
ARTICLE

An unusual endo-selective C-H hydroarylationof
norbornene by the Rh(I)-catalyzed reactionof
benzamides
Kaname Shibata1, Satoko Natsui1, Mamoru Tobisu 1, Yoshiya Fukumoto 1 & Naoto Chatani 1

Hydroarylation is an environmentally attractive strategy which incorporates all of the atoms

contained in the substrates into the desired products. Almost all the hydroarylations of

norbornene reported to date involve an exo-selective reaction. Here we show the

endo-selective hydroarylation of norbornene in the Rh(I)-catalyzed reaction of aromatic

amides. The addition of sterically bulky carboxylic acids enhances the endo-selectivity of the

reaction. The results of deuterium-labeling experiments show that both the ortho-carbon and

the ortho-hydrogen atoms of aromatic amides were attached to the same carbon atom of the

norbornane skeleton in the hydroarylation product. These results clearly suggest that

hydrometalation or carbometalation, which are commonly accepted mechanisms for the

catalytic hydroarylation of C–H bonds, are not involved as the key step in the present

reaction, and suggest that the reaction involves a rhodium carbene complex generated from

norbornene as the key intermediate.
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Catalytic addition reactions of X–Y species to alkenes are
one of fundamental transformations in organic synthesis.
Among the various alkenes that are used in such addition

reactions, bicyclo[2.2.1]hept-2-ene (norbornene) has been
extensively used in a variety of addition reactions, including
hydroboration, hydrosilylation, hydroamination, carbometala-
tion, carboesterification, and silylmetalation, because of the high
reactivity of its C–C double bond due to ring strain1. In most

cases, addition reactions of norbornene have been reported to be
exo-selective, irrespective of the reaction mechanism, and
numerous attempts have been made to explain the origin of this
selectivity (Fig. 1)2, 3.

Numerous advances in the catalytic activation of C–H bonds
have been made in the past decades4–14. While a wide variety of
functionalizations of C–H bonds has been reported to date, the
hydroarylation of alkenes is the most direct and atom-economical
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Fig. 1 Conventional key steps in catalytic addition reactions to norbornene. Irrespective of the mechanism, the addition reactions of X–Y species to
norbornene proceed in an exo-manner
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Fig. 2 Endo-selective hydroarylation of C–H bonds with norbornene. There are many examples of the exo-selective hydroarylation of C–H bonds with
norbornene, but none of an endo-selective hydroarylation. An acetate ligand on the rhodium catalyst has a significant effect on the efficiency of the reaction

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01531-2

2 NATURE COMMUNICATIONS |8:  1448 |DOI: 10.1038/s41467-017-01531-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


reaction for preparing alkylarenes, because all of the atoms of the
substrates and reagents are incorporated into the desired pro-
ducts. There are many reports on the reaction of C(sp2)–H bonds
with norbornene15–36. Although the hydroarylation of norbor-
nene has been extensively studied, almost all of the examples
reported to date have involved an exo-selective reaction or the
stereochemistry of the reaction products was not clearly
demonstrated, irrespective of the mechanism including hydro-
metalation, carbometalation, heteroatom-metalation, and
Friedel–Crafts type reactions. To the best of our knowledge, only
a single, specific example of the endo-selective hydroarylation of
norbornene has been reported. In that report, the reaction of
mesitylene with norbornene in the presence of a W(II) carbonyl
complex gave the endo product exclusively, however curiously,
benzene, toluene, and p-xylene gave only exo-products as a single
isomer, but the details of the reaction were not discussed19.

Herein, we report on an unusual, endo-selective hydroarylation
of norbornene that proceeds via the Rh(I)-catalyzed reaction of
aromatic amides by taking advantage of an 8-aminoquinoline
directing group5. The available evidence, based on deuterium-
labeling experiments, suggests that a carbene mechanism is
involved.

Results
Reaction development and optimization. We initiated our study
by investigating the reaction of the aromatic amide 1a with
norbornene under our previously reported hydroarylation con-
ditions (Fig. 2)37–40. The reaction of amide 1a (0.3 mmol) with
norbornene (0.6 mmol) in the presence of [Rh(OAc)(cod)]2
(0.0075 mmol) as the catalyst in toluene (1 mL) at 160 °C for 12 h

gave an 8.0:1 mixture of the hydroarylation product 2a in an
isolated yield of 89%. Fortunately, the major isomer was obtained
in crystalline form and was recrystallized from hexane/EtOAc.
Unexpectedly, an X-ray crystallographic analysis clearly showed
that the major isomer of 2a was the endo-isomer. Encouraged by
this unusual but promising result, the effect of directing groups
was examined. No reaction occurred when 2-methyl-N-(naph-
thalen-1-yl)benzamide (3) was used as the substrate. Further-
more, when quinolin-8-yl 2-methylbenzoate (4) and N,2-
dimethyl-N-(quinolin-8-yl)benzamide (5) were used in place of
1a as the substrate, no reaction took place. These results indicate
that the presence of both a quinoline N(sp2) atom and a proton
on the amide nitrogen is essential for the reaction to proceed. The
use of 2-pyridinylmethylamine, as in the case where 6 was used as
the substrate did not give the expected hydroarylation product,
but, rather, a complex mixture was obtained. The reaction of N-
pentafluoropheny benzamide 7 resulted in no reaction. Thus, the
presence of an 8-aminoquinoline directing group is crucial for the
success of the reaction.

The nature of the catalyst was next examined. Curiously, when
[RhCl(cod)]2 was used as the catalyst in place of [Rh(OAc)(cod)]2,
no hydroarylation product 2a was produced (Fig. 2, entry 2).
However, when KOAc was used as an additive, 2a was produced in
good yield (Fig. 2, entries 3 and 4), suggesting that an acetate ligand
on the rhodium catalyst has a significant effect on the efficiency of
the reaction. Among the rhodium complexes examined, [Rh(OAc)
(cod)]2 gave the best results. A shorter reaction time, lower reaction
temperature, and low catalyst loading all resulted in a decreased
conversion of 1a (Fig. 2, entries 7–9).

To increase the yield of the hydroarylation product and to
increase the endo-selectivity of the reaction, various parameters
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Fig. 3 Endo-selective hydroarylation of C–H bonds with norbornene. The use of bulky carboxylic acids as additives dramatically improved the
endo-selectivity of the reaction
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were examined in the reaction of meta-phenyl-substituted amide
1b (Fig. 3). The solvent had no significant effect on product yield
(Fig. 3, entries 1–6). None of the hydrocarbon solvents examined
resulted in an improved endo-selectivity. However, the use of 4-
methyltetrahydropyrane as a solvent gave a low ratio of endo/exo
(Fig. 3, entry 6). The addition of a carboxylic acid as an additive
improved the endo-selectivity. It is noteworthy that the use of
bulky carboxylic acids as additives dramatically improved the
endo-selectivity: 4.5:1 for no acid, 10.3:1 for pivalic acid, 13.4:1 for
2,6-Me2C6H3COOH (Fig. 3, entries 1, 7, and 10). Finally, the use
of 3 equivalents of pivalic acid or 2,6-dimethylbenzoic acid gave
the best results in terms of both conversion and endo-selectivity.
However, trace amounts of unidentified byproducts were
produced when carboxylic acids were used as additives, the
formation of which frequently caused some difficulties in
isolating the main products in pure form.

Substrate scope. The scope of amides was investigated by carrying
out the reaction in the presence of 3 equivalents of pivalic acid or
2,6-dimethylbenzoic acid (Fig. 4). A number of functional groups,

including dimethylamino, methoxy, acetoxy, fluoro, bromo, and
trifluoromethyl groups, were tolerated in the reaction. It was worth
noting that meta-substituted aromatic amides exhibited excellent
regioselectivity to give the corresponding hydroarylation products at
the less-hindered C–H bonds, irrespective of the electronic nature
of the substituent. Curiously, the electronic nature of the substituent
also affected the endo-selectivity of the reaction. Thus, an electron-
donating substituent tended to result in a higher endo-selectivity. In
sharp contrast, five-membered heteroaromatic amides gave a sig-
nificant amount of the exo-isomer. It is noteworthy that the reaction
of a furancarboxamide 1r gave the exo-product 2r as a single iso-
mer, the absolute structure of which was confirmed by X-ray
crystallographic analysis. The other heteroaromatic amides gave a
nearly 1:1 ratio of the hydroarylation products.

Norbornene derivatives, such as benzene-fused norbornene,
naphthalene-fused norbornene, and 2,3-diazabicyclo[2.2.1]hept-
5-ene were also found to participate in the present reaction to
give the corresponding hydroarylation products 8–10. The
stereochemistry of the major isomer of 10a was confirmed to
be the endo form by X-ray crystallographic analysis.
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In competition experiments (Supplementary Table 1), an
electron-donating group facilitated the reaction when it was
carried out in the absence of a carboxylic acid. In contrast, the
electronic nature of the substituent had no effect on the efficiency
of the reaction in the presence of a carboxylic acid as the additive.

Mechanistic insights. If hydrometalation or carbometalation,
commonly accepted mechanisms for catalytic hydroarylation
reactions were to be involved as the key step, exo-selective
hydroarylation would be expected to occur, as has been observed
in most reported examples15–36. However, a high degree of endo-

selectivity was observed in the present system, which suggests that
neither hydrometalation nor carbometalation are involved as the
key step in this reaction. In an attempt to gain more insights into
the mechanism of the reaction, deuterium-labeling experiments
were carried out (Fig. 5). In the reaction of 1a–d7 with norbor-
nene, a significant amount of H/D exchange occurred in the
recovered amide, but only at the ortho-position, even when a
short reaction time (30 min) was used (Fig. 5a) and it is note-
worthy that a deuterium atom was incorporated only in the 2-
position of the norbornane ring in the product, based on2H NMR
spectral data. When the reaction was carried out in the absence of
norbornene, a significant amount of H/D exchange was also
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Fig. 5 Deuterium-labeling experiments. a–c A significant amount of H/D exchange occurred in the recovered amide, and both the ortho-carbon and the
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observed, but again only at the ortho-position (Fig. 5b). The
proton source of the H/D exchange appears to be an NH bond.
This H/D exchange between the ortho-C–H bond and the NH
bond in 1a–d7 was very rapid, making the result complicated.
Because of the fast H/D exchange of the starting amide, the ratio
of the deuterium atom incorporated at the 2-position of the
norbornane ring is approximately 50% (0.50 H) (Fig. 5a). It is
noteworthy that a deuterium atom was incorporated only in the
2-position of the norbornane ring in the product while no deu-
terium atoms were detected at any other position, based on2H
NMR spectral data. Thus, the ortho-carbon and the ortho-
hydrogen atoms of the aromatic amides attached to the same
carbon atom of the norbornane skeleton in the product. The same
result was also observed in the reaction of 1a–d7 with dihy-
drofuran39. This kind of the bond connection has never observed
in other systems. To make the results more clear, the reaction of
1a–d8 was examined (Fig. 5c). As expected, the ratio of incor-
porated proton atoms at the ortho-position decreased to 19%
(0.19 H) and the ratio of deuterium incorporation at the 2-
position of the norbornane skeleton increased to 80% (0.20 H),
but deuterium incorporation adjacent to the N(sp2) atom of the
quinoline ring was also detected by 1H NMR, indicating that
protons in the quinoline ring can also serve as a proton source for
the H/D exchange. It should be noted that deuterium atoms were
again detected only at the 2-position in the norbornane skeleton
of the hydroarylation product. In sharp contrast, different results
were obtained when five-membered heterocyclic substrates were
used. Thus, exo-products were selectively produced (Fig. 4) and
no deuterium incorporation was observed in the norbornane ring
of the product obtained from 1r (Fig. 5d), suggesting that two
different mechanisms are operating, depending on the structure
of the substrate. Because a rapid H/D exchange in the starting
amides was observed, the results obtained from deuterium-
labeling experiments were complicated. To avoid such compli-
cated results, a deuterium-labeled benzene-fused norbornene was
used in attempt to develop a better understanding of the reaction

mechanism (Fig. 4). The reaction of 1a with the deuterium-
labeled benzene-fused norbornene gave the hydroarylation pro-
duct 8 in which 0.93 H was observed at the 2-position of the
norbornane ring, indicating that one of the deuterium atoms
migrates to the adjacent carbon.

A plausible mechanism for the endo-selective hydroarylation is
shown in Fig. 6. The coordination of the N(sp2) atom in the
quinoline ring and the NH in amide 1 to a rhodium center gives
the Rh(I)X species A. The electrophilic addition of norbornene to
the rhodium complex A gives complex B, which undergoes a
hydride shift to give the rhodium carbene complex C41. The
oxidative addition of the ortho-C–H bond to the rhodium center
followed by a hydride migration from the rhodium center to the
carbene carbon gives E42, which undergoes reductive elimination
to give the hydroarylation product 2 with the regeneration of the
Rh(I) species. The stereo-determining step is the hydride
migration from the rhodium center to the carbene carbon in D
(D→ E), which proceeds from the exo-face because it is more
accessible. As the alternative mechanism, the concerted oxidative
addition of C–H bonds directly from C to E or the elimination of
HX form D followed by re-addition of HX to F cannot be
excluded. Irrespective of the mechanism, the reaction, which
involves the generation of a rhodium carbene complex from an
alkene, is a rare occurrence. As shown in Fig. 5a and c, when the
reaction is conducted using a deuterium-labeled substrate, a
deuterium atom is incorporated exclusively at the 2-position of
the norbornane ring of the hydroarylation product and no
deuterium atoms were detected at any other positions in the
norbornane skeleton. The proposed mechanism, which involves
the formation of the rhodium carbene complex C, is consistent
with the deuterium-labeling data, although we currently have no
direct experimental evidence for the generation of the rhodium
carbene C. While diazo compounds are commonly used for the
generation of metal carbenes, a metal carbene complex can also
be generated from tosylhydrazones, triazoles, alkynes and
cyclopropenes and these methods have been extensively used in
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organic syhnthesis43, 44. In sharp contrast, the generation of a
carbene complex from a simple alkene is very rare45, 46. To better
understand the details of the reaction mechanism, attempts to
trap the rhodium carbene complex are currently underway. In the
case of five-membered heteroaromatic system, the reaction
proceeds through a conventional hydrometalation or carbome-
talation mechanism, although we are unable to explain the
difference in the mechanism at the present stage.

In summary, we report an unusual example of an endo-
selective hydroarylation with norbornene. The use of an 8-
aminoquinoline as a directing group is crucial for the success of
the reaction. The addition of sterically bulky carboxylic acids was
found to enhance the endo-selectivity of the reaction. A high
degree of endo-selectivity was observed for a broad range of
substrates with a high functional group tolerance. This reaction is
a complementary method to the previously reported reaction
which leads to the selective production of exo-isomer15–36. The
results of deuterium-labeling experiments indicate that hydro-
metalation and carbometalation steps, which are commonly
thought to be key steps in catalytic hydroarylation reactions
reported thus far are not involved in the present reaction, instead,
the generation of a carbene from norbornene is proposed. The
proposed carbene mechanism is consistent with deuterium-
labeling data obtained for the reaction. The most important role
of a directing group in C–H functionalization is to permit the
catalyst to come into close proximity to the C–H bonds, resulting
in the regioselective cleavage of such bonds. However, the present
results indicate that the directing group also has the potential to
alter the mechanism. In this context, the design of a new directing
group continues to be important in terms of developing new types
of C–H functionalization that cannot currently be achieved when
commonly used directing groups are used.

Methods
General procedure for the Rh(I)-catalyzed hydroarylation of aromatic amides
with norbornene. To an oven-dried 5 mL screw-capped vial, 3-fluoro-2-methyl-N-
(quinolin-8-yl)benzamide (1n) (84 mg, 0.3 mmol), 2-norbornene (57 mg, 0.6
mmol), [Rh(OAc)(cod)]2 (4.1 mg, 0.0075 mmol), pivalic acid (92 mg, 0.9 mmol)
and toluene (0.5 mL) were added. The mixture was stirred for 12 h at 160 °C and
then allowed to cool. The resulting mixture was filtered through a celite pad, the
filtrate was washed with saturated aqueous NaHCO3 (10 mL) and the organic
phase concentrated in vacuo. The residue was purified by column chromatography
on silica gel (eluent: hexane/EtOAc = 50/1) to afford the alkylation product 2n
(104.4 mg, 93%, endo:exo= 16.3:1) as a colorless oil.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files, and
also are available from the corresponding author upon reasonable request.
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