
An Update on the Oceanic Precipitation Rate and Its Zonal Distribution in
Light of Advanced Observations from Space

ALI BEHRANGI AND GRAEME STEPHENS

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

ROBERT F. ADLER

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

GEORGE J. HUFFMAN

NASA Goddard Space Flight Center, Greenbelt, Maryland

BJORN LAMBRIGTSEN AND MATTHEW LEBSOCK

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 30 October 2013, in final form 31 January 2014)

ABSTRACT

This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation

rate using complementary information from advanced precipitation measuring sensors and provides an in-

dependent reference to assess current precipitation products. Precipitation estimates from the Tropical

Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR)

were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify

rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist,

precipitation estimates fromAqua’s AdvancedMicrowave ScanningRadiometer for EarthObserving System

(AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR

allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in

current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM,

and Aqua platforms (this estimate is abbreviated to MCTA), the authors’ estimate for 3-yr (2007–09) near-

global (808S–808N) oceanic mean precipitation rate is ;2.94mmday21. This new estimate of mean global

ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP) value (2.68mmday21) and about 4% higher than that of the

Global Precipitation Climatology Project (GPCP; 2.82mmday21). Furthermore, MCTA suggests distinct

differences in the zonal distribution of precipitation rate from that depicted inGPCP andCMAP, especially in

the Southern Hemisphere.

1. Introduction

Precipitation is essential for life and plays an impor-

tant role in the energy balance of the planet (Kiehl and

Trenberth 1997; Trenberth et al. 2009; Stephens et al.

2012; Wong et al. 2014). Quantifying the amount and

distribution of precipitation is critical for understanding

the current state of Earth’s climate and future changes

(Stephens et al. 2012; Trenberth et al. 2007). Latent heat

flux is commonly inferred from precipitation measure-

ment; hence any long-term change in precipitation

amount implies a change in evaporation to sustain their

balance (Stephens et al. 2012). Current climate models

contain serious biases in the modeling and prediction of

precipitation (Stephens et al. 2010), but it is also im-

portant to realize that our current precipitation obser-

vations are not perfect (Behrangi et al. 2012). Recognizing

the importance of accurate estimation of precipitation

climatology, the Global Precipitation Climatology Project
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(GPCP) was formed as a community-based analysis of

global precipitation under the auspices of the World

Climate Research Program (WCRP) from 1979 to the

present (Adler et al. 2003; Huffman et al. 2009) and the

dataset has been widely used by the research community.

Currently, observational climatology of precipitation is

largely based on GPCP and the Climate Prediction

Center (CPC)Merged Analysis of Precipitation (CMAP;

Xie and Arkin 1997) products.

A major goal of these products is to provide a consis-

tent long time series of monthly and finer time resolu-

tion precipitation analyses on a global scale. GPCP

products are available from the primary monthly prod-

uct to pentad (Xie et al. 2003) and daily (Huffman et al.

2001) time scales. The global long-term data are ob-

tained by merging rain data from gauges (restricted to

over land) and spaceborne sensors, including Special

Sensor Microwave Imager and Special Sensor Micro-

wave Imager/Sounder, and geostationary and polar-

orbiting infrared imagers and sounders. The GPCP

merger procedure uses more accurate estimates of pre-

cipitation (e.g., gauges over land and passive micro-

wave) to adjust the bias in other estimates (e.g., from

infrared imagers and sounders) and then combines the

estimates with an inverse error weighting technique.

The combination of data from these multiple sensors/

sources remains a challenging task as there are time and

space discontinuities in the datasets due to instrumen-

tation and algorithm changes. Another challenge that

GPCP faces is high-latitude precipitation estimation, as

the current retrieval algorithms that are based on infrared

andmicrowave sensors are not robust enough to retrieve

accurate rain and snow rates (Liu 2008; Behrangi et al.

2012). GPCP infers the high-latitude precipitation

(including snow) rate using a regression relationship

between collocated rain gauge measurements (adjusted

for wind loss, including relation to snow) and a few

cloud-related parameters (e.g., cloud-top pressure, frac-

tional cloud cover, and cloud-layer relative humidity)

obtained from Television Infrared Observation Satellite

(TIROS) Operational Vertical Sounder (TOVS) and

Atmospheric Infrared Sounder (AIRS) data (Susskind

et al. 1997; Adler et al. 2003; Huffman et al. 2009). A

recent comparison of high-latitude GPCP precipitation

estimates with gauge observations over Finland showed

that GPCP produces a reasonable estimate of precip-

itation over this region, which to a great degree is rooted

in the utilization of a few gauges in the product (Bolvin

et al. 2009). In fact, just having the gauge climatology is an

important step, as shown by the calibrated multisatellite

product. Clearly, the challenge is more significant over

ocean, as there is almost no surface observation to bias-

adjust or verify the performance of the product. The

empirical estimating techniques developed with coastal

and island gauges are then applied over the ocean. Fi-

nally, precipitation estimates from several advanced

sensors [e.g., the Tropical Rainfall Measuring Mission

(TRMM)] have been neglected in the current version of

GPCP, in order to maintain a consistent climate record

created from relatively homogenous data sources, a con-

cept now known as a climate data record.

CMAP provides gridded global monthly estimate of

precipitation using many of the same datasets as GPCP,

plus Microwave Sounding Unit (MSU) data. However,

the merging of the individual data sources is different

fromGPCP. Using gauge-based analysis and atoll gauge

data, the individual random error is defined for each grid

and for each month and the satellite estimates are com-

bined linearly through the maximum likelihood estima-

tion method to reduce the random error. Postprocessing

is then carried out to reduce biases by comparing the

estimates to the atoll rain gauge data over the tropics and

by subjective assumption regarding the bias structure

over the extratropics (Xie and Arkin 1997). CMAP im-

plicitly accounts for snowfall using microwave sensors

with significant shortcomings for precipitation retrievals

at high latitudes.

Arguably, the recent higher-quality precipitation es-

timates from spaceborne sensors should be used to

provide an independent reference or guideline to assess

or improve precipitation records such as GPCP and

CMAP. TheCloudSatCloud Profiling Radar (CPR) and

TRMM Precipitation Radar (PR) are among the recent

sensors that can provide unprecedented accuracies and

sensitivities to estimate precipitation rates from snow

and drizzle all the way to intense rainfall. Berg et al.

(2010) showed that the precipitation estimates from the

two radars are complementary to construct a merged

distribution of rain volume spanning a broad range of

rain intensities. Behrangi et al. (2012) constructed a

merged distribution of rain volume over ocean between

608S and 608N using TRMM and CloudSat and used the

merged distribution as a reference to evaluate the per-

formance of precipitation retrievals from several space-

borne instruments.

The present paper extends the previous work by

Behrangi et al. (2012) by 1) extending the study area to

almost the entire CloudSat sampled region (808S–808N),

2) including global snow rate from recently developed

and modified snow retrieval algorithms, and 3) com-

paring the amount and distribution of the merged pre-

cipitation product with themost recent version of GPCP

(version 2.2) and CMAP after accounting for the diurnal

cycle of precipitation. Several other improvements are

also included in the present work, which will be dis-

cussed in section 3. The outcome of this study provides
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a new estimate of near-global ocean precipitation rate

and its zonal distribution using advanced precipitation

measuring sensors and serves as an independent refer-

ence to assess precipitation products over the ocean,

where due to lack of accurate ground observations

evaluation of the climatological absolute magnitude has

been problematic (Adler et al. 2012; Tian and Peters-

Lidard 2010).

2. Data resources

The following primary datasets from three years

(2007–09) of the most recently updated versions are

used in this study: (a) CloudSat rain estimate from

Release-04 2C-RAIN-PROFILE developed by Mitrescu

et al. (2010) and modified by Lebsock and L’Ecuyer

(2011), (b) CloudSat snow rate from 2C-SNOW-

PROFILE (described in http://www.cloudsat.cira.colostate.

edu) as well as another product by Liu (2008) that in-

cludes the latest modifications based on some recent

field comparisons, (c) PR rain rate from the official

TRMMPR2A25 version 7 products based on the original

algorithm developed by Iguchi et al. (2000) together with

series of revisions andmodifications (Iguchi 2011), (d) the

latest version of monthly GPCP precipitation rate (ver-

sion 2.2; Huffman and Bolvin 2012), and (e) the CMAP

product.

The present work also made use of four additional

data sources: (a) the TRMMCombined Instrument (TCI)

estimate (version 7), which employs data from both TMI

and TRMM PR (TRMM product 2B31; Haddad et al.

1997); (b) the gridded high resolution (0.258 3 0.258, 3 h)
precipitation product from the CPC morphing algo-

rithm (CMORPH; Joyce et al. 2004); (c) precipitation

frequency from CloudSat release-04 2C-PRECIP-

COLUMN product, developed by Haynes et al. (2009);

and (d) Advanced Microwave Scanning Radiometer for

Earth Observing System (AMSR-E) rain rate (Wilheit

et al. 2003) collocated to CloudSat footprints. The col-

located dataset was obtained from the AMSR-E auxil-

iary product (Release-04) through the data processing

center (http://www.cloudsat.cira.colostate.edu).

3. Methodology and results

A thorough estimation of the amount and distribution

of global precipitation requires the inclusion of both

liquid and solid phases of precipitation. Figure 1 shows 2D

frequency maps of total oceanic precipitation (Fig. 1a)

and rain (Fig. 1b), snow (Fig. 1c), and mixed phase (Fig.

1d) between 808S and 808N obtained from the CloudSat

2C-PRECIP-COLUMN product (Haynes et al. 2009).

Mean zonal distribution of precipitation frequencies is

also shown in Fig. 2. The 94-GHz (W band) Cloud

Profiling Radar (CPR) aboardCloudSat (Stephens et al.

2008), with a minimum detectable signal of;228 dBZ,

has provided an unprecedented opportunity to measure

snow, drizzle, and light rainfall that goes undetected by

other sensors (Behrangi et al. 2012). The zonal distri-

bution of precipitation is not symmetric, and in both

FIG. 1. Precipitation frequency maps over ocean based on CloudSat footprint observations during 2007–09 for

(a) total precipitation, (b) rain, (c) snow, and (d) mixed phase.
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hemispheres, poleward of ;558 latitude, the solid

phase of precipitation gradually becomes dominant

(Fig. 2). At ;608S, where the precipitation frequency

is the largest (more than 23%), only about 11% of all

precipitation events occur in the form of rain. This

implies that for the estimation of global precipitation,

it is important to be able to distinguish between pre-

cipitation phases. This is a challenging task given that

currently the orbital precipitation products used in

GPCP and CMAP do not directly capture solid-phase

precipitation intensities. In GPCP snow rate is esti-

mated indirectly using regression relationship between

a few collocated rain gauge measurements and cloud-

related parameters from infrared sounders, and CMAP

accounts for snowfall only implicitly. In this paper global

precipitation rate is calculated through the steps de-

scribed below.

a. Rain rate estimation

Among the satellite sensors the 94-GHz (W band)

CPR offers the highest sensitivity to capture the occur-

rence and intensity of drizzle, light rain, and snowfall.

On the other hand, the 13.8-GHz PR captures moderate

and intense rainfall over tropics, but due to its minimum

detectable signal of about 17 dBZ it has a limited

sensitivity to detect and estimate light rainfall. The latest

version of the CloudSat rainfall product, 2C-RAIN-

PROFILE, uses the path-integrated attenuation in addi-

tion to the observed reflectivity profilewhile implementing

relatively more realistic assumptions regarding the

vertical distribution of rainwater and the rainfall drop

size distribution compared the previous algorithm. This

makes the 2C-RAIN-PROFILE product more appro-

priate for the retrieval of warm rainfall (Lebsock and

L’Ecuyer 2011).

By recognizing the complementary information of

the two sensors, a merged distribution of rain volume

was constructed from the rain volume distribution of

CloudSat and PR. The rain volume distribution is a plot

of rain intensity versus normalized rain volume within

each intensity bin, so that the area below the distribution

is unity [see Fig. 9 of Behrangi et al. (2012) for a detailed

description of the merging process]. In brief, the merg-

ing process comprises three steps. 1) The rain volume

distribution is created from CloudSat and PR estimates.

2) The CloudSat rain intensities less than 1mmh21 and

PR rain intensities greater than 1mmh21 are trusted

and used to merge the two rain volume distributions.

3) A constraint is set, so the frequency of rain incidences

from the merged PR and CloudSat distribution does not

exceed the total count ofCloudSat rain incidences. Prior

to the count of CloudSat rain incidences, rain rates from

five neighboring CPR footprints were averaged to ac-

count for the differences in footprint size of PR andCPR

as discussed in Behrangi et al. (2012). That study also

shows that the effect of the CPR averaging scale is al-

most negligible when matching to the PR footprint size.

In the extratropics, where TRMM PR is not available,

precipitation retrievals from Aqua’s AMSR-E can sig-

nificantly underestimate light rainfall and snow com-

pared to that estimated from CloudSat (Behrangi et al.

2012). Conversely, in this region up to about 5% of rain

events captured by CloudSat face a signal saturation

problem under the heaviest rainfall (Stephens et al.

2008). Although it is possible to make adjustments to

account for these heavy rainfall cases (Tanelli et al.

2008), we chose to use collocated AMSR-E rain rates

that include extratropical intense rainfall in the calcu-

lations. CloudSat CPR and AMSR-E fly in formation as

part of the A-Train, which makes it relatively simple to

match up the observations.

b. Snow rate estimation

The emergence of high-frequency radar on CloudSat

with a minimum detectable signal of;228 dBZ created

an excellent opportunity to advance high-latitude pre-

cipitation studies. Liu (2008) developed an algorithm

(the algorithm is hereafter referred to as Liu08) to

estimate snowfall rate from CloudSat measurements.

In brief, Liu08 implements a two-step process to re-

trieve snow rate from CloudSat: 1) distinguishing be-

tween liquid and solid phase of precipitation based on

ground measurements and weather reports and by

identifying a temperature threshold based on condi-

tional probability of solid precipitation as a function of

surface air temperature, and 2) converting radar re-

flectivity to snowfall rate based on backscatter com-

putations of nonspherical ice particles and in situ

measured particle distributions. The original rain–snow

separation temperature was modified later (18C instead

FIG. 2. Zonal distribution of precipitation phase frequencies based

on CloudSat footprint observations for 2007–09.
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of 28C) as a result of some recent field measurements

[G. Liu (the algorithm developer) 2013, personal com-

munication]. Note that while many factors contribute to

the uncertainties in snowfall retrieval rates (Hiley et al.

2011), the uncertainty in knowing the snow particle shape

and size distribution is amajor source of random error for

the reflectivity–snowfall rate relation, which could be

about 50% (Liu 2008). A more recent snowfall rate

product, 2C-SNOW-PROFILE, is also considered in our

calculations. 2C-SNOW-PROFILE retrieves profile of

snowfall rate through multiple steps. It first uses the 2C-

PRECIP-COLUMN product to identify snowfall and

then uses reflectivity and cloud mask and temperature

profiles to locate snow layers. An optimal estimation al-

gorithm is used to retrieve profiles of size distribution

parameters using a priori information about snow mi-

crophysical properties, radar scattering properties, and

size distribution parameters. Profiles of snowfall rates and

snow water contents are then computed using the re-

trieved size distribution parameter profiles and the a pri-

ori information. The surface snowfall rate is obtained

from estimated snow properties in the bottommost por-

tion of the retrieved snow rate profile (a full description

of the retrieval algorithm can be obtained from http://

www.cloudsat.cira.colostate.edu). The total precipitation

was calculated by adding CloudSat snow rate (form the

latest update of the algorithm) to the merged CloudSat–

TRMM rainfall rate.

c. Accounting for diurnal cycle of precipitation

The merged CloudSat–TRMM precipitation product

provides an estimate of mean precipitation rate at

CloudSat equator crossing times (;01:30 and 13:30 LT).

While it is known that the diurnal cycle of mean pre-

cipitation rate is not strong over ocean, for a thorough

daily estimate one should consider the effect of diurnal

cycle of precipitation. Therefore, the diurnal cycle of

precipitation was calculated for each 108 latitudinal

band from 558S to 558N and the ratios of daily mean

precipitation tomean precipitation atCloudSat equator-

crossing times were calculated. The ratios were then

used as adjustment factors to convertmean precipitation

rate at the CloudSat equator-crossing times to a daily

mean rate. Poleward of 558 latitude in both hemispheres,

no diurnal cycle adjustment was computed because of

the lack of reliable subdaily precipitation retrievals. The

adjustment factors were calculated using two products:

1) TRMM 2B31 (Haddad et al. 1997) precipitation rate

between 388S and 388N because TRMM flies in a sun

nonsynchronous orbit and 2B31 has been recognized

as a high-quality product (Huffman et al. 2007), and

2) CMORPH for the latitude band 408–558 in both

hemispheres, mainly because CMORPH exclusively uses

microwave-based precipitation estimates, and precipitation

estimates from microwave sensors are considered more

skillful than IR-based products (Adler et al. 2001; Ebert

et al. 2007; Behrangi et al. 2009, 2010), especially at high

latitudes where convective clouds are less frequent. Fig-

ure 3 shows that the adjustment factors are fairly close

to unity across all latitudes. Therefore, even without any

adjustment, the precipitation rate at CloudSat equator-

crossing times provides a good approximation for

daily mean precipitation over ocean. Poleward of

608S/N, where CMORPH does not provide precip-

itation estimates, no adjustment is considered.

d. Zonal distribution of precipitation and comparison
with GPCP

Zonal distributions of 3-yr (2007–09) mean pre-

cipitation rates fromMCTA (hereafter MCTA refers to

the merged precipitation estimate from the CloudSat,

TRMM, and Aqua platforms) with snow rate from 2C-

SNOW-PROFILE, and the latest versions of GPCP

(V2.2) and CMAP are shown in Fig. 4a. Rain-only rates

are also shown to distinguish the contribution of snow-

fall at high latitudes. In addition, by subtracting MCTA

precipitation rates from those of GPCP and CMAP,

zonal differences (ZD) between GPCP and MCTA and

CMAP and MCTA are displayed in Fig. 4b. Relative

differences (RD) between the two products and MCTA

were calculated by dividing the ZD of each pair by their

mean in each 2.58 zonal bin (Fig. 4c). Compared to

MCTA, GPCP and CMAP show large zonal differences

in estimating mean precipitation rate (e.g., exceeding

1mmday21) in certain zones. In the tropics (between

368S and 368N) the difference between MCTA and

GPCP is the smallest and the observed underestimation

of GPCP compared toMCTA is likely caused bymissing

light precipitation in marine subsidence regions (e.g.,

Behrangi et al. 2012; Rapp et al. 2013). CMAP displays

larger mean precipitation intensity in the intertropical

convergence zone (ITCZ) compared to both GPCP and

FIG. 3. Diurnal adjustment factor to convert mean precipitation

rate at CloudSat equator-crossing times to daily rate.
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MCTA. Clearly, the agreement among the products is

degraded over higher latitudes, especially over the south-

ern oceans.

Significant differences between the products exist

between 308 and 658S (Fig. 4a). This is important for

both water and energy cycle studies as each 1mmday21

of precipitation is equivalent to ;29Wm22 energy

through latent heat release. The distinct local maximum

precipitation around 408S shown by MCTA is not cap-

tured by either GPCP or CMAP. Compared to MCTA,

GPCP underestimates the mean zonal precipitation rate

between;308S and;558S, but overestimates it between

558 and 658S. The local maximum around 608S is likely

unrealistic. Comparing curves in Fig. 4 around 408,

which is the edge of IR coverage in the GPCP, there is

no obvious jump at 408, so the difference appears re-

lated to the microwave algorithm used (microwave

emission brightness temperature histograms; Chiu and

Chokngamwong 2010). The disagreement between GPCP

and MCTA around 608 [and higher latitudes in the North-

ern Hemisphere (NH)] is driven by the TOVS/AIRS esti-

mates (Adler et al. 2003). The TOVS/AIRS precipitation

algorithm (Susskind and Pfaendtner 1989; Susskind

et al. 1997) depends on regression of cloud volume against

daily station data, with smoothing functions applied to

obtain seasonally and latitudinally varying coefficients.

The cloud volume–precipitation relation in the Southern

Ocean likely suffers from a lack of local data and is

FIG. 4. Zonal distribution of mean precipitation rates and differences compared to the

merged CloudSat–TRMM–Aqua precipitation (MCTA) estimate. (a) Mean precipitation rate

from theMCTA, GPCP, and CMAP. (b) Zonal difference between GPCP andMCTA (shown

with green bars) and CMAP and MCTA (shown with a solid black line). (c) As in (b), but for

zonal relative differences calculated by dividing the zonal precipitation differences of each pair

by their means. Calculations were performed for each 2.58 zonal bin.
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strongly influenced by the smoothing process. CMAP

displays a lower mean precipitation rate compared to

MCTApoleward of latitude 308 in both hemispheres. This

could be related to the common underestimation of

precipitation by individual microwave- and infrared-

based products used in the generation of CMAP. Note

that poleward of approximately 608S one can see that

precipitation is almost completely snow, whereas in the

NH a significant portion of the total precipitation is still

rain as can be inferred from comparison of MCTA and

MCTA rain-only in Fig. 4a (also see Fig. 2). The pres-

ence of more snowfall in the SouthernHemisphere (SH)

and the inability of current level-2 precipitation prod-

ucts to directly observe snowfall makes it potentially

more difficult to estimate accurate precipitation rates in

this zone.

The differences are less significant when precipitation

rates are averaged globally or within a large zone (Table 1).

The near-global (808S–808N) mean oceanic precipita-

tion rate fromMCTA is;2.94mmday21, which is about

4.17% (0.12mmday21) higher than that estimated by

GPCP (2.82mmday21) and about 9.25% (0.26mmday21)

higher than that obtained from CMAP (2.68mmday21).

For GPCP, the calculated relative differences are within

the recent bias error estimate of about 7% (9%) for cli-

matological precipitation over tropical (global) oceans

(Adler et al. 2012).

Based on the 2C-SNOW-PROFILE product, the

contribution of snowfall to the near-global oceanic

precipitation rate is about 0.17mmday21 (;5.8% of

total precipitation; see Table 1). TheMCTA estimate of

mean precipitation rate (rain plus snow) in the NH is

about 3.24mmday21, with snowfall contributing about

0.12mmday21 (;3.7% of total precipitation). In the SH,

the mean precipitation rate fromMCTA is 2.65mmday21.

In both hemispheres the MCTA estimate is higher than

GPCP’s orCMAP’s. Snowfall in the SH is;0.22mmday21

(;8.3% of total precipitation), considerably larger than

that in NH. Similar results are obtained using the

CloudSat Liu08 snow product, as the two products show

high agreement in capturing the zonal mean snowfall

rate over ocean (Fig. 5). A maximum difference of

about 0.2mmday21 (;15% relative difference) is ob-

served at approximately 608S. As the two products are

independent of each other, it can be inferred that snow

retrieval at this zone may have higher uncertainty than

other zones.

4. Conclusions and final remarks

The more precise knowledge of precipitation amount

and distribution improves our understanding of the

current state of Earth’s climate and the water and en-

ergy budgets and how the hydrological cycle responds to

the zonal energy imbalances that force climate change

(Andrews et al. 2009). Therefore, it enhances our ability

to understand how Earth’s climate responds to in-

creasing concentrations of greenhouse gases.

Complementary measurements from the CloudSat

CPR, TRMM PR, and AMSR-E sensors offer a wide

range of sensitivity to drizzle, light rainfall, snowfall, and

intense precipitation that is not yet used in currentmerged

precipitation products. Using these three advanced sen-

sors and the merging technique described earlier, our es-

timate for 3-yr (2007–09) near-global (808S–808N) oceanic

TABLE 1. Summary of mean precipitation rate from MCTA and comparison with GPCP V2.2 and CMAP.

808S–808N 808S–08 08–808N 608S–608N 368S–368N

Present study MCTA (mmday21) 2.94 2.65 3.24 3.13 3.02

Rain only (mmday21) 2.77 2.43 3.12 3.07 3.02

GPCP GPCP V2.2 (mmday21) 2.82 2.51 3.13 2.97 2.90

GPCP-MCTA (mmday21) 20.12 20.14 20.11 20.16 20.12

GPCP relative difference (%) 24.17 25.43 23.45 25.25 24.05

CMAP CMAP (mmday21) 2.68 2.32 3.04 2.96 3.28

CMAP-MCTA (mmday21) 20.26 20.33 20.20 20.17 0.26

CMAP relative difference (%) 29.25 213.28 26.37 25.58 8.25

FIG. 5. Comparison of zonal distribution of surface snowfall rate

estimated fromCloudSat using Liu08 (solid line) andCloudSat 2C-

SNOW-PROFILE (dashed line) retrievals. The results were gen-

erated using approximately 100 3 106 CloudSat samples collected

between 2007 and 2009.
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mean precipitation rate is ;2.94mmday21. This new

estimate of mean global ocean precipitation is about 9%

higher than that of CMAP (2.68mmday21), mainly due

to the lower estimate of CMAP at high latitudes. The

MCTA estimate is only about 4% higher than that of

GPCP (2.82mmday21), but not as much as the ;15%

considered recently to bring the surface energy budget

into a balance (Stephens et al. 2012). We recognize that

the uncertainty in global estimates of precipitation is

itself subject to uncertainty, especially at higher lati-

tudes, and is a topic of debate and ongoing research.

MCTA, however, suggests distinct differences in the

zonal distribution of precipitation rate from that de-

picted in GPCP and CMAP, especially in the SH. Such

zonal differences go beyond the known uncertainties

and may exceed 1mmday21 (or ;29Wm22 energy

through latent heat release) in certain zones, especially

at higher latitudes. However, the differences tend to

cancel if precipitation is averaged over large portions of

the globe.

Precipitation estimation at higher latitudes is clearly

a major challenge that has not been fully addressed by

the Earth observing community. While substantial sur-

face observation of oceanic precipitation will remain

impractical, our new estimate using the latest advances

in remote sensing of precipitation can set a guideline for

revising current climate data records of precipitation,

surface energy balance, and evaluation of reanalyses

and climate models. The upcoming Global Precipitation

Measurement (GPM; Hou et al. 2008) mission will ex-

tend the joint radar/passive microwave radiometer ca-

pability pioneered by TRMM to retrieve precipitation

of all phases to a latitude range of 658N to 658S, with
significant improvements expected over land, and the

future EarthCARE mission (Bezy et al. 2005) will ex-

tend CloudSat-like observations. Efforts are underway

to create seasonal climatology maps of oceanic pre-

cipitation from MCTA, provide uncertainty data, and

include the most recent datasets for the latest update.

Furthermore, the authors are planning to explore avail-

able ground validation resources including oceanic

shipboard precipitation datasets (Petty 1997; Ellis et al.

2009; Andersson et al. 2011) and other sources such as

atoll data and buoys for further evaluation and re-

finement of the results. This work is also invaluable to

improve future generation of the global precipitation

climatology products.
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