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Summary

Cobalamin (vitamin B12) deficiency is particularly
common in the elderly (>65 years of age), but is
often unrecognized because of its subtle clinical
manifestations; although they can be potentially
serious, particularly from a neuropsychiatric and
hematological perspective. In the general popula-
tion, the main causes of cobalamin deficiency are
pernicious anemia and food-cobalamin malabsorp-
tion. Food-cobalamin malabsorption syndrome,
which has only recently been identified, is a
disorder characterized by the inability to release
cobalamin from food or its binding proteins. This
syndrome is usually caused by atrophic gastritis,

related or unrelated to Helicobacter pylori infection,
and long-term ingestion of antacids and biguanides.
Besides these syndromes, mutations in genes encod-
ing endocytic receptors involved in the ileal
absorption and cellular uptake of cobalamin have
been recently uncovered and explain, at least in
part, the hereditary component of megaloblastic
anemia. Management of cobalamin deficiency with
cobalamin injections is currently well codified, but
new routes of cobalamin administration (oral and
nasal) are being studied, especially oral cobalamin
therapy for food-cobalamin malabsorption.

Introduction

Cobalamin or vitamin B12 deficiency is common

in elderly patients,1 but is often unrecognized or not

investigated because the clinical manifestations

of cobalamin deficiency are subtle. However,

complications of cobalamin deficiency, particularly
neuropsychiatric and hematological,1–4 are poten-

tially serious and therefore require investigation

in all patients who present vitamin or nutritional

deficiency. Classic disorders such as pernicious

anemia are the cause of cobalamin deficiency

in only a limited number of patients, especially

elderly patients.4 A more common problem is

food-cobalamin malabsorption, a disorder charac-

terized by the inability to release vitamin B12

from food or its binding proteins.4 Since the

description of this disorder, several authors have
demonstrated that oral cobalamin therapy can be

a pharmacotherapeutic option for the treat-

ment of cobalamin deficiency.4 This review sum-

marizes the current knowledge on cobalamin

deficiency, with a particular focus on oral cobala-

min therapy.
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Review criteria

PubMed was systematically searched for articles
published from January 1960 to January 2008, using
the following key words or associations: ‘cobalamin
deficiency’, ‘vitamin B12 deficiency’ and ‘food-
cobalamin malabsorption’. Articles were restricted
to those containing human data that were published
in English and French languages. Unpublished
data from our working group, the ‘Groupe d’étude
des carences en vitamine B12 des Hôpitaux
Universitaires de Strasbourg’, has also been
included.

Definition of cobalamin deficiency

Literature of the last 10 years has provided several
definitions of cobalamin deficiency, depending
mainly on the population studied and on the
particular assay kits used.5–7 Varying test sensitivities
and specificities result from the lack of a precise
‘gold standard’ for the diagnosis of cobalamin
deficiency, especially in elderly patients. The
definitions of cobalamin deficiency used in this
review are shown in Box 17,8. At present, cobalamin
deficiency is often defined in terms of the value of
serum cobalamin (<150 pmol/l or <200 pg/ml) and
of homocysteine (>13mmol/l) and methylmalonic
acid (>0.4 mmol/l), two components of the cobala-
min metabolic pathway (Figure 1B). It is important to
note that only methylmalonic acid is specific for
cobalamin deficiency. Increased homocysteine is
also caused by folate and vitamin B6 deficiency. In
the future, new serum cobalamin assay kits such as
holotranscobalamin may replace older assay kits
and become the standard for testing for cobalamin
deficiency.9 However, to date, little and conflicting
evidence is available about the effectiveness of
these new tests in regular clinical practice.

Epidemiology of cobalamin
deficiency

Epidemiological studies show that in the general
population of industrialized countries, cobalamin
deficiency has a prevalence of around 20%, ranging
from 5% to 60% depending on the definition of
cobalamin deficiency used.4,9 The Framingham
study demonstrated a prevalence of 12% among
elderly people living in the community.10 Other
studies focusing on elderly people, particularly
those who are in institutions or who are sick and
malnourished, have suggested a higher prevalence
of 30–40%.11,12 Using stringent definition, we found

that cobalamin deficiency had a prevalence of 5%

in a group of patients followed or hospitalized in a

tertiary reference hospital.8

Cobalamin metabolism and function

The different stages of cobalamin metabolism and

corresponding causes of cobalamin deficiency are

shown in Table 1.4,13–15 Absorption depends mainly

on intrinsic factor (IF), which is secreted by the

gastric mucosa. IF binds cobalamin forming a

complex that is absorbed by the terminal ileum

(Figure 1B). This mechanism is responsible for the

absorption of at least 60% of oral coblamin.13–15

Cobalamin metabolism is complex and requires

many processes, any one of which, if not present,

may lead to cobalamin deficiency.13–15 Once

metabolized, cobalamin is a cofactor and coenzyme

in many biochemical reactions, including DNA

synthesis, methionine synthesis from homocysteine

and conversion of propionyl into succinyl coen-

zyme A from methyl malonate.4,8,9 A typical

Western diet contributes 3–30 mg of cobalamin per

day based on the recommended dietary allowance

set by the Food and Nutrition Board of the Institute

of Medicine (US) of 2.4 mg/day for adults and from

2.6 to 2.8 mg/day during pregnancy.16 It has been

estimated that there is a delay of 5 to 10 years

between the onset of cobalamin deficiency and the

appearance of clinical manifestations, due to

important hepatic stores (>1.5 mg) and the enter-

ohepatic cycle.4,13 Of particular interest is the

observation that about 1–5% of free cobalamin (or

crystalline cobalamin) is absorbed along the entire

intestine by passive diffusion. This absorption

explains the mechanism underlying oral coblamin

treatment of cobalamin deficiencies.17,18

Box 1. Definitions of cobalamin (vitamin B12)

deficiency7,8

� Serum cobalamin levels <150 pmol/l and clinical

features and/or hematological anomalies related to

cobalamin deficiency.

� Serum cobalamin levels <150 pmol/l (<200 pg/ml)

on two separate occasions.

� Serum cobalamin levels <150 pmol/l and total

serum homocysteine levels >13 mmol/l or methyl-

malonic acid levels >0.4 mmol/l (in the absence of

renal failure and folate and vitamin B6

deficiencies).

� Low serum holotranscobalamin levels <35 pmol/l.
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Classical causes of cobalamin
deficiency

In a recent study, we reported the principal causes
of cobalamin deficiency in 172 elderly patients
(median age: 70 years) hospitalized in the University
Hospital of Strasbourg, France.14 The main causes
included food-cobalamin malabsorption (53%),
pernicious anemia (33%), insufficient nutritional
vitamin B12 intake (2%), postsurgical malabsorption
(1%) and as much as 11% of the patients suffered
from cobalamin deficiency of undetermined

etiology. In elderly patients, cobalamin deficiency

is classically caused by pernicious anemia.1,11 The

principal characteristics of pernicious anemia have

been reported in detail in several reviews.19–21

Cobalamin deficiency caused by dietary deficiency

or malabsorption is rarer. Dietary causes of defi-

ciency are limited to elderly people who are already

malnourished, such as elderly patients living in

institutions (they may consume inadequate

amounts of vitamin B12-containing foods) or in

psychiatric hospitals (strict vegetarian).4,13 Since the

1980s, the malabsorption of cobalamin has

Figure 1. Cobalamin (cbl) absorption and metabolic pathway. (A) Structure of cobalamin (vitamin B12) with a corrin

ring bound to a central cobalt atom. (B) The metabolic journey of cbl from nutrient intake to its intestinal absorption.

Endocytic receptors and proteins responsible for vitamin B12 intestinal absorption include cubilin (CUBN), amnionless

(AMN), receptor-associated protein (RAP) and megalin (LRP-2). The membrane megalin/transcobalamin II (TCII) receptor

complex allows the cellular uptake of cbl. Lysosomal-mediated degradation of TCII and subsequent release of free cbl is

essential for vitamin B12 metabolic functions. MS: methonine synthase; THF: tetrahydrofolate; MTHFR: methyltetrahy-

drofolate reductase; MCM: methylmalonyl coA mutase. (C) Mutations in genes encoding the IF (GIF), CUBN, AMN, TCII or

its receptor provoke defects in cbl absorption and/or cellular uptake which translates into functional cbl deficiency and its

clinical manifestations.
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become rarer, owing mainly to the decreasing
frequency of gastrectomy and terminal small intes-
tine surgical resection.4,8,14 Several disorders com-
monly seen in gastroenterology practice might,
however, be associated with cobalamin malabsorp-
tion. These disorders include exocrine pancreas’
function deficiency following chronic pancreatitis
(usually alcoholic), lymphomas or tuberculosis
(of the intestine), celiac disease, Crohn’s disease,
Whipple’s disease and uncommon celiac dis-
ease.11,15 Food-cobalamin malabsorption has
been found to be the leading cause of cobalamin
malabsorption, especially in elderly patients.4,8,11,22

In our studies, we followed more than 300 patients
with a documented cobalamin deficiency, and
reported that food-cobalamin malabsorption
accounts for about 60–70% of the cases of
cobalamin deficiency in elderly patients,
whereas pernicious anemia accounted for only
15–25%.14,23

Food-cobalamin malabsorption

First described by Carmel in 1995,22 food-
cobalamin malabsorption is a syndrome character-
ized by the inability of the body to release
cobalamin from food or intestinal transport proteins,
particularly in the presence of hypochlorhydria,
where the absorption of ‘unbound’ cobalamin is
normal (‘maldigestion’). In our experience, this
syndrome accounted for 60–70% of cases of
cobalamin deficiency in elderly patients.14,15 This
syndrome is characterized by cobalamin deficiency

in the presence of sufficient food-cobalamin

intake and a normal Schilling test ruling out

malabsorption or pernicious anemia (diagnosis of

exclusion).14,22,23 Thus in this syndrome, patients

can absorb ‘unbound’ cobalamin through IF or

passive diffusion mechanisms. Thus, the recognition

of the syndrome permits new developments of oral

cobalamin therapy.4 The principal characteristics of

this syndrome are listed in Table 2. Authors

supporting the existence of this syndrome have

employed a modified Schilling test, which uses

animal protein-bound radioactive cobalamin (e.g.

salmon, trout) and revealed malabsorption when the

results of a standard Schilling test were

normal.4,14,23

Some authors have speculated about the reality

and significance of cobalamin deficiency related to

food-cobalamin malabsorption,4 because many

patients displayed mild clinical or haematological

features. However, we recently described several

patients with serious features classically associated

with pernicious anemia, including polyneuropathy,

confusion, dementia, medullar-combined sclerosis,

anemia and pancytopenia.14 Nevertheless, the

partial nature of this form of malabsorption may

produce a more slowly progressive depletion of

cobalamin than does the more complete malabsorp-

tion engendered by disruption of the IF-mediated

absorption. The slower progression of cobalamin

depletion probably explains why mild, preclinical

deficiency is more frequently associated with food-

cobalamin malabsorption than with pernicious

anemia.4,14

Table 1 Stages of cobalamin metabolism and corresponding causes of cobalamin deficiency13,15

Stages and actors in cobalamin metabolism Causes of cobalamin deficiency

Intake solely through food Strict vegetarianism (patients who are sick in institutions

or in psychiatric hospitals)

Digestion brings into play Gastrectomies

Haptocorrin Pernicious anemia

Gastric secretions (hydrochloric acid and pepsin) Food-cobalamin malabsorption

Intrinsic factor

Pancreatic and biliary secretions

Enterohepatic cycle

Absorption brings into play Ileal resections and malabsorption

Intrinsic factor Pernicious anemia

Cubilin, amnionless Food-cobalamin malabsorption

Calcium and energy

Transport by transcobalamins Congenital deficiency in transcobalamin II

Intracellular metabolism based on various intracellular

enzymes

Congenital deficiency in various intracellular enzymes
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Food-cobalamin malabsorption is caused primar-

ily by atrophic gastritis.14 Over 40% of patients

older than 80 years have gastric atrophy that might
or not be related to H. pylori infection.11,24 Other

factors that contribute to food-cobalamin malab-

sorption in elderly people include chronic carriage
of H. pylori and intestinal microbial proliferation,

situations in which cobalamin deficiency can be

corrected by antibiotic treatment,24,25 long-term

ingestion of antiacids such as H2-receptor antago-
nists and proton-pump inhibitors,26,27 particularly

among patients with Zollinger–Ellison syn-

drome,28,29 and biguanides (metformin).30–32 In
addition, other food-cobalamin malabsorption

inducers include chronic alcoholism, surgery or

gastric reconstruction (e.g. bypass surgery for
obesity), partial exocrine pancreatic failure,4,14 and

Sjögren’s syndrome or systemic sclerosis (Table 2).33

In a serie of 92 elderly patients (mean age: 76 years)

with food-cobalamin malabsorption, we have
reported at least one of these associated conditions

or agents in 60% of the patients.14 These conditions

mainly include atrophic gastritis (� H. pylori
infection) in 30% of the patients and long-term

metformin or antacid intake in 20% of elderly

patients.

Clinical manifestations of
cobalamin deficiency

The clinical manifestations are highly polymorphic

and of varying severity, ranging from milder condi-

tions such as fatigue, common sensory neuropathy,
atrophic glossitis (Hunter’s glossitis) and isolated

macrocytosis or neutrophil hypersegmentation,

to severe disorders, including combined sclerosis
of the spinal cord, hemolytic anemia and even
pancytopenia.2,14,34–36 Frequently, neurologic signs
and symptoms precede haematologic abnormalities
or continue to be isolated. Several new studied or
established manifestations of cobalamin deficiency
are described in Table 3. In the aforementioned serie
of 92 patients with food-cobalamin malabsorp-
tion,14 we have found at least one clinical feature
or haematological abnormalities in, respectively,
70% and 76% of the patients. Cobalamin deficiency
appears to be more common among patients
exhibiting a variety of chronic neurologic conditions
such as dementia, Alzheimer’s disease, stroke,
Parkinson’s disease and depression, although it
remains unclear whether they are causally
related.4,37 In our own studies, we administered
cobalamin to patients with dementia, but did not
observe any improvement.9,14 Other reports have
yielded similar results.18,38 At this time, a causal role
of cobalamin deficiency in these conditions remains
rather speculative.

Cobalamin deficiency: biochemical
and molecular aspects

Vitamin B12, from nutrients intake to
the intestine

The molecular biology of cobalamin deficiency
has been the subject of several studies investigating
the genetics of cobalamin metabolism. Dietary
vitamin B12 which is bound to proteins in food is
released in the acidic environment of the stomach
where it is rapidly complexed to the binding protein

Table 2 Food-cobalamin malabsorption syndrome4,14,15

Criteria for food-cobalamin malabsorption Associated conditions or agents

Low serum cobalamin (vitamin B12) levels Gastric disease: atrophic gastritis, type A atrophic

gastritis, gastric disease associated with Helicobacter

pylori infection, partial gastrectomy, gastric by-pass,

vagotomy

Normal results of Schilling test using free cyanocoba-

lamin labeled with cobalt-58 or abnormal results of

derived Schilling testa

No anti-intrinsic factor antibodies Pancreatic insufficiency: alcohol abuse

No dietary cobalamin deficiency Gastric or intestinal bacterial overgrowth: achlorhydria,

tropical sprue, Ogylvie’s syndrome, HIV

Drugs: antacids (H2-receptor antagonists and proton

pump inhibitors) or biguanides (metformin)

Alcohol abuse

Sjögren’s syndrome, systemic sclerosis

Haptocorrine deficiency

Ageing or idiopathic

aDerived Schilling tests use food-bound cobalamin (e.g. egg yolk, chicken and fish proteins).
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and transporter haptocorrin (HC), also referred to as
the R-binder or transcobalamin I (Figure 1B). About
80% of circulating cobalamin are bound to HC and
serum cobalamin levels have been correlated with
serum HC concentrations.39,40 Although, some
unexplained low serum cobalamin concentrations
were reported to be caused by mild to severe HC
deficiencies,41,42 these abnormalities were not
accompanied by pernicious anemia and are not
thought to cause functional cobalamin deficiency.
Cobalamin continues its route in the gastrointestinal
tract and dissociates from HC under the action of
pancreatic proteases, followed by it association in
the intestine with the IF (also known as the S-binder)
which is essential for ileal absorption of cobalamin
(Figure 1B). Indeed, homozygous nonsense and
missense mutations in the gene encoding the gastric
IF (GIF) were reported to cause hereditary juvenile
cobalamin deficiency.43

Endocytic receptors in cobalamin
intestinal absorption

Essential nutrients such as cofactors and vitamins are
transported to tissues following their binding to
specific endocytic receptors (reviewed in44).
Likewise, the absorption of IF-cobalamin does not
occur passively and requires the presence of a
complex of endocytic receptors at the ileal–blood
barrier. This complex is located at the apical side of
brush-border membranes (BBMs) of polarized

epithelia, such as the intestinal apical BBM. It
consists of the IF-vitamin B12 receptor cubilin, a
460 kDa peripheral membrane glycoprotein,
encoded by the CUBN gene which was mapped
to chromosomal region 10p12.33-p13,45 and the
48 kDa amnionless protein encoded by the AMN
gene, a gene essential for mouse gastrulation 46 and
localized on human chromosome 14.47 The human
megalin/gp330/LRP-2 receptor, encoded by the
LRP-2 gene located on chromosome 2q24-q31,48

is a giant endocytic receptor (600 kDa) of the low-
density lipoprotein receptor (LDLR) family 49 that
was strongly suggested to play an important role in
the stability of the cubilin/AMN complex.50 It is
noteworthy that ligands for megalin include apoE,
lipoprotein lipase, lactoferrin, receptor-associated
protein (RAP) among other proteins and that this
interaction is Ca2+-dependent.51–53 Importantly, the
endoplasmic reticulum (ER)-localized 39 kDa pro-
tein RAP, which binds to all members of the LDLR
family but also in a region contiguous to the
cobalamin IF-binding region on the cubilin pro-
tein,54,55 allows the processing of megalin where it
binds to the newly synthetized megalin receptor in
the ER and prevents the early binding of ligands and
the aggregation of megalin receptors (reviewed
in44). Intestinal-specific inactivation of megalin in
in-vivo animal models would be of particular
interest to establish a precise role of megalin in
cobalamin-IF absorption at the intestinal BBM–
blood barrier and its potential relationship with

Table 3 Main clinical features of cobalamin deficiency2,4,14,15,34-36

Hematological

manifestations

Neuro-psychiatric

manifestations

Digestive manifestations Other manifestations

Frequent: macrocytosis,

neutrophil hyperseg-

mentation , aregenera-

tive macrocytary

anemia, medullar mega-

loblastosis (‘‘blue spinal

cord’’)

Rare: isolated thrombo-

cytopenia and neutro-

penia, pancytopenia

Very rare: hemolytic

anemia, thrombotic

microangiopathy (pre-

sence of schistocytes)

Frequent: polyneuritis

(especially sensitive),

ataxia, Babinski’s phe-

nomenon

Classic: combined

sclerosis of the spinal

cord

Rare: isolated thrombo-

cytopenia and neutro-

penia, pancytopenia

Under study: changes in

the higher functions,

dementia, stroke and

atherosclerosis (hyper-

homocysteinemia), par-

kinsonian syndromes,

depression, multiple

sclerosis

Classic: Hunter’s glossi-

tis, jaundice, LDH and

bilirubin elevation

(‘‘intramedullary

destruction’’)

Debatable: abdominal

pain, dyspepsia, nausea,

vomiting, diarrhea, dis-

turbances in intestinal

functioning

Rare: resistant and

recurring mucocuta-

neous ulcers

Frequent: Tiredness, loss

of appetite

Under study: atrophy of

the vaginal mucosa and

chronic vaginal and

urinary infections (espe-

cially mycosis), hypofer-

tility and repeated

miscarriages, venous

thromboembolic dis-

ease, angina

(hyperhomocysteinemia)
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hereditary megaloblastic anemia 1 (MGA1), a rare

autosomal recessive disorder affecting human sub-

jects with neurological symptoms and juvenile

MGA.56,57

Mutations in cubilin and amnionless
cause impaired cobalamin intestinal
absorption

The endocytic receptor cubilin comprises a short

N-terminal region followed by eight epidermal

growth factor (EGF) repeats and a large cluster of

27 CUB domains. Deletion mutant and immuno-

precipitation experiments identified the CUB1-8

region as the binding domain for the vitamin B12-

IF complex and the overlapping CUB13 and

14 domains as the binding region for the RAP

protein.55 Mutations in CUBN were reported to

cause hereditary MGA1.58 Two principal mutations

were identified in finnish patients (FM), a 3916C!

T missense mutation named FM1 changing a highly

conserved proline to leucine (P1297L) in CUB

domain 8, suggesting that this proline is functionally

crucial in cubilin and one point mutation (FM2) in

the intron interrupting CUB domain 6 responsible

for in-frame insertions producing truncated cubilin.

Interestingly normal size cubilin protein was identi-

fied in urine samples from homozygous FM1

patients, whereas a complete absence of the protein

was reported in a patient homozygous for the FM2

mutation.58 Other mutations were also uncovered

but were subsequently identified as polymorphisms

after their detection in normal individuals in the

general population. The cubilin P1297L mutation

associated with hereditary MGA1 was reported to

cause impaired recognition of the cobalamin-IF

complex by cubilin.59 Moreover, mutation in AMN

was reported in recessive hereditary MGA1,60 and

hence was demonstrated to be crucial for a

functional cobalamin-IF receptor.47 This study

demonstrated that homozygous mutations affecting

exons 1–4 of the human AMN gene translated into

selective malabsorption of vitamin B12, a phenotype

associated with hereditary MGA1. Another study

reported AMN deletion mutants in dogs with

selective intestinal malabsorption of cobalamin

associated with urinary loss of several low mole-

cular weight proteins reminiscent of the human

Imerslund–Gräsbeck syndrome (IGS a.k.a. MGA1).

The authors showed that these mutations in the

AMN gene abrogated AMN expression and blocked

cubilin processing and targeting to the apical

membrane. The essential AMN–cubilin interaction

was recapitulated and validated in a heterologous

cell-transfection model, hence explaining the

molecular basis of intestinal cobalamin malabsorp-
tion syndrome.61

Tissular uptake of cobalamin requires
intact megalin and transcobalamin II
receptor

After cobalamin is absorbed at the BBM–blood
barrier, it dissociates from the IF and reaches the
systemic circulation where it associates with trans-
cobalamin II (TCII). The kidney represents an
essential organ were body vitamin B12 stores are
maintained and studies demonstrated that kidney
regulates plasma B12 levels by maintaining a pool of
unbound cobalamin that can be released in case
of B12 deficiency.62–65 The tissular cobalamin-TCII
complex uptake is achieved through megalin
(LRP2)- and TCII receptor (TCII-R)-mediated endo-
cytosis which plays a crucial role in cobalamin
homeostasis (Figure 1B).52,66 It is worth mentioning
that TCII is responsible for the cellular uptake of B12

in most tissues and that TC deficiency is associated
with severe MGA.67,68

Impaired megalin function has not been asso-
ciated with cobalamin deficiency so far; however
inappropriate megalin signaling has been shown to
cause deleterious effects as a consequence of
cobalamin uptake inhibition in tissues. This was
particularly the case where mutations in the
human LRP2 gene encoding megalin were recently
described to cause Donnai–Barrow and facio-oculo-
acoustico-renal syndromes. Patients affected with
these rare autosomal recessive disorders display
severe malformations with proteinuria.69 It is note-
worthy that although essential, megalin and cubilin
are not specific for cobalamin absorption and/or
uptake, and are also receptors for haemoglobin,70

albumin71 and transferrin72 among many other
proteins (reviewed in73).

Intracellular metabolic functions
of cobalamin

Following cobalamin-TCII cellular uptake, TCII
undergoes lysosomal digestion allowing cobalamin
separation from TCII and its cytoplasmic transfer.
Part of the unbound cobalamin serves as a cofactor
for methionin synthase-mediated homocysteine
catabolism into methionine and methyltetrahydro-
folate reductase (MTHFR)-mediated formation of the
vitamin B9 biologically active form, tetrahydrofolate,
which is then involved in the synthesis of purines
and pyrimidines (Figure 1B). The other part of free
B12 is transferred to the mitochondria where it is
transformed into adenosyl-B12, an important cofac-
tor in methylmalonyl-coenzyme A mutase-mediated
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formation of succinyl-coA from methylmalonyl-coA,
the product of odd-chain fatty acid and some amino
acid catabolism. Hence, cobalamin deficiency will
cause homocysteine accumulation, increased
methylmalonyl-coA levels and decreased MTHFR
activity. These changes translate into several

abnormalities including folate deficiency and sub-
sequent inhibition of purines and pyrimidines
formation essential for RNA and DNA synthesis.
The clinical manifestations of these metabolic
abnormalities are MGA, neurological defects, mal-
formations, increased cardiovascular thrombotic risk
and renal disease and methylmalonic acidemia

(reviewed in65,74). Functional cobalamin deficiency
can also be caused by defects in the intracellular
processing of cobalamin, such as abnormal lysoso-
mal digestion of the TCII-cobalamin complex and
subsequent defective lysosomal release of cobala-
min, and abnormalities in intracytoplasmic cobala-
min metabolism with all the consequences on

biochemical reactions in which cobalamin acts as
an important cofactor (reviewed in 75).

Classical treatment of cobalamin
deficiency

The classic treatment for cobalamin deficiency,
particularly when the cause is not dietary defi-

ciency, is parenteral administration—usually by
intramuscular injection—of vitamin B12 in the form
of cyanocobalamin and, more rarely, hydroxocoba-
lamin.1,17,18,34 In France, the recommended prac-
tice is to build up the tissue stores of cobalamin
quickly and correct serum cobalamin hypovitami-
nosis, particularly in the case of pernicious anemia.

The treatment involves the administration of
1000mg of cyanocobalamin per day for 1 week,
followed by 1000 mg per week for 1 month, then the
dose is reduced to 1000mg per month, normally for
the rest of the patient’s life.8,11,1) In the United States
and the United Kingdom, dosages ranging from
100 to 1000 mg per month (or every 2–3 months
when hydroxocobalamin is given) are used during

the rest of the patient’s life.4,17

Oral cobalamin therapy

In cases of cobalamin deficiency other than those
caused by nutritional deficiency, alternative routes
of cobalamin administration have been used:

oral17,18,76,77 and nasal.78,79 These other routes of
administration have been proposed as a way of
avoiding the discomfort, inconvenience and cost of

monthly injections. Our working group has devel-
oped an effective oral treatment for food-cobalamin
malabsorption80–83 and pernicious anemia84 using
crystalline cobalamin (cyanocobalamin). Our prin-
cipal studies of oral cobalamin treatment (open, not
randomized studies) are described in Table 4.80–84

These data confirm the previously reported efficacy
of oral crystalline cyanocobalamin, especially in
food-cobalamin therapy.18,36,76 All of our patients
who were treated orally corrected their vitamin B12

levels and at least two-thirds corrected their
haematological abnormalities.80–84 Moreover, one-
third of patients experienced a clinical improve
ment on oral treatment. In most cases of food-
cobalamin malabsorption ‘low’ cobalamin doses
(i.e. 125–1000 mg of oral crystalline cyanocobala-
min per day) were used.

These data are in line with results from two
prospective randomized controlled studies compar-
ing oral cobalamin with intramuscular cobalamin
therapy.17,85 An evidence-based analysis by the
Vitamin B12 Cochrane Group also supports the
efficacy of oral cobalamin therapy, with a dose
between 1000 and 2000 mg given initially daily and
then weekly.86 In this analysis, serum vitamin B12

levels increased significantly in patients receiving
either oral vitamin B12 alone or patients receiving
both oral and intramuscular treatment. In the two
groups, patients exhibited neurological improve-
ment of their symptoms.

In a randomized, parallel-group, double-blind
and dose-finding trial, Eussen et al. showed that
the lowest dose of oral cyanocobalamin required to
normalize mild cobalamin deficiency is more than
200 times the recommended dietary allowance of
�3mg daily (i.e. >500mg per day).87 The procedure
for oral cobalamin therapy has, however, not been
completely validated yet in clinical practice, most
notably the long-term efficacy.88 To date, as several
authors suggest, oral cobalamin therapy remains
one of ‘medicine’s best kept secrets’.89

Nevertheless, the following can be proposed:
ongoing supplementation until associated disorders
are corrected (e.g. by halting the ingestion of the
offending medication or exogenosis, or by treating
H. pylori infection or pancreatic exocrine failure),
lifelong administration or, when applicable, sequen-
tial administration.4,14

Concluding remarks

Until now, the definition of cobalamin deficiency
needs to be established with precision since a
consensus among members of the scientific com-
munity has not been reached yet. In this report, we
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presented different aspects of cobalamin deficiency,
including food cobalamin malabsorption syndrome
and the classic treatment for cobalamin deficiency
with a special focus on oral cobalamin therapy.
Many causes of cobalamin deficiency have been
uncovered to date, including mutations in genes
encoding important proteins of the cobalamin
metabolic pathway. However, many clinically
diagnosed cobalamin deficiencies remain unex-
plained and molecular tools aimed at targeting
genes involved in vitamin B12 absorption and
cellular uptake signaling pathways will pave the

way for new therapeutic approaches to efficiently

treat functional cobalamin deficiency.
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Table 4 Experience of oral cobalamin therapy for food-cobalamin malabsorption in the university hospital of Strasbourg,

France

Study characteristics (number of

patients)

Therapeutic modalities Results

Open prospective study of well-

documented vitamin B12 deficiency

related to food-cobalamin malab-

sorption (n = 10)

Oral crystalline cyanocobalamin:

650mg per day, during at least

3 months

Normalization of serum vitamin B12

levels in 80% of the patients

Significant increase of hemoglobin

(Hb) levels (mean of 1.9 g/dL) and

decrease of mean erythrocyte cell

volume (ECV) (mean of 7.8 fL)

Improvement of clinical abnormal-

ities in 20% of the patients

No adverse effect

(81)

Open prospective study of low

vitamin B12 levels not related to

pernicious anemia (n = 20)

Oral crystalline cyanocobalamin:

between 1000mg per day during at

least 1 week

Normalization of serum vitamin B12

levels in 85% of the patients

No adverse effect

(82)

Open prospective study of well-

documented vitamin B12 deficiency

related to food-cobalamin malab-

sorption (n = 30)

Oral crystalline cyanocobalamin:

between 1000 and 250 mg per day,

during 1 month

Normalization of serum vitamin B12

levels in 87% of the patients

Significant increase of Hb levels

(mean of 0.6 g/dl) and decrease of

ECV (mean of 3 fl); normalization of

Hb levels and ECV in 54% and

100% of the patients, respectively

Dose effect—effectiveness dose of

vitamin B12 5500 mg per day

No adverse effect

(80)

Open prospective study of low

vitamin B12 levels not related to

pernicious anemia (n = 30)

Oral crystalline cyanocobalamin:

between 1000 and 125mg per day

during at least 1 week

Normalization of serum vitamin B12

levels in all patients with at least a

dose of vitamin 5250mg per day

(83)

Dose effect—effectiveness dose of

vitamin B12 5500 mg per day

No adverse effect

Open prospective study of low

vitamin B12 levels related to

pernicious anemia (n = 10)

Oral crystalline cyanocobalamin:

1000mg per day, during at least

3 months

Significant increase of serum vitamin

B12 levels in 90% of the patients

(mean of 117.4 pg/ml

(84)

Significant increase of Hb levels

(mean of 2.45 g/dl) and decrease of

ECV (mean of 10.4 fl)

Improvement of clinical abnormal-

ities in 30% of the patients
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