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ABSTRACT

In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of
Babcock published in 1961. Here we present a modification and extension of Leighton’s model. Using the axisymmetric component
(longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated
toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location
of the toroidal flux. The model includes the effects of (i) turbulent diffusion at the surface and in the convection zone; (ii) poleward
meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (iii) latitudinal differential rotation and the
near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux
emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters
relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic
field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source
term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows
that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry
out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that
provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference
between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s−1, turbulent
diffusivity below about 80 km2 s−1, and dynamo excitation not too far above the threshold (linear growth rate less than 0.1 yr−1).
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1. Introduction

Babcock (1961) proposed a scenario describing the cyclic solar
dynamo in terms of a consistent physical approach based on ob-
servational results. These were basically the (latitudinal) differ-
ential rotation, the polarity rules of sunspot groups and their sys-
tematic tilt with respect to the east-west direction, the reversals
of the global dipole field in the course of the solar cycle together
with the relationship between its orientation and the sunspot po-
larities. In Babcock’s scenario, the poloidal magnetic field repre-
sented by the global dipole is wound up by differential rotation.
Loops of the resulting azimuthal field rise owing to magnetic
buoyancy and break through the surface, thus forming sunspot
groups and bipolar magnetic regions (BMRs). These are tilted
in the observed sense because of the poloidal field component
provided by the global dipole1. The BMR tilt leads to a prefer-
ential cancellation of leading-polarity magnetic flux across the
equator, leading to an amount of net following-polarity flux on
each hemisphere. As this flux spreads over the hemisphere and
migrates poleward, it eventually cancels and reverses the global
dipole field. This field is the source of the (reversed) toroidal
field of the next activity cycle, thus leading to a 22-yr magnetic
cycle.

1 Interestingly, Babcock does not comment on the fact that the lati-
tude dependence of the resulting BMR tilt according to his model is
in conflict with observation (Joy’s law). Nevertheless, although he ne-
glected the effect of the Coriolis force on rising flux bundles, his original
scenario can work as a proper dynamo owing to the non-axisymmetric
character of flux emergence.

Leighton (1969, hereafter referred to as L69) condensed
Babcock’s scenario into a mathematical model in the form of
two coupled partial differential equations (in time and latitude),
representing the toroidal and poloidal components of the az-
imuthally averaged (axisymmetric) magnetic field. He added ra-
dial shear to the differential rotation and treated the transport of
surface magnetic flux by supergranular flows in terms of a diffu-
sion model (random walk of flux elements, Leighton 1964).

The dynamo model of Parker (1955) differs conceptually
from that of Babcock and Leighton in the mechanism envisaged
for the reversal and regeneration of the poloidal field. He consid-
ers correlations between small-scale convective motions brought
about by the systematic effect of the Coriolis force in a rotating
system. This approach was later systematically worked out by
the Potsdam group in terms of mean-field turbulence theory (see,
e.g., Krause & Rädler 1980), leading to the α-effect paradigm
(turbulent dynamo). Although the resulting dynamo equations
(in the 1D case with only latitudinal dependence) are mathemat-
ically similar to the corresponding equations of Leighton (see
Stix 1974), this must not obscure the fundamental conceptual
difference between the two approaches. The turbulent dynamo
relies on the collective effect of small-scale correlations through-
out the convection zone, while the Babcock-Leighton (BL) ap-
proach is based upon the actually observed properties and evo-
lution of active regions at the solar surface. In particular, it is the
large bipolar regions emerging not too far from the equator that
contribute most to the (re)generation of the poloidal field in the
BL model.

Article published by EDP Sciences A52, page 1 of 11

https://doi.org/10.1051/0004-6361/201629746
http://www.aanda.org
http://www.edpsciences.org


A&A 599, A52 (2017)

The structure of the dynamo equations for both approaches
permits cyclic solutions with propagating dynamo waves re-
sembling the latitudinal propagation of the activity belts in
the course of the solar cycle, provided that rotational shear is
mainly in the radial direction2. When helioseismic observations
proved this assumption wrong (Duvall et al. 1984) and a sys-
tematic poleward meridional flow was detected at the surface
(starting with Howard 1979), the propagation of the activity
belts was alternatively ascribed to equatorward magnetic flux
transport by a deep latitudinal return flow toward the equator
(Wang et al. 1991; Choudhuri et al. 1995). In parallel, numeri-
cal models treating the evolution of the large-scale surface mag-
netic field as a result of the combined effects of flux emergence
in tilted bipolar regions, differential rotation, meridional flow,
and supergranular random walk (treated as turbulent diffusion)
successfully reproduced observations, including the reversals of
the polar fields during cycle maxima, and thus validated a cen-
tral concept of the Babcock-Leighton scenario (for reviews, see
Mackay & Yeates 2012; Jiang et al. 2014; Wang 2016). This led
to a revival of interest in this concept (Wang & Sheeley 1991)
with a first update of the L69 dynamo model by Wang et al.
(1991). Eventually, this brought about the development of spa-
tially 2D Babcock-Leighton-type flux-transport dynamo (FTD)
models (see reviews by Charbonneau 2010; Karak et al. 2014),
which recently have been extended to include 2D surface trans-
port (Lemerle et al. 2015) or even to spatially 3D treatment
(Miesch & Teweldebirhan 2016). These models are able to re-
produce key features of the solar activity cycle if their parameters
are properly “tuned”. In particular, the results depend strongly
on the assumptions about the turbulent diffusivity and about the
spatial structure of the meridional circulation in the convection
zone (Charbonneau 2010; Karak et al. 2014).

Recently, additional information concerning the operation of
the solar dynamo has become available. Wang & Sheeley (2009)
and Muñoz-Jaramillo et al. (2013) showed that the polar fields
(or proxies thereof, such as the minima of the open heliospheric
flux or of geomagnetic activity) at activity minimum is a good
proxy for the strength of the following solar cycle. Thereafter
Cameron & Schüssler (2015) showed by a mathematical argu-
ment that the net toroidal flux in a solar hemisphere produced
by differential rotation is determined by the emerged magnetic
flux at the solar surface. They also found that the latitudinal dif-
ferential rotation is by far the dominant generator of net toroidal
flux, while the near-surface shear layer (Thompson et al. 1996;
Barekat et al. 2014) only plays a minor role. Considering the ob-
served distribution of magnetic flux at the solar surface, these
authors also showed that the poloidal flux relevant for the gener-
ation of net toroidal flux is mostly connected to polar fields, i.e.,
the axial dipole field. These results strongly support the validity
of the Babcock-Leighton scenario.

Cameron & Schüssler (2016) used the observed properties of
the sunspot butterfly diagrams observed since 1874 to infer the
turbulent magnetic diffusivity affecting the toroidal field in the
convection zone. They found the turbulent diffusivity to be in
the range 150–450 km2 s−1, which is consistent with simple es-
timates from mixing-length models and thus puts the solar dy-
namo in the “high-diffusivity” regime (cf. Charbonneau 2010).

Given the relevant observational results obtained since 1969,
namely, the systematic poleward meridional flow at the surface

2 Actually, in Leighton (1969) there is a model with a latitudinally
propagating dynamo wave in the absence of radial shear. However, this
result is due to an unphysical feature in his formalism, which leads to a
violation of the condition ∇ · B = 0 (see Appendix).

(which actually was already conjectured by Babcock in his 1961
paper), the measurement of the differential rotation in the con-
vection zone by helioseismology, together with the inference of
a high turbulent diffusivity, a new update of the L69 model seems
in order. The simplicity of the spatially 1D approach minimizes
the number of free parameters (and functions) and yet allows us
to include all relevant physical ingredients. Since it is compu-
tationally inexpensive, extensive parameter studies can be car-
ried out and very long runs covering thousands of cycles can be
performed, thus permitting statistical studies, e.g. for compari-
son with long-term results obtained from cosmogenic isotopes
(Usoskin 2013).

This paper is structured as follows. In Sect. 2 we outline
the model assumptions and the mathematical formulation of our
model. As a validation, the results of the model are compared to
those of 2D flux transport dynamo codes in Sect. 3. Results of an
extended parameter study are shown in Sect. 4. Our conclusions
are given in Sect. 5. The Appendix points out an unphysical fea-
ture in Leighton’s original formulation that leads to latitudinal
dynamo waves in the absence of radial shear.

2. Model

2.1. The Leighton (1969) model

The basic concept of the original L69 model is to condense the
Babcock scenario into a system of two partial differential equa-
tions (depending on time and latitude) for the azimuthally av-
eraged radial magnetic field at the surface, Br, and azimuthal
field, Bφ, located in a narrow layer below the surface. While the
surface field undergoes a random walk described as turbulent
diffusion, there is no diffusion for Bφ, which is built up by latitu-
dinal differential rotation as observed at the surface and latitude-
dependent radial shear in a narrow subsurface layer. The source
of the radial field is provided by flux eruption in tilted bipolar
magnetic regions, which is described by a double-ring formal-
ism. Flux eruption is assumed to require a minimal azimuthal
field strength and contains a random element.

2.2. The updated model

The model described here follows the general concept of the
L69 model. Modifications and new features reflect results ob-
tained after the publication of the original model. The key fea-
tures of our updated model are summarized in the following list.

– As second variable besides the radial field at the surface we
consider the radially integrated toroidal flux (per unit length
in the latitudinal direction) in the convection zone.

– Radial surface field and toroidal flux in the convection zone
are both affected by turbulent diffusion and meridional flow.
The turbulent diffusivities at the surface and in the convec-
tion zone can take different values. There is no diffusive
emergence of toroidal flux at the surface and no radial trans-
port of toroidal flux at the bottom of the convection zone.
The meridional flow is poleward at the surface and equator-
ward in the part of the convection zone where the toroidal
flux resides.

– The rotation rate varies latitudinally according to the surface
rate and radially according to the near-surface shear layer
(NSSL) found by helioseismology (Thompson et al. 1996).

– Effects of downward convective pumping are included.
– Flux emergence in tilted BMRs is described by a source term

for the radial surface field formally similar to the α-term of
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mean-field theory. Its specific form reflects the latitude de-
pendences of the Coriolis force and of the azimuthal length
of toroidal flux bundles. There is no threshold toroidal field
strength for flux emergence.

– Flux emergence does not deplete the reservoir of toroidal
subsurface flux (Parker 1984). Toroidal field is removed
by cancellation and “unwinding” (Wang & Sheeley 1991;
Cameron & Schüssler 2016).

In contrast to the earlier update to the L69 model by Wang et al.
(1991), who already incorporated meridional flow and diffusion
of the toroidal field, our treatment does not require us to make
assumptions about the location and structure of the toroidal flux
in the convection zone. Furthermore, we now include the effect
of the NSSL and of downward convective pumping.

2.3. Equations

The mathematical model consists of two coupled equations rep-
resenting the evolution of the axisymmetric component (az-
imuthal average) of the magnetic field as a function of time and
colatitude under the influence of differential rotation, meridional
flow, and turbulent diffusion. The first equation characterizes the
evolution of the radially integrated toroidal flux in the convec-
tion zone per unit colatitude. The second equation describes the
evolution of the radial component of the field at the visible solar
surface, Br,R⊙ , in terms of the surface flux transport (SFT) model.

In spherical polar coordinates (r, θ, φ), the φ-component of
the induction equation for the mean (azimuthally averaged) mag-
netic field is given by
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The components of the mean velocity correspond to differential
rotation, Uφ = Ω(r, θ)r sin θ, mean meridional flow, Uθ, and con-
vective pumping, Ur. The symbol η(r) represents the turbulent
diffusivity, for which we allow a radial dependence. We consider
the toroidal flux (per unit colatitude) integrated radially between
the bottom of the convection zone at r = Rb and the solar surface,
i.e.,

b(θ, t) =

∫ R⊙
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Bφ(r, θ)rdr . (2)

Integrating Eq. (1) we obtain
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The first two terms on the right-hand side represent the genera-
tion of toroidal flux by radial and latitudinal differential rotation,
Ω(r, θ). The third and fourth terms refer to transport of toroidal

flux by convective pumping (radial) and meridional flow (radial
and latitudinal). The last two terms describe the effect of (turbu-
lent) diffusion.

The formulation in terms of integrated toroidal flux avoids
the need to specify a storage region for the toroidal flux. In or-
der to further evaluate Eq. (3) we nevertheless have to make the
following assumptions about the magnetic field and flows in the
convection zone:

– Magnetic flux does not penetrate into the radiative interior
beneath the convection zone. This entails Br = 0 at r = Rb,
together with the absence of radial transport (Ur = 0 at
r = Rb), as well as by radial diffusion (∂rBφ/∂r = 0 at
r = Rb). These are reasonable assumptions considering the
strong entropy barrier at the interface to the radiative interior.

– Downward convective pumping expels the horizontal field
components in the near-surface shear layer (NSSL) located
in the uppermost part of the convection zone, so that Bθ =
Bφ = 0 in the NSSL (cf. Karak & Cameron 2016). This en-
tails Bφ = ∂(rBφ)/∂r = 0 at r = R⊙).

– The poloidal field (Br, Bθ) does not penetrate into the con-
vection zone part of the tachocline. This assumption is jus-
tified since, firstly, most of the tachocline is located be-
low the convection zone in lower latitudes and, secondly,
unless convective pumping is extremely strong, only a mi-
nor part of the radial magnetic flux actually reaches down
to the convection zone part of the tachocline in the higher
latitudes. Furthermore, it is unclear whether the tachocline
shear can at all generate a substantial amount of toroidal flux
(Vasil & Brummell 2009; Spruit 2011), and the presence of
a tachocline does not prevent solar-like cyclic dynamo ac-
tion in fully convective stars (Route 2016; Wright & Drake
2016).

– The radial shear vanishes between the NSSL and the top
of the tachocline. In low and middle latitudes, this is justi-
fied by the results of helioseismology. Some deviation from
this assumption is taken into account by introducing an addi-
tional parameter, ǫ. Anyway, such deviations can only affect
the latitudinal distribution, but not the total amount of the
net toroidal flux in each hemisphere (Cameron & Schüssler
2015).

These assumptions locate the generation of toroidal flux by ra-
dial shear in the NSSL while the generation by latitudinal shear
occurs in the bulk of the convection zone below the NSSL. Us-
ing these assumptions, the generation of toroidal flux by dif-
ferential rotation, which is described by the first two terms
on the right-hand side of Eq. (3), has been worked out by
Cameron & Schüssler (2016, Appendix), who obtained

(

∂b

∂t

)

DR

= sin θR2
⊙Br,R⊙

(

ΩR⊙ −ΩRNSSL

)

−
∂ΩRNSSL

∂θ

∫ θ

0

sin θR2
⊙Br,R⊙dθ, (4)

where ΩRNSSL
(θ) and ΩR⊙ (θ) are the latitudinal angular velocity

profiles at the bottom of the NSSL, RNSSL, and at the surface,
respectively. For the surface rotation rate we use the synodic
rate for magnetic fields determined by Hathaway & Rightmire
(2011),

ΩR⊙ (θ) = 14.30 − 1.98 cos2 θ

− 2.14 cos4 θ [◦/day]. (5)
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To define the latitude profile of the angular velocity at the bot-
tom of the NSSL we start from the near-surface profile deter-
mined from helioseismology by Schou et al. (1998) and add a
latitude-independent value of 0.53◦/day following Barekat et al.
(2014), who found that radial shear in the NSSL is independent
of latitude. Thus we obtain

ΩRNSSL
(θ) = 14.18 − 1.59 cos2 θ

− 2.61 cos4 θ + 0.53 [◦/day]. (6)

Next we consider the transport terms on the right-hand side of
Eq. (3). The third term, which describes radial advection, can be
directly integrated and it vanishes since Ur = 0 at the bottom
and Bφ = 0 at the top. The fourth term (latitudinal advection) is
rewritten in the form

−
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≡ −
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b

)

,

(7)

where Vθ = R⊙Uθ/r is a weighted average of the latitudinal
meridional flow in the depth range where the toroidal flux re-
sides. We assume this to represent the equatorward return flow
of the meridional flow at the surface and write, for simplicity,
Vθ = V0 sin(2θ), where V0 > 0 is a free parameter of the model.

Finally, we consider the diffusion terms in Eq. (3), i.e., the
fifth and sixth terms on the right-hand side. The fifth term van-
ishes since we assume that there is no diffusive flux of toroidal
field over the radial boundaries of the convection zone. To
rewrite the sixth term we assume that the turbulent diffusivity
has a radial profile given by η(r) = η0(r/R⊙)2. This leads to
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. (8)

Adding all contributions together, we obtain
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. (9)

To describe the evolution of the radial component of the az-
imuthally averaged field at the visible solar surface, Br,R⊙ , we
consider the axisymmetric component of the SFT model (see,
e.g. Cameron & Schüssler 2007; Jiang et al. 2014) given by

∂Br,R⊙

∂t
= −

1

R⊙ sin θ

∂

∂θ

(

Uθ,R⊙Br,R⊙ sin θ
)

+
ηR⊙

R2
⊙ sin θ

∂

∂θ

(

sin θ
∂Br,R⊙

∂θ

)

+ S (θ, t). (10)

Here Uθ,R⊙ is the poleward meridional flow velocity at the sur-

face, for which we take Uθ,R⊙ = −U0 sin(2θ) with U0 = 15 m s−1

according to observations (e.g. Gizon et al. 2010). The surface

diffusivity, ηR⊙ , describes the random walk of magnetic flux ele-
ments transported by supergranular flows (Leighton 1964). The
source term S (θ, t) represents the emergence of new flux at the
solar surface in the form of tilted bipolar magnetic regions. It is
convenient to introduce the quantity

a(θ, t) =
1

sin θ

∫ θ

0

sin θR2
⊙Br,R⊙dθ, (11)

which is proportional to the φ-component of the vector potential
for Br,R⊙ . In terms of a(θ, t), Eq. (10) is
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)

+ aS(θ, t), (12)

where aS is the source term due to flux emergence written in
terms of a. Here we take

aS(θ, t) = α cos θ sinn θ b(θ, t), (13)

where the proportionality constant α and the integer n are free
parameters of the model. The source term, which is formally
similar to the α-effect term in mean-field turbulent dynamo the-
ory, is assumed to be proportional to the amount of radially
integrated toroidal flux. The factor cos θ reflects the latitude-
dependence of the Coriolis force thought to be responsible for
the tilt of bipolar magnetic regions. The factor sinn θ reflects the
latitude dependence of the probability of flux emergence. In most
cases we assume n = 1, which corresponds to a constant emer-
gence probability per unit length of the toroidal field lines.

Introducing the definition of a(θ, t) into Eq. (9), we obtain
the final equation for the integrated toroidal flux, i.e.,

∂b

∂t
=
∂a sin θ

∂θ
ǫ
(

ΩR⊙ −ΩRNSSL

)

−

(
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)

a sin θ

−
1
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∂(V0 sin(2θ)b)

∂θ
+
η0

R2
⊙

∂

∂θ

[

1

sin θ

∂

∂θ
(sin (θ) b)

]

(14)

where the parameter 0 ≤ ǫ ≤ 1 accounts for the effect of radial
differential rotation below the NSSL.

Equations (12) and (14) are the coupled dynamo equations
of our model. Owing to the simplicity of this system, for the
numerical treatment it is sufficient to use a straightforward finite-
difference scheme with equal spacing in θ.

Equation (12) contains three parameters. The amplitude of
the poleward meridional flow, U0 = 15 m s−1 (Gizon et al.
2010), and the turbulent diffusivity at the surface, ηR⊙ =

250 km2 s−1 (Komm et al. 1995), are constrained by observa-
tions and SFT simulations (e.g., Jiang et al. 2014). The quantity
α, which determines the strength of the dynamo excitation, is
difficult to evaluate empirically and therefore represents a free
parameter of the model.

Equation (14) depends on the radial (in the NSSL) and lati-
tudinal differential rotation given by Eqs. (5) and (6), the effec-
tive weighted amplitude of the equatorward return flow of the
meridional circulation, V0, and the effective turbulent diffusiv-
ity, η0, for the toroidal field. These two quantities are treated
as free parameters, although some observational constraints for
them exist: a typical speed of about 1 m s−1 for the equatorward
return flow in low latitudes can be estimated from the mean
latitudinal drift rate of the activity belts of about 2◦ per year,
while a turbulent diffusivity affecting the toroidal field of ≃150–
450 km2 s−1 has been obtained by Cameron & Schüssler (2016)
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from properties of the butterfly diagram. We note that the equa-
torward transport of the toroidal flux is not neccesarily accom-
plished by a systematic meridional flow: equatorward convective
pumping could provide a similar effect (Ossendrijver et al. 2002;
Hazra & Nandy 2016).

In addition, we have the free parameter 0 ≤ ǫNSSL ≤ 1 which
multiplies the radial change of angular velocity in the NSSL,
thus permitting deviations from the assumption that there is no
radial rotational shear below the base of the NSSL. In Sect. 4
we constrain the values of these parameters by requiring that
the dynamo is excited and by comparing the results of the model
with key observational quantities, namely the dynamo period and
the phase relation between the emergence rate of bipolar regions
(sunspot activity) and the polar field.

3. Comparison with 2D FTD simulations

In this section we test our model by comparison with the results
reported in Karak & Cameron (2016) obtained with the 2D ax-
isymmetric flux transport dynamo code SURYA, and with a case
obtained using the code developed at the MPS and previously
used in Cameron et al. (2012) and Jiang et al. (2013). These
studies employ different 2D models of the meridional flow and
the differential rotation. The studies of Karak & Cameron (2016)
use a simplified analytical form for the differential rotation mim-
icking results from helioseismology (see their Eq. (7)) and a one-
cell meridional flow profile similar to that of Hazra et al. (2014).
For the 2D run with the code of Jiang et al. (2013) we used the
meridional flow pattern given in Jouve et al. (2008) and a differ-
ential rotation according to Hathaway & Rightmire (2011) above
r/R⊙ = 0.94 and according to Schou et al. (1998) below.

The simulations with both 2D codes include downward con-
vective pumping between the surface and r0 = 0.88 R⊙ with a
constant effective radial velocity γ, so that toroidal flux is pushed
into the region below r0. The codes use radial profiles of the
magnetic diffusivity that reach an essentially constant value, ηCZ,
below r0.

The relevant value of η0 for our model was determined by re-
quiring that the radially integrated diffusion term (the sixth term
in Eq. (3)) agrees in the 2D case and in our model. Assuming
that Bφ below r0 does not significantly vary with radius (which
is justified by the results of Karak & Cameron 2016, see their
Fig. 6), this leads to

η0 = ηCZR2
⊙

∫ 0.88 R⊙

0.7 R⊙

r−1dr

/∫ 0.88 R⊙

0.7 R⊙

rdr ≃ 1.609ηCZ (15)

The amplitude of the meridional flow at the surface, U0, was
determined by averaging the 2D flow profiles, v2D(r, θ), between
r = R⊙ and the depth, d, for which the Reynolds number of
the pumping, Rm = γd/η, becomes unity, and then taking the
maximum in latitude. Similarly, the amplitude of the return flow,
V0, was calculated by averaging v2DR⊙/r for 0.7 ≤ r/R⊙ ≤ 0.88
(i.e., up to the bottom of the pumping region) and taking the
maximum in latitude. The latitudinal profiles of both averaged
quantities are reasonably well approximated by sin 2θ.

We consider three cases for the comparison. Cases KC1 and
KC2 correspond to the results shown in Figs. 9 and 11, respec-
tively, of Karak & Cameron (2016). Run KC1 represents a case
with high diffusivity in the convection zone (100 km2 s−1), which
reproduces many features of the solar cycle if the flux emer-
gence is strongly restricted to low latitudes (n = 12 in Eq. (13)).
Run KC2 has a diffusivity that is two times lower, allows for a

Table 1. Parameters for the test cases.

Parameter KC1 KC2 J

α [m s−1] 1.4 2.5 1.
n 12 2 1

ηR⊙ [km2 s−1] 300. 300. 250.

ηCZ[km2 s−1] 100. 50. 40.

η0 [km2 s−1] 160.9 80.5 64.

η∗
0

[km2 s−1] 210. 210. 81.

U0 [m s−1] 15.9 15.9 15.

V0 [m s−1] 1.6 0. 4.7

γ [m s−1] 35. 35. 30.

broader latitude range of flux emergence (n = 2), and has no re-
turn flow of the meridional circulation. In contrast to case KC1,
the equatorward drift of the toroidal field in this case is due to
the latitudinal propagation of a dynamo wave driven by the ra-
dial shear in the NSSL. Run J carried out with the code used by
Jiang et al. (2013) is similar to case KC1, albeit with a lower dif-
fusivity, stronger return flow, and no artificial restriction of the
latitude range for flux emergence (n = 1). All 2D runs are linear
and the values of the near-surface α-effect are chosen such that
the dynamos are marginally excited (i.e., growth rate near zero).
Since the parameter values corresponding to marginal dynamo
excitation are not identical, we performed the calculations with
the updated L69 model for two values of the diffusivity affecting
the toroidal field: a) for the diffusivity η0 determined on the ba-
sis of ηCZ as given by Eq. (15) and b) for an enhanced value, η∗

0
,

chosen such that the dynamo excitation is near marginal. The pa-
rameters used for the 2D runs and the comparison runs with our
updated L69 model are given in Table 1.

Figures 1 and 2 show the results of the runs for cases KC1
and KC2, respectively, while Fig. 3 gives the corresponding re-
sults for test case J. In all cases, time-latitude diagrams of the
radial field at the surface are represented in the upper row of the
figure. The lower row gives time-latitude diagrams of the radi-
ally averaged toroidal field in cases KC1 and KC2, while the ra-
dially integrated toroidal flux is shown in case J. The 2D results
are shown in the left columns of the figures while the results
obtained with the updated L69 model are given in the middle
columns (for diffusivity η0) and in the right columns (for diffu-
sivity η∗

0
providing a growth rate of approximately zero).

In all cases, the results of the 2D runs and those from our up-
dated L69 model are very similar: dynamo periods, the shape of
the butterfly diagrams, and the phase relation between the polar
fields and the low-latitude toroidal field (representing flux emer-
gence and solar activity) are reasonably well represented by our
much simpler L69 model. There are some minor differences; for
example, the periods are slightly longer and the low-latitude sur-
face fields somewhat stronger relative to the polar fields in the
L69 cases, but a perfect agreement is obviously not expected.
We thus conclude that the updated L69 model captures the es-
sential features of these moderately diffusive 2D models.

4. Parameter study

The computational efficiency of the updated L69 model allows
us to systematically cover wide ranges of the parameter val-
ues relevant for the dynamo behavior. Since many of these pa-
rameters (e.g., meridional flow pattern and magnetic diffusivity
in the convection zone, amplitude of the source term) are un-
certain, this is a great advantage in comparison to the numeri-
cally more demanding 2D models. We have thus carried out a
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Fig. 1. Test case KC1: comparison of the updated Leighton model with the results of the 2D dynamo run presented in Fig. 9 of Karak & Cameron
(2016). The left column gives the results of the 2D run, showing time-latitude diagrams for the radial field at the surface (upper panel) and
the radially averaged toroidal field (lower panel). The other two columns show the results of the updated Leighton model: using parameters
corresponding to those of the 2D model (middle column) and with the diffusivity in the convection zone increased so that the dynamo has zero
linear growth rate (right column). The quantities are normalized by a common factor, such that the extrema of 〈Bφ〉 become ±1.
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Fig. 2. Test case KC2: same as Fig. 1, but for the 2D dynamo run shown in Fig. 11 of Karak & Cameron (2016).
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Fig. 3. Test case J: same as Fig. 1, but for a 2D dynamo run carried out with the code used by Jiang et al. (2013). In this case, the lower row gives
the (normalized) radially integrated toroidal flux.

parameter study in order to identify those regions of the parame-
ter space providing dynamo models that are consistent with basic
properties of the solar cycle. To this end we require a) preference
of the (antisymmetric) dipole mode; b) equatorward propagation
of the activity belts; c) cycle period P ≃ 22 yr; and d) phase dif-
ference between the maxima of flux emergence (solar activity)

and polar field ∆φ ≃ 90◦, meaning that the polar fields re-
verse around activity maxima and reach their peak levels around
activity minima. The dynamo also must be excited (i.e., growth
rate γ > 0).

A first representation of the results is given in Fig. 4. For
fixed values of α = 1.4 m s−1 and ǫ = 1, the upper panels give
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Fig. 4. Properties of linear dynamo solutions as functions of the amplitude of the effective return meridional flow (V0) and of the magnetic
diffusivity in the convection zone (η0) for values of α = 1.4 m s−1 and ǫ = 1. Color shading represents the dynamo period (P, upper left panel),
the phase difference between the maximum of the polar field and the maximum rate of flux emergence (∆φ, upper right panel), and the dynamo
growth rate (γ, lower left panel), all for dipole parity. The growth rate for quadrupolar parity is given in lower right panel. The lines in the lower
panels indicate γ = 0, thus dividing regions of excited (reddish) and decaying (blueish) dynamo solutions. The lines in the upper panels indicate
ranges relevant for the solar dynamo: 21 yr ≤ P ≤ 23 yr for the period and 80◦ ≤ ∆φ ≤ 100◦ for the phase difference.

period, P, and phase difference, ∆φ, for dipole parity. The lower
panels show the dynamo growth rate, γ, for the dipole mode
(left) and for the quadrupole mode (right). The lines in the up-
per panels indicate ranges relevant for the solar case. The lines
in the lower panels separates regions of excited (lower) and non-
excited (upper) dynamo solutions. The figure shows that the up-
dated L69 model has a clear preference for dipolar parity in the
sense that it is excited in a broader range of diffusivities (i.e., for
lower dynamo number) and that its growth rate is always higher
than that of the corresponding quadrupole mode. Furthermore,
the results are consistent with the period and phase difference in
the case of the Sun for diffusivities below about 80 km2 s−1 and
an effective return flow of the meridional circulation affecting
the toroidal field in the range 2–3 m s−1.

An example of a solution with solar-like properties is shown
in Fig. 5. It has a period of 20.3 yr and the correct phase dif-
ference between polar field and flux emergence (∆φ = 92◦).
Since the amplitude of this linear dynamo model is arbitrary,
we fixed the maxima of the surface field, Br, to 1 G. The cor-
responding values of the integrated toroidal flux, Fφ, are con-
sistent with the expected amount of flux residing in the solar
convection zone. This flux is mainly located in latitudes below
45◦, which means that, in agreement with observation, flux emer-
gence is also largely restricted to low latitudes. This behavior re-
sults mainly from the fact that Bφ is generated by the latitudinal

rotational shear, which has its highest values in mid latitudes,
together with the equatorward flux transport by the meridional
return flow. Flux-transport dynamos relying on radial differen-
tial rotation near the bottom of the convection zone, on the other
hand, face the problem that the generation of the toroidal flux
mainly takes place in high latitudes (e.g. Nandy & Choudhuri
2002).

The full results of our parameter study are summarized in
Fig. 6. Here we show only the results for dipole parity because it
is invariably the preferred mode. The four parameters describ-
ing the subsurface dynamics that we consider are the source
amplitude, α, the diffusivity, η0, the effective return flow am-
plitude, V0, and the quantity 0 ≤ ǫ ≤ 1, which represents radial
differential rotation below the near-surface shear layer. We rep-
resent the results in a similar form to those in Fig. 4 with pan-
els indicating phase difference, period, and dynamo excitation as
functions of V0 and η0. We now give a number of such panels for
various values of α and ǫ which are indicated by the black bars at
the bottom and at the left side of the figure. The individual panels
represent the dynamo growth rate (positive in the orange shaded
regions) and indicate relevant solar ranges for the dynamo period
(P between 21 and 23 yr, green bands) and the phase difference
(∆φ between 80◦ and 100◦, purple bands). For each panel, we
have calculated 153 models (using 17 values for V0 in the range
0–8 m s−1 and 9 values for η0 in the range 10–90 km2 s−1).
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Fig. 5. Example of a solar-like dynamo solution for the parameter values
η0 = 80 km2 s−1, α = 1.4 m s−1, ǫ = 1, V0 = 2.5 m s−1. Shown are
time-latitude diagrams of the radial field at the surface (normalized to
a maximum value of 1 G, upper panel) and of the radially integrated
toroidal magnetic flux (per radian, lower panel).

Figure 6 shows that the domain of excited dynamos (posi-
tive growth rate) grows for increasing values of ǫ, reflecting the
contribution of the NSSL to dynamo excitation. The band of so-
lar values for the phase difference between maximum polar field
and maximum flux emergence (purple bands) is not strongly af-
fected by changes in α, η0, and ǫ; in the domain of excited dy-
namos, permitted values are in most cases reached for return flow
amplitudes in the range 2–4 m s−1. Similarly, the dynamo period
lies in the solar regime for the same range of return flow ve-
locities. For the highest values of α and not too low ǫ, periods
around 22 yr are only reached for very slow return flow, indicat-
ing that the character of the dynamo in this regime (represented
by the panels located in the upper right part of the figure) has
changed from transport-dominated to a dynamo wave driven by
the NSSL. However, in these cases, the phase difference does not
match the required value around 90◦, so they cannot be consid-
ered as possible models for the solar dynamo.

The panels enclosed by the thick red contour in Fig. 6 show
an overlap of the bands of solar values for period and phase
difference. For lower values of ǫ (less effect of the NSSL),
higher values of α are required to achieve solar-like behavior.
In the overlap regions, the return flow amplitude typically has
a speed of 2–3 m s−1. Considering the sinusoidal profile of the
return flow (∝sin 2θ) with the extrema reached at ±45◦ latitude,
this value is consistent with the observed latitudinal propaga-
tion of the activity belts of about 2◦ per year (corresponding to
about 1 m s−1). The overlap regions are typically located not far

Table 2. Ranges of η and V0 for which the different observational con-
straints (on period, phase and growth rate) overlap in Fig. 6, for different
values of α, and ǫ.

α [m s−1] ǫ η [km2 s−1] V0 [m s−1]

1.4 0.6 60–70 2.10–2.40
1.4 0.8 40–70 2.05–2.45
1.4 1.0 10–70 2.00–2.40
1.8 0.2 50 2.20–2.25
1.8 0.4 20–60 2.05–2.45
1.8 0.6 10–40 2.05–2.40
1.8 0.8 10–20 2.20–2.30
2.2 0.0 40 2.20–2.25
2.2 0.2 10–40 2.05–2.45
2.2 0.4 10–50 1.95–2.40
2.6 0.0 10–30 2.05–2.35
2.6 0.2 10–20 2.20–2.45
3.0 0.0 10–30 2.15–2.50
3.4 0.0 10 2.30–2.35

Notes. The growth rates, phases, and periods from the grid of simula-
tions were interpolated to a resolution in V0 of 0.05 m s−1.

away from the line of marginal dynamo excitation (border of the
orange region). Table 2 gives the parameter ranges for which the
simulations match the solar values of the period, phase differ-
ence, and growth rate.

5. Discussion an conclusions

We have shown that the dynamo model of Leighton (1969)
can be updated to include further relevant ingredients (merid-
ional circulation, convective pumping, near-surface shear layer),
so that the results are consistent with those of more involved
2D flux transport dynamo models. The uncertainties of the struc-
ture of magnetic field and flows in the convection zone can be
condensed into a few free parameters while the computational
simplicity of the model allows us to systematically scan the as-
sociated parameter space. Requiring some essential properties of
the solutions (such as period, parity, phase relation between flux
emergence and polar fields, positive linear growth rate) to agree
with their observed solar counterparts, we were able to strongly
narrow down the parameter space relevant for the solar dynamo.

We find that the Sun most probably hosts a flux-transport
dynamo (as opposed to a dynamo wave driven by the NSSL)
operating not too far from the threshold of marginal excitation.
This property is consistent with recent results for other active
stars (van Saders et al. 2016; Metcalfe et al. 2016). The effective
equatorward return flow amplitude for the toroidal flux should
be around 2 m s−1, which is consistent with the latitudinal drift
rate of the activity belts. Solar properties are achieved for val-
ues of the effective magnetic diffusivity for the toroidal flux as
high as 80 km2 s−1, which puts the dynamo in the class of “high-
diffusivity dynamos” (e.g. Choudhuri 2015). High diffusivity is
also indicated by the observed properties of the solar activity
belts (Cameron & Schüssler 2016).

The assumption that the tachocline shear is mostly ir-
relevant for the generation of toroidal magnetic flux (Spruit
2011; Cameron & Schüssler 2015; Wright & Drake 2016) leads
to toroidal field and flux emergence concentrated in low lati-
tudes (as observed) in a natural way: the rotational shear due
to latitudinal differential rotation peaks at mid latitudes and
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the deep meridional return flow transports the toroidal flux
equatorward.

As developed here, our updated L69 model is still lin-
ear. In reality, the cycle amplitudes are limited by a nonlin-
ear back-reaction of the magnetic field on its sources. There
are various possibilities for such a nonlinearity. While signif-
icant suppression of the rotational shear seems unlikely given
the small variations of solar rotation during the activity cycle
(Howe 2009), the most promising candidate appears to be a
back-reaction on the active-region tilt angle, which is central

ingredient of the poloidal field source. Dasi-Espuig et al. (2010)
and McClintock & Norton (2013) indeed found indications for
such an effect by analysing historical sunspot data (see, however
Wang et al. 2015). Possibilities for the physical mechanism are
enhanced resistance of stronger fields against the Coriolis force
(before emergence), thermal effects near the base of the convec-
tion zone (Işık 2015), or the effect of active-region horizontal
inflows (Cameron & Schüssler 2012; Martin-Belda & Cameron
2016). Nonlinear effects could modify the parameter space iden-
tified here for the operation of the solar dynamo. However, given
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that the dynamo probably operates near the excitation threshold,
we do not expect very strong nonlinear effects.

In addition to scanning a large parameter space, the simplic-
ity and computational efficiency of the quasi-1D L69 model also
allow us to perform computations covering thousands of cycles.
In a forthcoming paper, we will exploit this property to study
how random variations of the source term affect the variability
of the solar cycle over long time scales.
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Appendix A: A violation of the Parker-Yoshimura

rule?

The first case discussed in the results section of Leighton (1969,
henceforth L69) involves a model with purely latitudinal dif-
ferential rotation. It shows oscillatory solutions with latitudi-
nally propagating dynamo waves, leading to solar-like butter-
fly diagrams of the toroidal and radial field components (cf.
Figs. 1 and 2 in L69). However, if Leighton’s model is indeed
mathematically equivalent to the αΩ formalism as indicated by
Stix (1974), then dynamo waves should always propagate along
isorotation surfaces (Yoshimura 1975). Since this property can
already be inferred from the Cartesian model of Parker (1955),
it is commonly known as the Parker-Yoshimura rule. Conse-
quently, a purely latitudinal gradient of the angular velocity
should lead to radially propagating dynamo waves (see, e.g.,
Köhler 1973) and no latitudinal propagation, in striking contrast
to Leighton’s result.

The origin of this apparent contradiction results from an error
in Eq. (9) of L69,

∂Br

∂t
= −δ(Bφ)

FH

80 R⊙τ

∂

∂µ

(

µBφ
)

+
1

TD

∂

∂µ

(

(1 − µ2)
∂Br

∂µ

)

, (A.1)

where µ = cos θ and F, H, TD, and τ are parameters of the model.
The critical quantity is the function δ(Bφ), which expresses the
assumption that bipolar regions contributing to the regeneration
of the poloidal field are only formed if the toroidal field exceeds
a threshold value, Bc:

δ(Bφ) =

{

1 for Bφ ≥ |Bc|

0 else.
(A.2)

Since Bφ depends on θ, this means that δ(Bφ) is an implicit func-
tion of θ. Consistent with the double-ring formalism of L69, this
quantity must therefore be placed within the differentiation op-
erator in the first term on the right-hand side of Eq. (A.1), so that
this term, R, should correctly read

R =
FH

80 R⊙τ

∂

∂µ

[

µ δ(Bφ)Bφ
]

. (A.3)

Only for constant δ (i.e., Bc = 0), as apparently also assumed
by Stix (1974), is Leighton’s formulation correct (and consistent
with the αΩ formalism). For Bc , 0, the regeneration term as
written in Eq. (A.1) leads to unphysical results. This can be most
easily seen by considering the quantity

a(θ, t) =
1

sin θ

∫ θ

0

sin θR2Br,R⊙dθ, (A.4)

which is proportional to the vector potential for Br. Integrating
Eq. (A.1), we obtain

∂a

∂t
= −

FHR⊙/80

τ sin θ

[

δ(Bφ)Bφ cos θ +

∫ θ

0

∂δ

∂θ
Bφ cos θ dθ

]

+
1

TD

∂

∂θ

(

1

sin θ

∂(a sin θ)

∂θ

)

· (A.5)

In the language of Yoshimura (1975), the first term on the right-
hand side of Eq. (A.5) represents the “regeneration action” (see
his Eq. (2.1)). In this case, the term contains a spatial derivative
(i.e., it is not real in Yoshimura’s sense), so that his theorem does
not apply and latitudinal migration is not excluded for purely
latitudinal differential rotation.

Moreover, the incorrect term in Eq. (A.1) violates ∇ · B = 0,
which requires ∂(a sin θ)/∂t = 0 for θ = π at all times, so that
the radial flux integrated over the entire solar surface vanishes.
This condition is trivially satisfied for the first term in the angular
brackets on the right-hand side of Eq. (A.5) since Bφ = 0 at the
poles, but the second term involving ∂δ/∂θ does not necessarily
vanish for θ = π. In the case of the Heaviside function used by
Leighton (see Eq. (A.2)) we have

∫ π

0

∂δ

∂θ
Bφ cos θ dθ = Bc

∑

i

(±cos θi) (A.6)

where the sum is over the points where |Bφ| = Bc and the sign
depends on whether δ jumps from 0 to 1 or vice versa. Clearly,
this sum in most cases does not vanish, so that ∇ · B is not guar-
anteed. Numerical experiments show that the dynamo solutions
with no radial shear reported in L69 decay when the correct form
of Eq. (A.1), which maintains the divergence condition, is used.
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