al. 2019), followed by ancestral prediction using PAGAN (Löytynoja et al. 2012). Amino acid substitutions between each
pair of ancestral and descendant nodes internal to the bird tree (node-to-node) were determined, summed across all positions, and plotted. (B)
Among those changes foundwithin the edge leading to hummingbirds, substitution at COI position 153 ismost infrequent among birds, occurring only
once. A plot demonstrating the number of times a given amino acid position was altered within the bird phylogeny is provided. (C) Serine at COI
position 153 is unique to, and universal among, hummingbirds, as confirmed by phylogenetic analysis and by examination of an alignment of 645 Aves
COI entries. Bird orders are arranged based upon a supertree modified from (Davis and Page 2014) under a Creative Commons license.
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Potential metabolic mimicry at position 153 of
cytochrome c oxidase subunit I

As we considered the A153 substitutions that we identified among
metazoans beyond the chordates, we noted the prominent presence of
A153S, and the similar non-conservative substitution A153T, within
several bee species. Analysis of BOLD samples from hymenopteran
families Apidae andMegachilidae, the “long-tongued” bees (Cariveau
et al. 2016), indicate nearly 100% substitution at COI position 153 to
either serine or threonine (Table S7), while other families of bees
harbor an ancestral alanine at position 153. Curiously, examination of
COI sequences from millions of insect samples found in BOLD
indicated that A153S and A153T conversion also characterizes many,
but not all genera within the Eristalini tribe of dipteran hoverfly
(Table S8). Intriguingly, adult hoverflies within this clade very closely
mimic adult bees visually and behaviorally (Golding and Edmunds
2000) and, similar to adult bees, consume nectar and pollen (van Rijn
et al. 2013). The identification of A153S and A153T substitutions in
both bees and hoverflies hints at the exciting possibility of convergent
evolution and metabolic mimicry, potentially rooted in diet and
foraging behavior, at the mitochondria-encoded COI protein.

Atomistic molecular dynamic simulations suggest that
substitution at COI amino acid 153 may have functional
consequences for proton transport in hummingbirds

To gain insight into the potential outcome of the A153S change
encoded by hummingbird mitochondria, we focused our subsequent
attention upon the crystal structure of a vertebrate COX. In the high-
resolution (1.5 Å) crystal structure (Yano et al. 2016) of COX from
Bos taurus (�88% identical in COI amino acid sequence to hum-
mingbird along the aligned region), COI A153 is buried in the middle
of COI transmembrane helix IV and is sandwiched between the
D-channel, which is thought to conduct protons for oxygen reduction
and PMF generation (Kaila et al. 2011; Wikström and Verkhovsky
2011), and a water-filled cavity lined with polar residues (Figure 2A).
Moreover, residue 153 is only 10 Å from E242, a residue central to
redox-coupled proton pumping by COX (Wikström et al. 2018;
Wikström and Sharma 2018). These results, together with the high
conservation at this position, suggested that alteration of A153 may
affect enzyme activity.

To further investigate the functional relevance of the A153S
change in hummingbirds, we performed atomistic classical MD
simulations on two different vertebrate model systems at differing
scales. Remarkably, multiple microsecond simulations demonstrated
changes in hydration within the vicinity of position 153 that were
coupled to the dynamics of the aforementioned E242. Specifically,
during simulations of the entire 13-subunit wild-type bovine COX
performed in membrane-solvent environment, E242 was typically
found in the ‘down’ state (x2 �60�), extending toward the D-channel
proton uptake site D91 (Figures 2B and 2D). In contrast, upon A153S
substitution, the bovine E242 commonly swung to the ‘up’ position (x2
�180�, Figures 2C and 2D). Similar findings emerged (Figures 2E-G)
from longer simulations performed on small bovine model systems,
suggesting that the observed behavior is robust. The microscopic
changes in hydration near E242 stabilized its ‘up’ position (Figures
2C and 2F) and resulted in its connection to the COI regions near the
positively charged intermembrane space via watermolecules (Figure S1).

Next, we performed simulations using a constructed humming-
bird homology model based upon the primary amino acid sequence
of the hummingbird Florisuga mellivora. Our methodology for
hummingbird homology model construction was validated by com-
parison of bovine and human COI homology models with existing

structures, which yielded low root-mean-square deviation values (see
MATERIALS AND METHODS). E242 behavior and channel hy-
dration was again dependent upon whether alanine or serine was
present at position 153 (Figure 2H-I), although the effect was less
prominent than in bovine models. Here, in the constructed hum-
mingbird model containing its wild-type S153 variant, E242 was
stabilized in the ‘down’ position. Upon S153A replacement, both ‘up’
and ‘down’ populations were observed, and increased motility was
visualized (Figure 2J) with corresponding changes to local hydra-
tion (Figure 2I). Together, our results suggest that position 153,
substituted for a polar serine in hummingbirds, can determine the
behavior of the key catalytic residue E242.

Interestingly, our simulations suggest that the behavior of addi-
tional amino acids beyond E242 may be affected by the amino acid
found at position 153. For example, our hummingbird simulation
strongly indicated that a change in F238 side chain angle is linked to
E242 motion (Figure S2) and is influenced by whether residue 153 is
an alanine or a serine. These data are supported by a GREMLIN
co-evolution analysis (Kamisetty et al. 2013), initiated by use of the
bovine COI sequence, that suggests co-evolutionary coupling be-
tween F238 and E242 (Table S9).

F238 has been suggested to play a key role in oxygen diffusion
through COX (Mahinthichaichan et al. 2018), and indeed humming-
birds are characterized by an exceptional oxygen consumption rate
during flight (Lasiewski 1962; Suarez et al. 1991; Clark and Dudley
2010; Fernández et al. 2011). Therefore, altered behavior of F238
upon A153S substitution prompted us to consider the possibility that
oxygen access to COX is augmented in the hummingbird. However,
we are equivocal regarding a scenario in which improved oxygen
access is prompted by A153S substitution. First, with caveats related
to the evolutionary divergence between bacteria and vertebrates, a
S153A substitution in bacterial COI (bacterial A-family cytochrome c
oxidases harbor a serine at this position within their catalytic subunit)
led to similar cytochrome c oxidation rates and initial proton
pumping rates (Pfitzner et al. 2000; Namslauer et al. 2007). Moreover,
although in vitro assays may not reflect respiration rates obtained
in vivo (Schwerzmann et al. 1989; Suarez et al. 1991), the oxygen
consumption rate of isolated hummingbird mitochondria, when nor-
malized to mitochondrial inner membrane area, did not notably differ
from mammalian mitochondria (Suarez et al. 1991). Nevertheless, the
tight evolutionary as well as dynamic coupling between F238 and E242
is likely of functional importance. For instance, the F238 and E242 flip
observed in hummingbird COI simulations causes partial hydration in
the region (Figure S2B), which could impede oxygen availability to the
active site. Such features may play an important role in fine tuning
overall respiration rates in a manner dependent upon external factors.

An additional COI variant ancestral for hummingbirds
and rare among other birds
One other COI variant beyond S153 appeared restricted to hum-
mingbirds (Tables S1) when considering bird sequences obtained
from the RefSeq database. Among the 15 hummingbird COI sequences
found within this dataset, nine contained a conservative V83I sub-
stitution that is found in no other bird entry (Table S2). Expanding our
analysis to Apodiformes barcodes obtained from BOLD, 110/110
non-hummingbird samples carried the V83 allele ancestral for birds.
In contrast, 671/929 informative hummingbird samples within this
dataset carried a V83I substitution, and 258/929 samples harbored a
valine at this position (Table S3). Lookingmore broadly at 36,878 bird
samples, substitution at V83 is extremely rare among birds (, 0.1%),
although unlike the A153S substitution, this V83I allele may be widely
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Figure 2 Hydration-coupled dynamics of conserved residue E242 are altered by the A153S substitution found in hummingbird COI. (A)
The D-channel of proton transfer is located near residue 153 (dotted circles) in the high-resolution crystal structure of COX from Bos taurus

(PDB 5B1A). Crystallographically resolved water molecules (purple spheres) in the domain above A153, together with nearby polar amino
acids, form a potential proton transfer path. CuB is shown in orange and high spin heme in yellow. The catalytic COI subunit is shown with
transparent ribbons and amino acids are displayed in atom-based coloring. (B-D) COI hydration and E242 side chain position are altered
by substitution at COI position 153 in a large bovine COX simulation. (B) illustrates the native structure (A153) and (C) demonstrates the
effects of A153S substitution. A red arrow highlights major changes to hydration, and water occupancy is shown as an orange coloredmesh at
an isovalue of 0.15. (D) E242 side chain dihedral angle (x2) within COI encoding A153 (black) or S153 (red) during 1.5 ms of bovine large
model simulation is displayed. Here, E242 adopts a predominant ‘up’ conformation within A153S substituted COI. (E-G), as in (B-D), but a
small bovine model simulation has been deployed. (H-J), as in (B-D), but a small hummingbird model has been simulated. In (J), S153 (red) is
wild-type and A153 (black) is mutant.
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shared among members of a limited number of non-hummingbird
genera (Table S4). Phylogenetic analyses based upon a tree of
mtDNAs obtained from RefSeq (Figure S3) or from the BOLD
database (not shown) suggest that the V83I substitution was
present at the establishment of hummingbirds, then subsequently
reverted to valine several times during expansion of this clade.
Within the COX enzyme, amino acid 83 lies within 9 Å of COI
residue D91, which contributes to proton uptake via the epony-
mous D-channel described above (Figure 2A). Position 83 is also
located within 6 Å of N80, a component of the ‘asparagine gate’
which is thought to move protons toward the active site (Henry
et al. 2009; Liang et al. 2017; Ghane et al. 2018).

What is the phenotypic outcome of these hummingbird
COI substitutions?

Raising the possibility of altered proton movement at hummingbird
COX, our results show clear changes to the behavior of key D-channel
residues and to surrounding hydration when comparing models
swapping alanine for serine, or vice versa, at COI position 153.
Interestingly, previous studies of bacterial respiration suggest that
amino acid 153 can influence coupling between electron transport
and COX proton pumping, further indicating that proton motility
may have been a focus of selection during evolution of humming-
birds. Specifically, a serine to aspartic acid change made at the
analogous amino acid position in Rhodobacter sphaeroides COI
abolished proton pumping while allowing electron transport cou-
pled to proton transfer from the periplasmic side of the bacterial
inner membrane when the enzyme was analyzed under zero PMF
conditions (Pawate et al. 2002; Namslauer et al. 2007). Further
suggesting unusual proton handling by hummingbird COX, the V83I
substitution ancestral to hummingbirds is located near the ‘asparagine
gate’ at the matrix side of the mitochondrial inner membrane, and
mutations near this site can lead to changes in the number of protons
pumped per oxygen reduction (Pfitzner et al. 2000). Also of note,
functional links have been suggested to exist (Vakkasoglu et al. 2006)
between the asparagine gate and the key E242 residue, the behav-
ior of which is clearly affected by A153S mutation.

We suggest two functional outcomes potentially prompted by the
A153S change universal to hummingbirds. First, if the bovine models
accurately reflect the outcome of this substitution, hydration dif-
ferences associated with the presence of a polar residue at position
153 may promote intrinsic uncoupling (Murphy and Brand 1988)
of COX when the PMF is high across the mitochondrial inner
membrane, even leading to the use of protons from the inter-
membrane space for oxygen reduction under conditions of high
polarization (Mills et al. 2002). Rapid, on-site decoupling of proton
pumping from electron transport may serve as a local response to
cessation of flight, when an immediate rise in matrix ATP might
lead to excessive PMF, ETC over-reduction, and reactive oxygen
species (ROS) production (Papa et al. 1997; Kadenbach 2003).
Intrinsic, local, and immediate uncoupling might be particularly
important within hummingbird muscle, where the densely packed
ETC components might generate a destructive wave of ROS linked
to inner membrane hyperpolarization. Proton conductance across
the hummingbird mitochondrial inner membrane has not, to our
knowledge, been assessed under multiple mitochondrial membrane
potentials. Such an approach could reveal enzyme uncoupling
linked to membrane hyperpolarization (Kadenbach 2003).

Second, hummingbirds require robust thermoregulation, as these
organisms exhibit high surface to mass ratios, are found at elevations
associated with low temperatures, and are subject to convective heat

loss while engaged in hovering flight (Altshuler and Dudley 2002;
Altshuler et al. 2004; Projecto-Garcia et al. 2013). Beyond potential
heat generation promoted by COX ’slip’, or decoupling of electron
transport from proton pumping (Musser and Chan 1995), results
emerging from our bovine models raise the possibility that changes
to COI hydration accompanying A153S substitution might allow
direct, albeit limited movement of protons across the inner
membrane that could contribute to non-shivering thermogenesis.
Interestingly, thermoregulation may act as an initial selective force
toward increased metabolic capacity (Bennett 1991) and therefore
may have played a particularly prominent role during the evolu-
tion of hummingbirds.

Thus far, the vertebrate mitochondrial genome remains re-
fractory to directed modification toward a desired sequence change
(Patananan et al. 2016), preventing a direct test of the hummingbird-
enriched COI substitutions in the background of a hummingbird
mtDNA or of a related, non-hummingbird mitochondrial genome.
However, we hope that future biochemical experiments, guided by
our combined use of phylogenetic analysis and atomistic simulations,
may be informative regarding the role of hummingbird-associated
COI changes. Excitingly, other changes to mtDNA-encoded ox-
idative phosphorylation machinery beyond COX are rare among
other birds yet common in hummingbirds, and these substitutions
await further analysis. Finally, while mtDNA sequence is far more
prevalent, we expect that accumulating nuclear DNA sequence
information from birds (Zhang et al. 2015) will allow analysis of
divergent, nucleus-encoded members of the oxidative phosphor-
ylation machinery and their potential roles in hummingbird
metabolism.
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