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Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous
physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been
discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1),
which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2),
predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid recep-
tor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have
also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also
play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18
and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stim-
ulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic
relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabi-
noids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other
well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition,
the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling
under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-
related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular tar-
gets in modulating the ECS.
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Introduction
The Class A G-protein-coupled receptors (GPCRs),
cannabinoid receptor type 1 (CB1) and cannabinoid
receptor type 2 (CB2), have been widely confirmed
as cannabinoid targets. These receptors have been
shown to be involved in numerous physiopathological
processes, including pain, inflammation, cancer, meta-
bolic syndromes, hypertension, and neurodegenerative
disorders.1 Nonetheless, the complex pharmacology
of the endocannabinoid system (ECS) and its wide im-
plication in numerous biological functions suggest the
existence of other receptors playing important phys-

iological roles. Consequently, extensive research is
currently focused on the identification of potential
missing cannabinoid receptors.

Diverse Class A orphans or lately deorphanized
GPCRs have been proposed and evaluated as possible
ECS members. Nonetheless, the lack of selective ligands
for these receptors along with their intricate signal-
ing pathways is delaying a clear elucidation of their
relationship with the ECS. Therefore, thus far no
other GPCR has been categorized as the cannabi-
noid receptor type 3 by the International Union of
Pharmacology.2
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Herein, we intend to provide an overview of the
GPCRs that have been postulated as cannabinoid mo-
lecular targets and the current available evidence of
their relationship with the ECS. Non-GPCR targets of
the cannabinoids such as the peroxisome proliferator-
activated receptors, ligand-gated ion channels, or tran-
sient receptor potential channels have been revised
elsewhere and are beyond the scope of this review.3,4

GPR55 and GPR18
Several GPCRs have been postulated to be putative
cannabinoid receptors, but so far, only GPR18 and
GPR55 have been demonstrated to be targets of a
wide variety of endogenous, phytogenic, and synthetic
cannabinoid ligands.4 Despite this fact, inconsistencies
in pharmacological data in the literature are hampering
their categorization.5,6

The cannabinoid-related class A GPCR GPR55 dis-
plays low sequence identity with CB1 and CB2 (*13%
and 14%, respectively). GPR55 is widely expressed
in the brain, as well as in the peripheral system,
co-localizing with the cannabinoid receptors in diverse
tissues.7–9 This receptor displays G-protein coupling
promiscuity associating with Ga13,8,10 Gaq/11,11 Ga12,

11

or Ga12/13
8,12 depending on the cell line or tissue.

GPR55 has been implicated in different physiopatholog-
ical conditions such as cancer,13–15 pain,11,16,17 meta-
bolic disorders,18,19 vascular functions,20,21 bone
physiology,22 and motor coordination.23

The phospholipid lysophosphatidylinositol (LPI) is
considered the endogenous GPR55 ligand.8,24,25 In
fact, GPR55 has also been named the LPI1 receptor.26

Numerous CB1 and CB2 ligands have also been
reported to act as GPR55 modulators.6,27–29 However,
significant pharmacological discrepancies have been
found depending on the tested functional outcome.6

For instance, the well-known phytocannabinoid D9-
tetrahydrocannabinol (D9-THC) displayed activation
of GPR55 according to certain reports,10,11 while it
was unable to exert any effect in other functional as-
says.24,30 Cannabinoid ligands reported to be recog-
nized by GPR55 and their intriguing pharmacology
have been recently reviewed elsewhere.31

Although its sequence presents low identity with
CB1 and CB2 (*13% and 8%), GPR18 has also been
tightly associated with the ECS.4,32 High expression
of GPR18 has been found in the lymphoid tissues,
while it is moderately expressed in other organs such
as lungs, brain, testis, or ovary.33,34 Initially, GPR18
was found to couple to Gai/o; however, subsequent find-

ings suggested the participation of the Gaq/11 transduc-
tion pathway as well.34–36 Different reports have shown
the therapeutic potential of this target in the treatment
of pathologies such as intraocular pressure,37 cancer,38

or metabolic disorders39 among others.
N-arachidonoyl glycine (NAGly) has been suggested

to be the endogenous GPR18 ligand by several research
groups.32,34 However, other researchers were not able
to confirm these data.40 Recent investigations point to
the existence of another endogenous GPR18 activator:
the polyunsaturated fatty acid metabolite, Resolvin D2
(RvD2), which is mainly involved in inflammatory pro-
cesses.41 In addition, and despite the pharmacological
divergences observed among some reports, GPR18
has been shown to recognize an array of CB1 and/or
CB2 ligands of endogenous, phytogenic, or synthetic
nature (reviewed by others).39,42

The pharmacological discrepancies on the appraisal
of cannabinoids in these two receptors, as well as the
lack of selective ligands targeting them, are delaying an
insightful understanding of the relation of GPR55
and GPR18 with the ECS. These inconsistencies,
which may rely on intrinsic properties of these
GPCRs, or on the cell type or functional assay, need
to be further studied. Intensive efforts are also focused
on the structural understanding of these receptors,43 as
well as the development of more potent and selective
pharmacological tools for the study of these promising
therapeutic targets.

GPR3, GPR6, and GPR12
GPR3, GPR6, and GPR12 are three orphan Class A
GPCRs that exhibit a very close phylogenetic relation-
ship with the cannabinoid receptors CB1 and CB2

(Fig. 1). Indeed, they belong to the same cluster of re-
ceptors, the so-called MECA cluster (which consists
of the melanocortin receptors, the endothelial differen-
tiation GPCRs, the cannabinoid receptors, the adeno-
sine binding receptors, and the orphan receptor
subset GPR3,�6, and�12).44,45 Because of their phylo-
genetic proximity, these orphan receptors share com-
mon conserved residues and unique sequence motifs
with CB1 and CB2.46 According to Fredriksson et al.
these orphan receptors may share a common ancestor
with the cannabinoid receptors since they share the
same chromosomal positions.45

GPR3, GPR6, and GPR12, which share over 60%
of sequence similarity, were first cloned in 1995.47,48

These receptors constitutively activate adenylate cy-
clase by coupling to Gas proteins. In fact, different
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groups have reported that when expressed in diverse
cell lines, they can stimulate adenylate cyclase to levels
similar in amplitude to agonist-activated GPCRs.47,49,50

In addition to Gas, GPR6 and GPR12 have also been sug-
gested to couple to Gai/o,51,52 but further investigations
are required to confirm this G-protein promiscuity.

GPR3, GPR6, and GPR12 are predominantly
expressed in the brain and the reproductive system.49

This family of constitutively active GPCRs is involved
in neuronal differentiation and growth, as well as in
the formation of synaptic contacts.49 Therefore, their
role in different neurological processes such as neurite
outgrowth,49 Alzheimer’s disease,53–57 development of
cerebellar granule neurons,58,59 neuropathic pain,60

early phases of cocaine reinforcement,61 emotional-
like responses,62 instrumental learning,63 or Parkinson’s
disease64,65 has been studied. Other pathophysiological
conditions such as oocyte maturation,66,67 dyslipide-
mia,68 and cell proliferation69 may also be impacted
by the modulation of some of these receptors.

The bioactive lipids, sphingosine-1-phosphate50,52

and/or sphingosylphosphorylcholine,51 have been pro-

posed as endogenous ligands of these receptors (Fig. 2).
However, other groups were not able to confirm this
claim, and consequently, GPR3, GPR6, and GPR12
are still categorized as orphans.30,70,71 Interestingly,
among the very few ligands discovered so far for
these receptors, the nonpsychoactive phytocannabi-
noid cannabidiol (CBD) stands out as being able to tar-
get GPR3 and GPR6,72 acting as a b-arrestin2 inverse
agonist of both receptors. This functionality is of high
interest in the GPR3 field because b-arrestin2 signaling
at GPR3 has been directly linked to the manufacture of
beta-amyloid plaque (Ab1–40 and Ab1–42) in Alz-
heimer’s disease through complex formation with c-
secretase.56,57 Because CBD is an inverse agonist of
this signaling pathway at GPR3, it may represent a po-
tential tool for the reduction of amyloid pathology.
Other phytocannabinoids and several endocannabi-
noids were also tested but so far none of them were
found to modulate this family of orphan receptors.30,72

So, a relationship between the cannabinoids and the
orphan receptors GPR3, GPR6, and GPR12 has been
evidenced. Nonetheless, extensive research and more
pharmacological tools are needed to extract significant
conclusions about the association of these receptors
with the ECS and its ligands.

Alkylindole-Sensitive Receptors
As reported by different research groups, the well-known
aminoalkylindole cannabinoid agonist WIN55,212-2
(Fig. 3) displays pharmacological functions indepen-
dent of the cannabinoid receptors CB1 and CB2.73–75

This fact led to the identification of novel targets com-
monly referred to as the alkylindole (AI)-sensitive re-
ceptors.74,76,77 These cannabinoid-related receptors are
modulated by AI derivatives, but not by other classes
of cannabinoid ligands.76 Diverse evidence suggests
that the AI-sensitive receptors are Gas-protein coupled
receptors that are mainly expressed in microglia and as-
trocytomas.76–79 However, their biological functions,
pharmacology, and therapeutic value remain to be unrav-
eled due to the lack of selective pharmacological tools.

Recent studies from Stella and coworkers revealed the
role of AI-sensitive receptors in the modulation of micro-
glial cell migration and proliferation highlighting their
potential in the treatment of gliomas.77,78 Moreover,
these authors have identified a series of naphthoyl AI de-
rivatives, ST-11, ST-23, ST-25, and ST-48 (Fig. 3) among
them, that bind to the AI-sensitive receptors.78 These
compounds display affinities in the nanomolar range
when competing with [3H]WIN55,212-2 in DBT

FIG. 1. Phylogenetic tree of cannabinoid
receptors and the closely related Class A GPCRs
(S1PR family and the orphan receptors GPR3,
GPR6, and GPR12). Data were obtained from
GPCRdb.org. CB1, cannabinoid receptor type 1;
CB2, cannabinoid receptor type 2; GPCR, G-
protein-coupled receptor; S1P, sphingosine-1-
phosphate.
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(Delayed Brain Tumor) cells which endogenously ex-
press AI-sensitive receptors, while lacking CB1 and
CB2 receptors.80 Compound ST-11 stands out from
this study because of its potency at AI-sensitive recep-
tors, while not interacting with CB1 and CB2 receptors.
In addition, in vitro assays revealed that this compound
inhibits cell migration and proliferation in the afore-
mentioned mouse glioma cell line, DBT. Further stud-
ies revealed that ST-11 can reduce glioblastoma growth
in a syngeneic mouse model.81

Even though extensive research is clearly needed to
understand the pathophysiological function of these re-
ceptors, reported data suggest that AI-sensitive recep-
tor agonists could represent a novel class of potential
brain cancer antitumor drugs.

Cannabinoid-Related Oligomers
Numerous studies have shown that GPCRs, cannabi-
noid receptors among them, can exist and function as
dimers or complexes of higher order.82–85 This oligo-
merization may affect receptor signaling, receptor

trafficking, and ligand binding. The physiological rele-
vance of such dimerization has not yet been fully estab-
lished for the cannabinoid receptors; nonetheless, the
presence of cannabinoid homo- and heterodimers in
specific tissues has been intensely reported over the
last years.

For the CB1 receptor, heteromers have been sug-
gested to exist under certain physiological conditions
with serotonin,86 angiotensin,87 opioid,88–90 GPR55,91

somatostatin,92 orexin,93,94 dopamine,95–97 and adeno-
sine98 receptors among others (Table 1). Although
CB2 has been less investigated, recent research revealed
that it may form heterodimers with CB1,99 with
GPR55,100,101 with the serotonin receptor 5HT1A,102 or
with the chemokine receptor CXCR4.103 The expression
of these heterodimers has been associated with different
pathologies. For instance, the CB2�CXCR4 and the
CB2�GPR55 dimers have been associated with cancer
progression, while the CB1�A2A and the CB1�D2 het-
eromers have been suggested to have physiological
implications in neurodegenerative disorders such as

FIG. 2. Structures of the putative GPR3, GPR6, and GPR12 endogenous ligands S1P and SPC and the GPR3 and
GPR6 inverse agonist CBD. SPC, sphingosylphosphorylcholine.

FIG. 3. Alkylindole derivatives WIN55,212–2, ST-11, ST-23, ST-25, and ST-48.
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Huntington’s or Parkinson’s diseases. All these data sug-
gest that the ECS interacts in a significant manner with
several other endogenous systems.

With regard to cannabinoid receptor homodimeri-
zation, more data have been published on CB1 homo-
dimers than on their CB2 counterparts. The presence
of CB1 receptor homodimers has been reported in dif-
ferent biological tissues,104–106 but their functional role
has not been determined. In contrast, CB2 homodimers
have been evidenced,107–109 but their pharmacological
potential has not been explored yet.

In this field, bivalent ligands have emerged as prom-
ising new pharmacological entities and potential tools
for the biological study of their respective dimeric recep-
tors.110–113 Despite their poor pharmacokinetic proper-
ties,114 bivalent ligands can exhibit enhanced activity
and selectivity over their respective corresponding par-
ent ligands offering unique pharmacological strategies.
Bivalent ligands have been synthesized and evaluated
for several GPCRs. Opioid,115,116 dopamine,117,118 and
histamine119 are some of the receptors for which a biva-
lent compound provided higher activity than their
monomer counterparts. CB1 homobivalent120–122 and
heterobivalent123–125 ligands have been also reported
and explored. However, currently available receptor
structural information challenges the fact that bivalent
ligands can simultaneously bind to both receptors
within the dimer, especially in the case of lipid receptors
as the cannabinoids.126 Therefore, novel drug design ap-
proaches to target dimers, as well as new techniques to
determine bivalent binding, remain to be explored.

Homo- and heterodimerization likely influences the
manner in which the ECS responds to ligands. Never-
theless, unambiguous data about their physical associ-
ation in native tissues, as well as their pharmacology,
are needed to clearly identify what biological functions
are impacted by cannabinoid dimers.

Well-Established GPCRs Related
to the Cannabinoids
Certain endo-, phyto-, and synthetic cannabinoid li-
gands have been shown to modulate well-known
GPCRs. These GPCRs include members of established
families such as the opioid, serotonin, muscarinic,
dopamine, and adenosine families. For instance, the
endocannabinoid anandamide has been shown to act
at the adenosine receptor A3,127 the muscarinic acetyl-
choline receptors M1 and M4,128 and the serotonin
receptors 5-HT1A and 5-HT2A

129 among others. In ad-
dition, phytocannabinoids such as D9-THC and CBD
have been shown to modulate the l�and d�opioid re-
ceptors,130 while other plant-derived compounds such
as CBG (cannabigerol) and D9-THCV (tetrahydrocan-
nabivarin) display activity at the 5-HT1A recep-
tor.131,132 Likewise, synthetic cannabinoids, such as
the CB1 inverse agonists taranabant (MK-0364) and
rimonabant (SR141716), have also displayed activity
in well-established targets. These include the adenosine
A3 and the tachykinin NK2 receptors.133

Some of these cannabinoid ligands have been pro-
posed to interact allosterically with the aforementioned
targets. It is worth mentioning that the efficacy that
most of these cannabinoids exhibit toward these
GPCRs is lower than the one displayed at the CB1

and/or CB2 receptors. Therefore, there is no evidence in-
dicating a necessary recategorization of these receptors.

Other GPCRs
Because of their ability to recognize lipids and their
relatively close phylogenetic relationship with CB1

and CB2, several other Class A orphan or recently
deorphanized GPCRs such as GPR40, GPR43,
GPR41, GPR120 (currently classified as free fatty acid
receptors FFA1, FFA2, FFA3, and FFA4, respectively),
GPR23, GPR92 (recently categorized as lysophosphati-
dic acid receptors LPA4 and LPA5), GPR84, GPR119,
or GPR35 have been postulated as possible canna-
binoid receptor candidates.4 However, there is no
available evidence since they do not meet some of
the criteria established by the International Union of
Pharmacology.4,70

Table 1. Cannabinoid-Related G-Protein-Coupled Receptor
Dimers Reported So Far

Heterodimers Homodimers

CB1�D2 95,97 CB1�CB1
104–106

CB1�A2A
98 CB2�CB2

107–109

CB1�5HT2A
86

CB1�AT1
87

CB1�GPR55 91

CB1�SST5 92

CB1�OX1 94

CB1�OX2 93

CB1�lOR 90

CB1�dOR 88

CB1�CB2
99

CB2�GPR55 100,101

CB2�5HT1A
102

CB2�CXCR4 103

CB1, cannabinoid receptor type 1; CB2, cannabinoid receptor type 2.
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Conclusions
Two cannabinoid receptors, CB1 and CB2, have been
validated at the molecular level as the main targets of
the ECS. These two GPCRs have been widely explored
in the development of numerous pathophysiological
processes, and their therapeutic potential for the treat-
ment of different diseases has been extensively con-
firmed.1 Great efforts are being made to structurally
understand these receptors; in fact, CB1 in its inac-
tive134,135 and active136 states has been recently crystal-
lized. Despite possible crystallization artifacts, these
structures will help shedding light into the complex
pharmacology of the cannabinoid receptors.

Growing evidence suggests that other cannabinoid
or cannabinoid-like receptors remain to be identified
as important players of the ECS. Different endogenous,
phytogenic, and/or synthetic cannabinoid ligands have
been reported to modulate GPCRs such as GPR18,
GPR55, GPR3, GPR6, or the AI-sensitive receptors,
among others. Pharmacological discrepancies and the
lack of selective ligands for these receptors are delaying
the characterization of their relationship with the ECS.
Consequently, no CB3 receptor has yet been con-
firmed.2

Adding more complexity to the ECS scenario, mo-
lecular interactions of the cannabinoid receptors with
other GPCRs have been reported. Co-localization or
co-immunoprecipitation data suggest the presence of
cannabinoid homo- and heterodimers in specific native
tissues. Cannabinoid receptor dimerization may not
only influence the pharmacology of these receptors
but also it may provide new signaling pathways
through the interacting protomers. However, due to
the lack of appropriate tools, there is still limited
in vivo information about the expression of cannabi-
noid dimers. Hence, it remains a challenge to elucidate
their therapeutic relevance under specific physiological
conditions.

Currently, appropriate characterization of cannabi-
noid ligands should take into account the activity at
the aforementioned GPCRs. Possible biased agonism
of ligands, allosterism, or cross-talk signaling could
be determining the intricate GPCR pharmacology. In
addition, differential coupling and regulation of G-
proteins or the formation of oligomers are among
GPCR intrinsic properties that might be delaying the
validation of novel potential cannabinoid targets.
Therefore, further research is needed to fully under-
stand the physiopathological role of these non-CB1,
non-CB2 GPCRs in the modulation of the ECS.
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12. Henstridge CM, Balenga NA, Schröder R, et al. GPR55 ligands promote
receptor coupling to multiple signalling pathways. Br J Pharmacol
2010;160:604–614.

13. Andradas C, Blasco-Benito S, Castillo-Lluva S, et al. Activation of the or-
phan receptor GPR55 by lysophosphatidylinositol promotes metastasis
in triple-negative breast cancer. Oncotarget 2016;7:47565–47575.

14. Hofmann NA, Yang J, Trauger SA, et al. The GPR55 agonist, L-a-
lysophosphatidylinositol, mediates ovarian carcinoma cell-induced an-
giogenesis. Br J Pharmacol 2015;172:4107–4118.
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Abbreviations Used
AI¼ alkylindole

CB1¼ cannabinoid receptor type 1
CB2¼ cannabinoid receptor type 2

CBD¼ cannabidiol
ECS¼ endocannabinoid system

GPCR¼G-protein-coupled receptor
LPI¼ lysophosphatidylinositol

THC¼ tetrahydrocannabinol
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