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Abstract 

Background: Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. 

They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X 

syndrome, Huntington’s disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal 

dementia.

Main body: STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent find-

ings including: the discovery of a biallelic intronic ‘AAGGG’ repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, 

and vestibular areflexia syndrome (CANVAS); and the finding of ‘CGG’ repeat expansions in NOTCH2NLC as the cause of 

neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory tech-

niques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput 

and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been 

increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex 

repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific 

Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a 

rapid and cost-effective fashion.

Conclusion: We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat 

expansion disorders for both clinical diagnosis and gene discovery.
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Introduction

A large proportion of the human genome is comprised 

of repetitive DNA sequences known as microsatellites 

or short tandem repeats (STRs). STRs are small sec-

tions of DNA, usually 2–6 nucleotides in length, that 

are repeated consecutively at a given locus. STRs make 

up at least 6.77% of the human genome and are highly 

polymorphic [143]. STR lengths are prone to alteration 

during DNA replication, due to slippage events on mis-

aligned strands, errors in DNA repair during synthesis 

and formation of secondary hairpin structures [43]. As a 

result, STR lengths are relatively unstable, with their fre-

quent mutation providing a source of genetic variation in 

human populations. STRs have a mutation rate orders of 

magnitude higher than single nucleotide polymorphisms 

(SNPs) in non-repetitive contexts [58]. Larger repeats, in 

general, are more unstable and have an increased pro-

pensity to expand during DNA replication.

Large STR expansions may become pathogenic, under-

pinning various forms of primary neurological disease. 

�ere are currently 47 known STR genes that can cause 

Open Access

*Correspondence:  k.kumar@garvan.org.au
2 Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical 

Research, Darlinghurst, NSW 2010, Australia

Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9003-0101
http://orcid.org/0000-0003-3861-0472
http://orcid.org/0000-0003-3482-6962
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-021-01201-x&domain=pdf


Page 2 of 20Chintalaphani et al. acta neuropathol commun            (2021) 9:98 

disease when expanded; 37 of these exhibit primary 

neurological presentations (see Table  1) while 10 pre-

sent with developmental abnormalities (see Table  2). 

With increased interest and improving molecular tech-

niques for detecting repeat expansions, the list of known 

repeat expansion disorders is growing rapidly, with new 

genes such as RFC1, GIPC1, LRP12, NOTCH2NLC and 

VWA1 recently implicated. Furthermore, STR expan-

sions have been linked to complex polygenic diseases 

such as heart disease, bipolar disorder, major depressive 

disorder and schizophrenia [59]. Some theories also sug-

gest STR variability may account for normal brain and 

behavioural traits such as anxiety, cognitive function, 

emotional memory and altruism [41]. Similarly, somatic 

instability at STR regions is a hallmark of many cancers 

such as Lynch syndrome-related cancers, gastric cancers, 

colorectal cancers and endometrial cancers [174]. In this 

review, we provide an overview of the primary neurologi-

cal repeat expansion diseases, discuss limitations in cur-

rent diagnostic methods and developments in long-read 

sequencing technologies that promise to improve the dis-

covery and diagnosis of STR expansions.

General characteristics of repeat expansion 

disorders

Molecular mechanisms

Repeat expansion diseases have a wide range of patho-

genic mechanisms, which depend on the location of the 

expanded STR within a gene loci, and the nature and 

function of the gene. It is often hard to determine the 

specific mechanism as multiple may occur simultane-

ously and all may contribute to the disease form. �e 

mechanisms may be broadly categorised as loss-of-func-

tion (LOF) or toxic gain-of-function (GOF).

LOF mechanisms include hypermethylation and gene 

silencing [43, 132], defective transcription, and increased 

messenger RNA (mRNA) degradation [154]; all effects 

that can be elicited by an STR expansion within a gene 

locus. DNA methylation is an epigenetic process that 

contributes to genome stability and maintenance, and 

regulation of gene expression during development, with 

aberrant methylation profiles often implicated in disease 

[2]. Large expanded STRs may induce local hypermethyl-

ation, thereby silencing gene expression. One such classic 

example is an expanded STR in the promoter region of 

FMR1, seen in Fragile X syndrome (FXS). �e expansion 

causes hypermethylation of the FMR1 promoter region 

leading to silencing of transcription and LOF in the 

FMR1 gene. �erefore, the methylation state of relevant 

genes, in addition to STR length, may be informative for 

diagnosis of repeat expansion diseases.

Toxic GOF mechanisms include RNA toxicity, aber-

rant alternative splicing, repeat-associated non-AUG 

(RAN) translation, increased promoter activity, coding 

tract expansions and polyglutamine aggregation [85, 

154, 180]. Repeat expansions in coding and non-coding 

regions may disrupt RNA function in many ways, with 

multiple coexisting mechanisms potentially contribut-

ing to pathogenicity. For example, post-mortem exami-

nation of brain tissue in patients with an expanded 

‘GGG GCC ’ repeat in the 5’ region of C9orf72 ALS/

FTD, revealed multiple potential pathogenic RNA spe-

cies: RNA that had been stalled at repeat locations, 

RAN proteins, antisense transcription of repeat regions 

and alternative splicing of intron 1 containing the 

repeat [48]. �ese species are considered “toxic” as they 

accumulate as RNA foci within the neurons, astrocytes, 

microglia and oligodendrocytes and form complexes 

with RNA-binding proteins to dysregulate translation 

and modify transcription [48, 49].

�e other common toxic GOF mechanism is expan-

sion of homopolymer amino acid tracts resulting in 

misfolding and proteinopathy. In neurological repeat 

expansion diseases, exonic ‘CAG’ repeat expansions 

code for the amino acid glutamine; when expanded, 

they create polyglutamine tract expansions which can 

reach hundreds of amino acids long. �is is thought 

to alter and expand the transcribed protein creat-

ing insoluble protein aggregates within neuronal cells 

(primarily in the cerebellum), leading to perturbations 

of intracellular homeostasis and cell death [81]. �is 

mechanism is commonly seen in the hereditary spi-

nocerebellar ataxias. In congenital and developmental 

repeat expansion diseases, exonic ‘GCG’ coding tracts 

expand to create polyalanine tract expansions (Table 2). 

However, they are quite different to polyglutamine tract 

expansions seen in neurological repeat expansion dis-

orders; they are smaller and generally meiotically sta-

ble when transmitted between generations, thus they 

do not exhibit the same large pathogenic range seen in 

neurological repeat expansion disorders. For example, a 

normal allele in HOXA13 contains 15–18 alanine resi-

dues while a pathogenic allele only contains between 

7 and 15 extra residues [50]. �us, the mechanism of 

mutation in polyalanine disorders is thought to be dif-

ferent and hypothesised to be due to unequal crossing 

between mispaired alleles and duplication  during rep-

lication  rather than dynamic trinucleotide expansions 

[164]. �is would explain the relative stability of trans-

mission and small pathogenic ranges.  Furthermore, 

these polyalanine tract repeat expansion disorders 

are more commonly caused by other mutations such 

as missense and frameshift mutations.  Interestingly, 

several studies show that an expansion of polyalanine 

tracts results in low levels of the protein found in the 

nucleus thereby exhibiting LOF, rather than increased 
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protein levels and proteinopathy seen in polyglutamine 

tract expansions [23, 64].

Repeat length and disease severity

�e size of STR expansions has been shown to quanti-

tively affect disease severity, with larger expansions often 

associated with earlier onset of disease and more severe 

symptoms. For example, the repeat size in myotonic dys-

trophy type 1 (DM1) has a very broad pathogenic range 

(Fig.  1). Typically, 50–150 repeats cause a late-onset 

(20–70 years) mild phenotype with cataracts and myoto-

nia, 100–1000 repeats cause onset in adolescence/early 

adulthood (10–30  years) with a classical phenotype of 

weakness, myotonia, cataracts, balding and arrhythmias, 

while even larger expansions cause early-onset (birth to 

10  years) disease with infantile hypotonia, respiratory 

involvement and intellectual disability [13, 176].

Slightly expanded STR regions, known as premutation 

alleles, may be associated with mild or variable pheno-

types. For example, in Huntington’s disease (HD), there 

is full penetrance in all individuals with greater than 39 

repeats of ‘CAG’ within exon 1 of the HTT gene, and par-

tial penetrance in individuals with 36–39 repeats [101]. 

Approximately 50–70% of the variability in age of onset 

in Huntington’s disease is directly correlated to repeat 

length variability [54, 170]. Another classical example 

is FXS. In 1991, it was found that a ‘CGG’ repeat in the 

5’ promoter region of the FMR1 gene normally contains 

an unmethylated STR of up to 45 ‘CGG’ repeats [55]. In 

individuals with expansions greater than 200 repeats, the 

FMR1 promoter region undergoes hypermethylation and 

transcriptional silencing of Fragile X mental retardation 

protein (FMRP) [109]. Loss of the FMRP protein, which 

is vital for synaptic plasticity in the CNS, leads to FXS 

[10]. However, the premutation allele (55–200 repeats) is 

known to cause late-onset Fragile X-associated tremor/

ataxia syndrome (FXTAS) in men [90]. While in women, 

a 55–200 repeat-allele may present with a primary ovar-

ian insufficiency due to absent menarche or premature 

follicular depletion [109]. �is premutation allele does 

not exhibit hypermethylation, and in fact increases pro-

moter region activity and transcription, resulting in pro-

duction of toxic RNA species [59]. �us, two allele sizes 

in the same STR region may exhibit opposing molecular 

mechanisms corresponding with distinct clinical pheno-

types. �is highlights the importance of accurate repeat 

sizing for these genes.

It is important to note that the exact point at which 

STR pathogenicity occurs is still the subject of ongo-

ing investigation and debate. For example, there is some 

uncertainty over the pathogenic cut-off for SCA8 and 

Table 2 Summary of known congenital and developmental disorders caused by short tandem repeat expansions. Adapted from 

Khristich and Mirkin [76]

BPES, blepharophimosis, epicanthus inversus, and ptosis; CCHS, congenital central hypoventilation syndrome; DBQD2, Desbuquois dysplasia 2; FECD3, Fuchs 

endothelial corneal dystrophy 3; GDPAG, global developmental delay, progressive ataxia, and elevated glutamine; HFG, hand-foot-genital syndrome; HPE5, 

holoprosencephaly 5; SPD1, synpolydactyly 1; XLMR, x-linked mental retardation

a Location of entire gene listed

Phenotype (OMIM #) Gene Motif Pathogenic 
repeat number

Location (hg38) References

BPES
(#110100)

FOXL2 GCG 22–24 Exon chr3 138946022 138946062 [116]

CCHS
(#209880)

PHOX2B GCG 24–33 Exon chr4 41745976 41746022 [7]

DBQD2
(#615777)

XYLT1 GGC 100–800 5’ Region chr16 17470869 17470967 [86]

FECD3
(#613267)

TCF4 TGC  > 50 Intron chr18a 55222184a 55635956a [167]

GDPAG
(#618412)

GLS GCA  > 300 5’ Region chr2 190880873 190880920 [159]

HFG
(#140000)

HOXA13 GCG 24–26 Exon chr7 27199827 27199967 [50]

HPE5
(#609637)

ZIC2 GCG 25 Exon chr13 99985449 99985494 [17]

HSAN8
(#616488)

PRDM12 GCG 18–19 Exon chr9 130681606 130681641 [23]

SPD1
(#186000)

HOXD13 GCG 22–29 Exon chr2 176093058 176093099 [2]

XLMR
(#300123)

SOX3 GCG 15–26 Exon chr3 181712415 181712456 [89]
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SCA17, since expanded alleles have been detected in 

a healthy control population [142, 178]. Moreover, the 

pathogenic link between the STR expansion in ATXN8 

and SCA8 has been questioned [136, 149, 169]. Rates of 

expanded repeats in healthy populations exist in other 

STR regions, such as C9orf72 and FMR1, where 0.1–

0.4% of the healthy population have a repeat expansion 

[69]. Hence, in these cases it is difficult to determine the 

significance of an expanded or slightly expanded allele. 

Furthermore, due to intrinsic limitations in current 

clinical diagnostic methods, the upper range of STR 

expansions is often difficult to accurately define, with 

large expansions exceeding the capabilities of estab-

lished molecular diagnostic techniques (see below). For 

example, the sizing of SCA31 repeats has been impre-

cise or absent, with no accurate literature defining the 

upper end of pathological repeat sizes [67]. Generally, 

genetic reports for C9orf72 indicate three size ranges: 

normal, intermediate and pathogenic [16]. �e patho-

genic range is generally reported as “ > 30” repeats [16].

Clinical anticipation

As mentioned earlier, STRs have an intrinsic tendency 

to expand during replication. �is means that, while 

most repeat expansion diseases are inherited, there may 

be sporadic cases with no previous family history. STR 

instability also explains a phenomenon known as clini-

cal anticipation. Anticipation is the seemingly increas-

ing severity of disease and/or symptoms appearing at an 

earlier age as generations continue. Because of this phe-

nomenon, the premutation allele in FXS is commonly 

seen in maternal carriers and maternal grandfathers of 

affected individuals. Over generations, the unstable pre-

mutation allele favours continual expansion and may 

sporadically present as full FXS in male children. Antici-

pation is also commonly seen in HD, with larger repeats 

being more unstable [130]. Intermediate alleles of 34–35 

‘CAG’ repeats in HTT have a high risk of expanding and 

causing new mutations [140]. Interestingly, anticipation 

in HD is much more commonly seen in paternal trans-

mission, with larger expansion juvenile-onset HD often 

inherited from the father; although, there are some cases 

of maternal transmission [113, 127]. �is is thought to be 

due to large STR instability and variation in spermato-

genesis seen in fathers [166]. �is paternal transmission 

pattern of anticipation is also seen in SCA1, SCA2, SCA7 

and DRPLA [6, 51, 66, 99], while in SCA8 there is a pat-

tern of maternal transmission thought to be due to en 

masse STR contractions in paternal sperm [110]. ATN1 

(DRPLA) and ATXN7 (SCA7) are especially unstable 

[125]; anticipation in SCA7 may be so severe that young 

children develop symptoms before an affected parent or 

grandparent.

�e phenomenon of genetic anticipation may not be 

true for all repeat expansion diseases, for example, clini-

cal anticipation is not seen in families with OPMD or 

FRDA [52, 71], and while studies show evidence of clini-

cal anticipation in C9orf72 expanded alleles [160], carrier 

alleles may variably contract or expand over generations 

[42]. Furthermore, the repeat length has been found to 

differ within the same patient, indicating cells in brain 

tissue and cells in blood have different repeat sizes (simi-

lar patterns of somatic mutation are seen in other repeat 

expansion disorders such as HD and DM1) [123]. �us, 

further accurate genotyping of C9orf72 affected families 

is required to better understand the correlation between 

repeat size and phenotype.

Fig. 1 Healthy and pathogenic ranges in neurological short tandem 

repeat expansion disorders. Box plot indicates the range of observed 

sizes for the pathogenic STR in known neurological STR expansion 

disorders (see Table 1). For each disorder, the range of STR sizes 

observed among unaffected individuals is shown in black, and the 

sizes observed in affected individuals is shown in pink



Page 9 of 20Chintalaphani et al. acta neuropathol commun            (2021) 9:98  

Common clinical features

Repeat expansion diseases tend to cluster around shared 

phenotypes. It would be difficult to find a repeat expan-

sion disorder that did not exhibit of one or more of the 

following phenotypes: cerebellar ataxia, chorea or HD 

phenocopies, tremor, cognitive impairment, muscular 

dystrophies, myoclonic seizures, amyotrophic lateral 

sclerosis and peripheral neuropathies.

Hereditary cerebellar ataxias

Patients with hereditary cerebellar ataxia exhibit abnor-

mal eye movements, dysarthria, limb and gait ataxia. 

�ese may be due to a plethora of different STR expan-

sions including the spinocerebellar ataxias (SCA), den-

tatorubral-pallidoluysian atrophy (DRPLA), Friedreich’s 

Ataxia (FRDA) and the cerebellar ataxia, neuropathy, 

and vestibular areflexia syndrome (CANVAS, see sec-

tion below) [12], and may also be due to point mutations, 

duplications, and deletions [71].

�e most common STR expansions in patients with 

hereditary cerebellar ataxia is an expanded ‘CAG’ repeat 

within polyglutamine tracts found in SCA1, SCA2, 

SCA3, SCA6, SCA7, SCA12 and SCA17 [131]. For these 

disorders, there are efficient cost-effective repeat-primed 

polymerase chain reaction (RP-PCR) methods for diag-

nostic testing, however a majority of patients referred 

for these panels return with negative test results [72]. 

Testing other STR regions is not as straight forward, and 

requires time-consuming methods of individual gene 

sequencing [8]. In a German cohort of 440 of people 

who returned negative for SCA1, 2, 3, 6 and 7, there were 

five patients with expanded SCA8 repeats, one patient 

with an FXTAS expanded allele and four with possible 

FXTAS alleles, and one C9orf72 expansion [8]. �is study 

shows that, while they are uncommon, other STR expan-

sions may cause undiagnosed late-onset progressive 

ataxia. Recently, SCA37 was linked to a novel expansion 

of ‘ATTTC’ within a ‘ATTTT’ polymorphism in DAB1 

[139]. �e repeat length and conformation of the repeat 

expansion could only be accurately assessed with long-

read sequencing [139]. It has a similar phenotype to other 

spinocerebellar ataxias, suggesting there are more novel 

expansions which may explain cases of undiagnosed 

ataxia.

Myoclonus epilepsies

Unverricht-Lundborg disease (ULD) is one of the most 

common single causes of progressive myoclonus epilepsy 

worldwide; it is characterised by childhood-onset stim-

ulus-sensitive myoclonus epilepsy, ataxia and cognitive 

and behavioural abnormalities [91]. Other repeat expan-

sion diseases may also present with myoclonus epilepsies, 

usually with large repeat sizes and severe phenotypes; 

these include SCA7, SCA10   and DRPLA [92, 103, 161, 

177]. Furthermore, a group of familial adult myoclonus 

epilepsies (FAME1, 2, 3 and 6) have recently been linked 

to STR expansions, discussed further below.

Huntington’s disease and Huntington’s disease phenocopies

HD is caused by a ‘CAG’ repeat in the HTT gene and 

is characterised by chorea with psychiatric symptoms 

and cognitive decline, with mean age of symptom onset 

between 35 to 44 years old [20]. �e most common HD 

phenocopies or HD-like syndromes are seen in STR 

expansions within C9orf72 [111] (discussed below), how-

ever, others include PRNP (Huntington disease-like 1, 

HDL1), JPH3 (HDL2), TBP (SCA17 or HDL4), ATXN8 

(SCA8), FXN (Friedreich’s ataxia) and ATN1 (DRPLA), 

in addition to sequencing variants/deletions in VPS13A, 

TITF1, ADCY5, RNF216 and FRRS1L [135]. HDL2 

shares molecular characteristics with HD: they are both 

due to polyglutamine tract expansion caused by a ‘CAG’ 

repeat in exon 1 of their respective genes, and there is 

evidence to suggest that similar CREB-binding protein 

(CBP) sequestration in nuclear bodies drives both patho-

logical processes [62, 168]. Given numerous examples of 

HD phenocopies and the overlap between several repeat 

expansion diseases, one may suspect that further pheno-

copies of HD might have an undiscovered genetic basis in 

STR regions.

C9orf72‑related disorders

Since its discovery in 2011, the ‘GGG GCC ’ hexanu-

cleotide repeat in C9orf72 has been studied extensively. 

It is the most common cause of familial frontotemporal 

dementia (FTD) and familial amyotrophic lateral sclero-

sis (ALS) [32]. Interestingly, the C9orf72 repeat expan-

sion has also been linked to a range of clinical phenotypes 

including typical Parkinson’s disease, atypical parkinso-

nian syndromes, schizophrenia and bipolar disorder [14, 

49]. In a recent retrospective study, movement disor-

ders were the second most common initial presentation 

of C9orf72-related diseases, following cognitive signs in 

FTD [37]. �ese patients frequently present with one or 

several of the following: parkinsonism, myoclonus, dysto-

nia, chorea and ataxia [37]. �e phenotypic heterogene-

ity is difficult to explain, consistent with the concept that 

the mechanisms of disease caused by STR expansions are 

poorly understood [59].

Interruptions

Some STR expansions contain internal sequence inter-

ruptions that may directly affect the phenotype or lead 

to overestimation of repeat sizes. �ese interruptions 
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have long been found in Fragile X, Huntington’s disease, 

hereditary cerebellar ataxias and myotonic dystrophies, 

however their origins and effect are poorly understood. 

�ere has been more research in this area due to new 

methods of long-read sequencing, combined with spe-

cific RP-PCR and Southern blot primers to establish 

a stronger consensus on repeat motifs [156]. �is has 

allowed new discoveries in the role of interruptions. For 

example, three groups have shown that a loss of a ‘CAA’ 

interruption within expanded ‘CAG’ tracts in HTT leads 

to earlier onset Huntington’s disease [170]. It is estimated 

that this variant is associated with 9.5 years earlier onset 

in Huntington’s disease [39], particularly in those with 

reduced penetrance alleles of 36–39 ‘CAG’ repeats. �e 

‘CAA’ interruption is also a genetic modifier of other pol-

yglutamine repeat expansions, such as SCA2 and SCA17 

[25, 45]. �ese ‘CAA’ interruptions fall within ‘CAG’ cod-

ing tracts and therefore still translate to glutamine, how-

ever the interrupted alleles preferentially form shorter 

branching hairpin structures which reduce strand slip-

page and increase stability of the repeat [145, 173]. �us, 

it is proposed that the pathogenic mechanism of this 

interruption may be due to increased instability during 

somatic expansion of the repeat, and longer polyglu-

tamine tracts leading to increased toxic GOF [170]. Inter-

estingly, in SCA2, ‘CAA’, ‘CGG’ and ‘CGC’ interruptions 

are linked to autosomal dominant levodopa-responsive 

Parkinson’s disease, demonstrating interruptions may 

modify phenotype as well as age of onset [122].

Similarly, a DM1 family was found to have ‘CCG’ inter-

ruptions within the ‘CTG’ STR expansion in DMPK 

resulting in atypical traits such as severe axial and proxi-

mal weakness and late onset of symptoms [9].

Pentanucleotide STR regions are very unstable and 

dynamic in nature, often containing large amounts of 

heterogeneity in controls as well as patients. For example, 

pathogenic ‘ATTCT’ repeats in ATXN10 (SCA10) likely 

exist within a dynamic structure of pentanucleotide, 

hexanucleotide and heptanucleotide motifs [102]. Inter-

ruptions with the specific ‘ATCCT’ motif is strongly asso-

ciated with epilepsy [88, 103], while pure ‘ATTCT’ tracts 

are associated with parkinsonism [137]. �e mechanism 

of disease caused by these interruptions is difficult to dis-

cern; further genotyping of these regions is first required. 

�is complex motif structure is commonly seen in sev-

eral newly discovered pentanucleotide repeat expansions 

such as RFC1 or SAMD12, which show that pathogenic 

sequences are often extremely dynamic in nature [3, 107, 

138].

Recent discoveries for neurological repeat 

expansion disorders

Most of the repeat expansion disorders listed in Table 1 

have been discussed extensively in literature, however, 

in the last three years, 12 novel neurological  repeat 

expansion disorders have been classified – these include 

SCA37, CANVAS, neuronal intranuclear inclusion dis-

ease (NIID), OPML, OPDM, OPDM2, FAME1, FAME2, 

FAME3, FAME6, FAME7 and recessive hereditary motor 

neuropathy (HMN) (Table 1).

In 2019, a heterozygous ‘CGG’ expansion in the Notch 

homolog 2N-terminal-like C (NOTCH2NLC) gene was 

found to be the cause of NIID by numerous independ-

ent groups [34, 69, 146]. Of note, the expansion was 

detected or confirmed using long-read sequencing. Some 

patients have been identified to have ‘AGG’ interrup-

tions, with evidence in a small East–Asian cohort show-

ing interruptions may be linked to earlier age of onset 

[24]. NIID is a neurodegenerative condition character-

ized by eosinophilic intranuclear inclusions in neuronal 

and glial cells, which have characteristic findings on brain 

MRI, including high diffusion-weighted imaging signals 

along the corticomedullary junction [4, 95, 152]. �e 

NOTCH2NLC expansion has also been found in a rapidly 

growing number of phenotypes, including leukoencepha-

lopathy, essential tremor, Parkinson’s disease, multiple 

system atrophy (MSA) and amyotrophic lateral sclerosis 

[38, 69, 95, 117, 119, 175]. Further long-read sequencing 

studies have found noncoding CGG repeat expansions 

in LOC642361/NUTM2B-AS1, LRP12 and GIPC1 [69, 

172]. �ese STR expansions correspond to similar phe-

notypes: oculopharyngeal myopathy with leukoencepha-

lopathy (OPML), and oculopharyngodistal myopathy 1 

and 2 (OPDM1 and OPDM2), emphasising the need for 

screening multiple genetic causes in patients presenting 

with these clinical features. For example, a recent study 

screened a cohort of 211 patients clinically diagnosed 

with OPDM and found seven patients with ‘CGG’ expan-

sions in NOTCH2NLC [118]. Similarly, in a cohort of 189 

patients clinically diagnosed with MSA, five were found 

to have ‘GCC’ repeats in NOTCH2NLC [38].

In 2019, an intronic  biallelic ‘AAGGG’ repeat in the 

RFC1 gene was linked to patients presenting with cer-

ebellar ataxia, neuropathy and vestibular areflexia syn-

drome (CANVAS) [28, 126]. CANVAS is characterised 

by a collection of clinical features which often present 

later in life [21]. Previously determined idiopathic [171], 

the newly discovered repeat expansion was found in 

22% of all patients (n = 150) with undiagnosed late-onset 

ataxia. �is percentage increased to 63% if they also had 

sensory neuronopathy and up to 92% of patients with 

full CANVAS syndrome features [28], however these 

numbers seem to be an overestimation in non-European 
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populations [3]. RFC1 expansions can also mimic other 

disorders such as Sjogren’s syndrome, hereditary sen-

sory neuropathy with cough or paraneoplastic syndrome 

[29, 83]. Interestingly, in this case, the pathogenic repeat 

‘AAGGG’ is   a conformational variation on the normal 

‘AAAAG’ motif, suggesting a disease mechanism asso-

ciated with the expansion of variant motifs. Many stud-

ies have shown the dynamic nature of the repeats within 

RFC1. A study of 608 healthy controls used flanking and 

RP-PCR, Southern blot analysis and Sanger sequenc-

ing to demonstrate an allelic distribution of 75.5% for 

the ‘(AAAAG)11’ allele, 13.0% for the ‘(AAAAG)exp’ 

allele, 7.9% for the ‘(AAAGG)exp’ allele and 0.7% for the 

‘(AAGGG)exp’ allele [28]. �e average size of normally 

expanded alleles ‘AAAAG’ and ‘AAAGG’ was 15–200 

repeats and 40–1000 repeats respectively. Another study 

reports two other heterozygous conformations, ‘AAGAG’ 

and ‘AGAGG’, which have an average size of 160 repeats 

and a frequency of approximately 2% in healthy popula-

tions and 7% in CANVAS cases [3].

Recently, more novel pathogenic RFC1 conforma-

tions have been implicated with CANVAS. ‘ACAGG’ 

was found to have expanded in two Asia–Pacific fami-

lies [138] who demonstrated additional clinical fea-

tures, namely fasciculations and elevated serum kinase. 

Another study showed a ‘(AAAGG)10–25(AAGGG)exp’ 

allele was the predominant pathogenic allele found in 

Māori populations, with no apparent phenotypic differ-

ences when compared to the European populations [11]. 

Accurately genotyping the conformation of the expanded 

allele in RFC1 is vital for diagnosing CANVAS and dis-

covering novel pathogenic conformations. Long-read 

sequencing has been used to read entire lengths of repeat 

regions and overcomes traditional problems of mapping 

novel conformations with short-reads or creating repeat-

primed probes with RP-PCR and Southern blot. �is is 

also seen in SCA37 and the five FAME subtypes, whereby 

a variant conformation is expanded within the patient 

cohort [68, 139].

In 2019, five subtypes of familial adult myoclonus-epi-

lepsies (FAME) were linked to ‘TTTCA’ intronic repeats 

in their respective genes [68]. Using PacBio long-read 

sequencing, the 2.2–18.4 kb expanded alleles in SAMD12 

(FAME1) could be accurately and efficiently sized [68, 

107] and were found to have expanded ‘TTTCA’ seg-

ments rather than the ‘TTTTA’ motif found in control 

patients. FAME6 and FAME7 only have genotype–phe-

notype linkage in one family each, thus evidence regard-

ing these two diseases is still limited [68].

It is possible a shared motif/repeat location may cause 

similar clinical syndromes. �e ‘TTTCA’ intronic repeats 

in SAMD12, MARCHF6, TNRC6A and RAPGEF2 are 

all responsible for FAME [68]. Similarly, the ‘CGG’ 

non-coding repeat in NIID, OPML and OPDM also have 

overlapping phenotypes with some common typical MRI 

findings.

Very recently, a 10 base pair expansion in the gene 

VWA1 was identified as a cause of recessive distal heredi-

tary motor neuropathy (HMN), further underscoring 

that repeat expansions can be linked with neuropathy 

phenotypes and highlighting the rapid rate of new STR 

expansions [121].

Current clinical testing approaches for repeat expan-

sion diseases are time-consuming to develop, and often 

cannot accurately assess larger STR regions with high 

‘GC’ content. We must establish a new robust clinical 

pipeline for STR genotyping, that can be developed at a 

rapid pace, to match the rate of discovery of novel repeat 

expansion diseases as seen in Fig. 2.

Molecular diagnostics

�e established approach for molecular diagnosis of 

repeat expansion diseases involves genotyping STRs by 

repeat-primed precise PCR (RP-PCR) and/or Southern 

blot assays for sizing larger expansions (Fig. 3). �e clini-

cian must decide which STRs warrant testing, which can 

be difficult due to phenotypic heterogeneity and overlap 

between various repeat expansion disorders. Moreover, 

since both methods require separate primers/probes for 

each STR, parallel analysis of multiple candidates in a 

single assay is not possible.
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Fig. 2 Rate of discovery of neurological short tandem repeat 

expansions. Bar plot indicates the number of new pathogenic 

STR expansion discoveries published each year during the period 

1990–2021 (see Table 1 for references to original publications for each 

gene)
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Southern blot assays are regarded as the gold-standard 

for detecting large polynucleotide repeat expansions, but 

this method is time-consuming, inefficient, costly and 

requires large quantities (up to 10  μg) of high-quality 

DNA for a single analysis [4]. In certain STR expansions, 

Southern blotting has been replaced by RP-PCR, which is 

cheaper and more efficient [151]. However, because the 

highly repetitive region is amplified and then fragmented 

into shorter reads, PCR stutter errors make it difficult to 

accurately determine the length of an expanded repeat. 

Furthermore, in large repeats with high ‘GC’ content, 

repetitive flanking regions or flanking variants, it can be 

highly challenging to establish an effective diagnostic 

PCR assay. �is is evident in testing regimes for C9orf72, 

which have not been standardised across labs [4]. Cur-

rently, optimised PCR methods can detect expanded 

repeat sizes up to 900 hexanucleotide repeats, However, 

accurate quantitative sizing may only be reported up to 

140 repeats [26, 151].

Furthermore, while interruptions may be detected 

within a repeat, their exact motif may be challeng-

ing to determine [61]. Due to the high concentration of 

guanine-cystine (GC) content in some of these repeat 

and interruption motifs, there is a high chance of sec-

ondary structure formation and allelic dropout of PCR 

amplification leading to further sequencing errors [61, 

75].

Next generation sequencing

Next-generation sequencing (NGS) provides an alterna-

tive approach for genotyping STRs. STR expansions can 

be detected across the entire genome, using established 

short-read NGS platforms (e.g., Illumina), and a growing 

number of bioinformatics tools have been developed for 

this purpose (e.g., ExpansionHunter, LobSTR, RepeatSeq, 

HipSTR and GangSTR) [35, 57, 84, 112]. �ese tools also 

allow researchers to link STR regions in affected family 

members, making them good methods for identifying 

novel expansions, thereby leading to a recent wave of dis-

coveries (as described earlier). �e major advantage of 

whole-genome sequencing is that, in theory, all STRs in 

the genome are profiled simultaneously, as well as STR 

contraction and non-STR mutations, which may also 

be implicated in disease. While NGS remains relatively 

expensive, avoiding the need for repeated molecular test-

ing on multiple targets means this can be cost effective, 

and will be increasingly competitive as sequencing prices 

continue to fall.

However, the utility of short-read NGS for repeat 

expansion diagnosis is hampered by several limitations. 

Fig. 3 Current molecular diagnostic methods. Flow chart shows an example of two current diagnostic methods for diagnosing STR expansions: 

Southern blot and repeat-primed PCR. The sample analysis shown in both diagnostic methods was taken from a patient with Friedrich’s ataxia with 

a heterozygous ‘GAA’ expansion in the FXN gene (approximately 90 and 900 repeats). The RP-PCR graph shows the characteristic tailing/stuttering 

pattern of expanded alleles caused by the repeat-primed probes binding to more sites within the STR expansion. For sizing, Southern blot is 

performed. The larger 900-repeat ‘GAA’ allele cannot be seen using the Southern blot sizing ladder shown above
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Firstly, highly repetitive and/or ‘GC’ rich genome regions 

are refractory to NGS library preparation, PCR amplifi-

cation and sequencing, making it difficult to obtain suf-

ficient coverage in many STR regions. PCR amplification 

during the library preparation can also introduce stut-

ter errors, although this can be alleviated through the 

use of PCR-free library preparations [104]. Secondly, 

the repetitive nature of STR regions can cause ambigu-

ous alignment or misalignment of short NGS reads to 

the reference genome. More fundamentally, the short-

read length (~ 100–150 bp) of established NGS technolo-

gies is insufficient to span large STR expansions, making 

it impossible to precisely determine their length (see 

Fig. 4). Lastly, standard NGS does not detect epigenetic 

modifications, such as 5-methylcytosine, which are diag-

nostically important in some cases [132, 144]. Although 

NGS has proven useful for the discovery of new disease-

related repeat expansions, these limitations have so far 

prevented widespread adoption of NGS for clinical diag-

nosis and replacement of low-throughout molecular tests 

like Southern blotting.

Outlook: e�cient and accurate diagnosis of repeat 

expansion disorders with long-read sequencing

For thorough evaluation of a suspected repeat expan-

sion disorder, clinicians must be able to: (1) screen for 

all the relevant genes (including any newly discovered 

candidates); (2) accurately assess the size of any detected 

expansion and; (3) look for additional diagnostic or prog-

nostic markers such as repeat interruptions and DNA 

methylation state. Emerging long-read sequencing plat-

forms from Oxford Nanopore Technology (ONT) and 

Pacific Biosciences (PacBio) have the potential to address 

these requirements, while overcoming the limitations of 

conventional Illumina short-read sequencing platforms 

[84].

ONT devices measure the displacement of ionic cur-

rent as a DNA strand passes through a biological nano-

pore and subsequently translate this data into DNA 

sequence information (see Fig. 4). ONT sequencing has 

no theoretical upper limit on read length, with > 10  kb 

average read length considered standard for genomic 

DNA sequencing and some examples achieving maxi-

mum read lengths in excess of 1  Mb [98]. �erefore, 

unlike for short-read NGS, individual ONT reads may 

Fig. 4 NGS and Long-read sequencing for diagnosing short tandem repeat expansions. Flow chart shows the use of short-read NGS and two 

long-read sequencing methods for genotyping STR expansions: PacBio single-molecule real-time (SMRT) sequencing and Oxford Nanopore 

Technology (ONT) long-read sequencing. The alignment of reads to the genome can be seen for all three methods; short-reads are ‘tiled’ together 

to estimate the repeat size and sequence, while long reads easily span repeat and flanking regions. Nanopore sequencing high error rates can be 

overcome via sufficient coverage
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span the entire length of large pathogenic repeat expan-

sions (see Fig.  4 below). In one study, between 80 and 

99.5% of reads successfully spanned expanded ‘GGC CTG 

’ repeats in NOP56 (median 37 repeats) and ‘CCC CGG ’ 

repeats in C9orf72 (median 406 repeats), allowing direct 

measurement of STR lengths [36]. Nanopore reads cur-

rently exhibit relatively high sequencing error rates when 

compared to NGS, due to inaccuracies in the base-calling 

process, however, accurate consensus sequence determi-

nation is possible with sufficient coverage [70] and sev-

eral studies have demonstrated accurate genotyping of 

repeat expansions with ONT [36, 46, 146]. Additionally, 

analysis of ONT signal data allows the methylation sta-

tus of a given loci to be determined in parallel, providing 

an additional marker for the diagnosis of relevant repeat 

expansion disorders, such as FXS [46].

PacBio Single Molecule, Real-Time (SMRT) sequenc-

ing technology detects, in real-time, fluorescent signals 

from nucleotides as they are being incorporated to a sin-

gle DNA template-polymerase [128]. SMRT sequencing 

achieves greater than 99% accuracy via circular consen-

sus sequencing (CCS), whereby large DNA strands are 

ligated on either end to form a circular DNA molecule 

such that the DNA polymerase completes multiple passes 

of the same DNA fragment in a single read to achieve 

high coverage (average read-length 13.5  kb) [165]. An 

advantage of the long and highly accurate reads gener-

ated by PacBio SMRT sequencing, is the ability to resolve 

the STR length and sequence, as well as detecting and 

phasing possible variants in the surrounding regions. For 

example, a recent study developed a haplotype phasing 

protocol for the HTT gene using PacBio SMRT sequenc-

ing, enabling detection of relevant SNPs and ‘CAG’ 

expansions in HTT on the same amplicon [153]. Several 

new bioinformatics tools, such as IsoPhase [163], SHA-

PEIT4 [33] and NanoCaller [1], use long reads to accu-

rately phase SNV, insertions and deletions. �us, both 

ONT and PacBio SMRT technologies have the potential 

to replace current clinical molecular diagnostics by accu-

rately generating reads spanning the length of large path-

ogenic repeat expansions.

Despite these promising recent developments, the 

computational analysis of long-read sequencing data to 

accurately genotype repeats is an active area of develop-

ment, with several important hurdles yet to be overcome. 

Multiple software packages have been recently created 

for this purpose, including tandem-genotypes [106], 

NanoSatellite [31], STRique [46], RepeatHMM [93] and 

PacmonSTR [158], with each demonstrating the capabil-

ity to measure the size of expanded STRs. However, dis-

cordant results between some tools [106] highlight the 

need for more rigorous benchmarking on a broad selec-

tion of different repeat types and sizes. Furthermore, the 

ability to resolve challenging cases such as STR inter-

ruptions, mixed conformations (e.g., the Māori-specific 

RFC1 conformation [11]) and allelic differences in con-

formations, has yet to be demonstrated. Furthermore, the 

detection of novel pathogenic STR expansions remains 

another major unsolved challenge given the polymorphic 

nature of STRs and the vast STR diversity encountered in 

human populations [93, 106].

Whole-genome analysis with both ONT and PacBio 

long-read sequencing platforms is now feasible and will 

likely aid in the discovery of many novel disease-related 

STR expansions in the near future. For example, Sone 

and colleagues recently discovered a ‘GGC’ repeat in the 

NOTCH2NLC gene in 13 patients affected with NIID 

using long-read whole-genome sequencing combined 

with bioinformatics tool tandem-genotypes [146]. �ey 

then confirmed their findings with RP-PCR on positive 

and healthy controls. Similarly, a ‘TTTCA’ repeat expan-

sion was discovered in SAMD12 and linked to FAME1; 

the study used low-coverage (~ 10×) PacBio long-read 

sequencing with STR detection tools RepeatHMM and 

inScan to target the locus identified by linkage analysis 

[179]. It should also be noted that the ‘TTTCA’ expansion 

in the SAMD12 gene was also discovered independently 

by Ishiura and colleagues, who used linkage analysis fol-

lowed by repeat-primed PCR and Southern blotting to 

detect the expansion, then used PacBio to elucidate the 

motif structure [68].

Given the high cost and large data volumes generated 

using whole-genome, targeted sequencing of candidate 

genes represents a more viable and cost-effective path-

way to clinical adoption. �is requires the establishment 

of reliable methods for amplification-free enrichment 

and sequencing of long DNA fragments spanning STR 

regions.

One promising strategy involves the use of CRISPR-

Cas9 guide-ribonucleoproteins (RNPs) for selective 

cleavage of target loci, followed by ligation of a magnetic 

adaptor that allows isolation of target molecules prior to 

PacBio SMRT sequencing [157]. To date, this method 

has been applied for genotyping STR expansions in HTT, 

C9orf72, ATXN10 and NOTCH2NLC [146, 157]. ONT 

sequencing is amenable to an analogous strategy, where 

ONT sequencing adapters are directly ligated to Cas9 

cleavage sites to enable their selective sequencing [46, 48]. 

In establishing this approach, Giesselmann et al. found a 

single ONT MinION flow-cell could generate greater 

than 40-fold coverage over the expanded ‘GGG GCC ’ 

region in C9orf72 [46], sufficient for accurate determina-

tion of repeat length. Furthermore, using their own raw 

signal algorithm termed STRique, they were able to pro-

file ‘CpG’ methylation of the STR and its flanking regions, 

with hypermethylation observed at the C9orf72 promoter 
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in mutated alleles. In the study by Sone et al. mentioned 

above, they also used Cas9-mediated enrichment to 

achieve high sequencing depth (100–1795×) follow-

ing their initial low-coverage whole-genome sequencing 

[146]. Furthermore, this method aided in identifying a 

‘AAGGG’ repeat in a Japanese family in the RFC1 gene 

as well as benign ‘TAAAA’ and ‘TAGAA’ expansions in 

BEAN1 [114]. Cas9-mediated target enrichment is ame-

nable to multiplexing, making it feasible to target mul-

tiple disease alleles in parallel, for more efficient and 

cost-effective diagnosis. For example, Tsai et al. demon-

strated parallel enrichment of C9orf72, HTT, FMR1 and 

ATXN10, achieving 150–2000-fold coverage depth with 

SMRT sequencing on all targets in a single assay [157]. 

�is capability is advantageous from a diagnostic per-

spective, avoiding the need to order multiple tests, as is 

the case with standard molecular diagnostics.

Another recent innovation in ONT sequencing is pro-

grammable target selection, using ONT’s Read Until API. 

Via real-time identification and rejection of off-target 

DNA fragments, Read Until affords enriched sequenc-

ing depth across target regions of the user’s choice with-

out requiring any upstream molecular target enrichment 

[80, 124]. One unpublished study has already applied 

this new approach to the detection of repeat expansions, 

simultaneously determining repeat size and methylation 

status in patients with pathogenic expansions in FMR1, 

FXN, ATXN3, ATXN8, or XYLT1 [105]. Besides the obvi-

ous advantage in avoiding cumbersome molecular meth-

ods of target enrichment, the Read Until method allows 

hundreds or even thousands of candidate loci to be tar-

geted in parallel, and the specific set of targets can be 

easily customised for a given patient depending on their 

phenotype and family history. �ese advantages could 

see programmable ONT sequencing become the pre-

ferred method for both diagnosis and discovery of repeat 

expansion disorders in the near future.

Conclusions

Short tandem repeat expansion disorders are highly 

important in human disease, particularly in the field of 

neurology. �e list of repeat expansion disorders is cur-

rently over 40 and growing rapidly. �is is highlighted by 

the recent findings that several important disorders in 

neurology (such as CANVAS and NIID) have been found 

to be caused by short tandem repeat expansions. �e 

established methods for diagnosing these disorders are 

cumbersome and time consuming. However, long-read 

sequencing offers the opportunity to transform the detec-

tion of repeat expansion disorders, allowing for rapid and 

accurate genotyping. �is would provide a more in-depth 

understanding of healthy and pathogenic repeat ranges, 

transmission and clinical anticipation, and the role of 

interruptions. Further research is required to overcome 

the technical hurdles and fully exploit the potential of 

long-read sequencing. Additionally, cost-effectiveness 

studies are required to compare the cost associated with 

long-read sequencing approaches to traditional methods 

of detecting repeat expansion disorders prior to wide-

spread use in clinical practice.
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