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The recent outbreak of the deadly coronavirus disease 19 (COVID-19) pandemic poses serious health concerns around the world. The
lack of approved drugs or vaccines continues to be a challenge and further necessitates the discovery of new therapeutic molecules.
Computer-aided drug design has helped to expedite the drug discovery and development process by minimizing the cost and time.
In this review article, we highlight two important categories of computer-aided drug design (CADD), viz., the ligand-based as well
as structured-based drug discovery. Various molecular modeling techniques involved in structure-based drug design are molecular
docking and molecular dynamic simulation, whereas ligand-based drug design includes pharmacophore modeling, quantitative
structure-activity relationship (QSARs), and artificial intelligence (AI). We have briefly discussed the significance of computer-
aided drug design in the context of COVID-19 and how the researchers continue to rely on these computational techniques in the
rapid identification of promising drug candidate molecules against various drug targets implicated in the pathogenesis of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The structural elucidation of pharmacological drug targets and the
discovery of preclinical drug candidate molecules have accelerated both structure-based as well as ligand-based drug design. This
review article will help the clinicians and researchers to exploit the immense potential of computer-aided drug design in designing
and identification of drug molecules and thereby helping in the management of fatal disease.

1. Introduction

Drug discovery is a lengthy process that takes around 10-15
years [1] and costs up to 2.558 billion USD for a drug to reach
the market [2]. It is a multistep process that begins with the
identification of suitable drug target, validation of drug tar-
get, hit to lead discovery, optimization of lead molecules,
and preclinical and clinical studies [3]. Despite the high
investments and time incurred for the discovery of new
drugs, the success rate through clinical trials is only 13% with
a relatively high drug attrition rate [4]. In the majority of the

cases (40-60%), the drug failure at a later stage has been
reported due to lack of optimum pharmacokinetic properties
on absorption, distribution, metabolism, excretion, and tox-
icity (ADME/Tox) [5]. The use of computer-aided drug dis-
covery (CADD) techniques in preliminary studies by leading
pharmaceutical companies and research groups has helped to
expedite the drug discovery and development process mini-
mizing the costs and failures in the final stage [6]. The appli-
cation of rational drug design as an integral part of CADD
provides useful insights into the understanding of the bind-
ing affinity and molecular interaction between target protein
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and ligand. Additionally, lead identification in pharmaceuti-
cal research has been facilitated by the availability of super-
computing facility, parallel processing, and advanced
programs, algorithms, and tools [7]. Furthermore, recent
advancements in artificial intelligence (AI) and machine
learning methods have greatly aided in analyzing, learning,
and explaining the pharmaceutical-related big data in the
drug discovery process [8]. Different methods employed in
the identification of new inhibitors from chemical databases
include pharmacophore modeling, quantitative structure-
activity relationship (QSAR), molecular docking, quantum
mechanics, and statistical learning methods. CADD can be
broadly divided into structure-based and ligand-based drug
design approaches, both have been widely used in the drug
discovery process in the identification of suitable lead mole-
cules. While the structure-based drug design relies on the
three-dimensional structure of the target receptor and its
active sites to understand the molecular interaction between
the receptor and ligand, the ligand based-drug design
depends on the knowledge of ligands interacting with the
given target receptor [9]. Computer-aided drug design has a
large number of success stories and continues to play a vital
role in the drug discovery process [10]. In this regard, the
approach has been utilized in proposing drug candidates
against coronavirus disease 2019 (COVID-19). COVID-19
is caused by a novel coronavirus known as severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) which taxo-
nomically belongs to the Betacoronavirus genre and
possesses high nucleotide sequence similarity with severe
acute respiratory syndrome coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-
CoV). The epidemiology, genome composition, pathogene-
sis, animal models, diagnostics, and vaccine development
with references to various computational biology approaches
for MERS-CoV infections have been comprehensively
reviewed by Skariyachan et al. (2019) [11]. SARS-CoV-2 is
a positive-sense single-stranded enveloped RNA virus
approximately 30,000 bp in length which utilizes host cellular
machinery to execute various pathogenic processes such as
viral entry, genomic replication, and protein synthesis [12].

Like SARS and MERS, the genome of SARS-CoV-2
encodes sixteen nonstructural proteins (nsps) such as main
protease (Mpro), papain-like protease, RNA-dependent
RNA polymerase (RdRp), helicase etc., four structural pro-
teins (envelope, membrane, spike, and nucleocapsid), and
other accessory proteins. While the spike glycoprotein is
essential for the interaction of the virus with the host cell
receptor, the nsps play a major role during the virus life cycle
by engaging in the production of subgenomic RNAs [13, 14].
The nonstructural and structural proteins, therefore, offer
promising targets for the design and development of antiviral
agents against COVID-19 [13]. The lack of effective vaccines
or drugs for the treatment of COVID-19 and the high mor-
tality rate necessitates the rapid discovery of novel drugs
[15], and computer-aided drug design is believed to be an
important tool to achieve the identification of novel thera-
peutics. There is a possibility of the development of effective
lead molecules against COVID-19 by utilizing natural lead
molecules obtained through virtual screening and pharmaco-

kinetic prediction [16]. To speed up the discovery of a poten-
tial treatment for SARS-CoV-2 infection in humans,
repurposing of broad-spectrum antiviral drugs is a promising
strategy due to the availability of the pharmacokinetic and
pharmacodynamic data of these drugs [17]. The availability
of complete genome sequence of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and the elucidation of
the viral protein structures through X-ray crystallography,
nuclear magnetic resonance (NMR), electron microscopy,
and homology modelling approach have allowed the identifi-
cation of inhibitor drugs against the essential therapeutic drug
targets of COVID-19. This review article provides useful
insights into some of the common in silico methods used in
CADD and how these methods have been currently used
and can be of help in the drug discovery process of COVID-19.

2. Structure-Based Drug Design

The availability of the three-dimensional structure of the
therapeutic target proteins and exploration of the binding
site cavity forms the basis of structure-based drug design
(SBDD) [18]. This approach is specific and effectively fast
in the identification of lead molecules and their optimization
which has helped to understand disease at a molecular level
[19]. Some of the common methods employed in SBDD
include structure-based virtual screening (SBVS), molecular
docking, and molecular dynamics (MD) simulations. These
methods find numerous applications such as assessment of
binding energetics, protein-ligand interactions, and confor-
mational changes in the receptor upon binding with a ligand
[20]. Being used by many pharmaceutical industries and
medicinal chemists, SBDD as a computational technique
has greatly helped in the discovery of several drugs available
in the market. For example, the discovery of amprenavir as a
potential inhibitor of the human immunodeficiency virus
(HIV) protease using protein modeling and MD simulations
[21, 22], thymidylate synthase inhibitor, raltitrexed against
HIV using SBDD approach [23], identification of topoisomer-
ase II and IV inhibitor, norfloxacin which is an antibiotic com-
monly used against urinary tract infection using SBVS [18],
the discovery of dorzolamide, a carbonic anhydrase inhibitor
used against glaucoma, cystoid macular oedema using
fragment-based screening [24], antituberculosis drug, isonia-
zid which is an enoyl-acyl-ACP reductase (InhA) inhibitor
discovered through structure-based virtual screening and
pharmacophore modeling [25], and flurbiprofen, a nonsteroi-
dal anti-inflammatory drug (NSAID) used against rheumatoid
arthritis, osteoarthritis etc. which targets cyclooxygenase-2
(COX-2) discovered through molecular docking approach
etc. [26, 27]. The basic steps involved in SBDD consist of the
preparation of target structure, identification of the ligand
binding site, compound library preparation, molecular dock-
ing and scoring functions, molecular dynamic simulation,
and binding free energy calculation (Figure 1).

2.1. Preparation of the Target Structure. With the rapid
advancement in structural elucidation techniques such as
X-ray and NMR, the structures deposited and available in
protein data bank (PDB) have increased over the last few
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decades. Owing to the limitations of experimental tech-
niques, many target protein structures have not been solved
to date [28]. Computational technique such as comparative
homology modeling [29], threading [30], and ab initio
modeling [31] has been quite successful in deciphering the
structures of the proteins from their sequences. Homology
modeling is a widely used computational method for accu-
rately determining the three-dimensional structure of a pro-
tein from its amino acid sequence using a suitable template
structure [32]. It is a multistep process comprising of the fol-
lowing steps: (a) identification of template, (b) sequence
alignments, (c) model building of the target (d) model refine-
ment, and (e) model validation [29]. Protein threading is
another method for protein structure prediction which is
often used when (1) the target protein shares low sequence
similarity with other proteins in the PDB (<25% sequence
identity), and (2) the target protein shows structural similar-
ity with some proteins in the PDB. Unlike homology model-
ing, which only takes into account the sequence similarity
between the target and the template, protein threading con-
siders the structural information (secondary structure, sol-

vent accessibility and pairwise interactions) encoded in the
template to enhance prediction accuracy [33]. The ab initio
modeling is another computational technique which is pref-
erably used if the target protein does not have any template
structures in the existing biological databases [31]. It con-
siders a global optimization problem to find the dihedral
angle values for a given protein structure which contribute
to the structure’s stability (possessing the global or near
global minimum potential energy) [34].

2.2. Identification of the Ligand Binding Site. The information
about the ligand-binding site is a prerequisite for carrying out
specific docking. The knowledge of the binding sites can be
extracted from the site-directed mutagenesis study or X-ray
crystallographic structures of proteins cocrystallized with
substrates or inhibitors [35]. While the experimental infor-
mation about the binding site of many proteins is not avail-
able, there is plenty of software and webservers such as
CASTp [36], DoGSite Scorer [37], NSiteMatch [38], DEPTH
[39], MSPocket [40], MetaPocket [41], and Q-SiteFinder [42]
which allows us to predict the putative binding sites of the

Protein isolation and
purification

Protein structural elucidation (X-ray
crystallography, NMR spectroscopy,

homology modelling)

Identification of target binding site

Molecular docking and structure-
based virtual screening (SBVS)

Molecular dynamics (MD)
simulation and binding free energy

calculations

Chemical synthesis of top hit
molecules

Biological evaluations

Lead molecule (s)

Virtual screening of drug-like
molecules from chemical databases

Figure 1: Basic steps involved in the structure-based drug design approach.
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target proteins. The bulky compounds which do not fit well
within the binding site pocket are rejected during the lead
identification procedure.

2.3. Compound Library Preparation. Chemical compounds
can be selected from chemical databases such as ZINC
(N=230 million purchasable compounds) [43], PubChem
(N=111 million pure and characterized chemical com-
pounds) [44], MCULE (N=122 million synthetically accessi-
ble compounds) (https://mcule.com/), ChEMBL (>1.6
million distinct compounds) [45], DrugBank (N=14528 drug
molecules) [46], and ChemSpider ( N=25 million unique
chemical compounds) [47]. Molecular docking is performed
with drug-like compounds which are filtered using Lipinski’s
rule of five and ADMET (absorption, distribution, metabo-
lism, excretion, and toxicity) parameters and other risk
parameters such as acute rat toxicity, carcinogenicity, serum
glutamic oxaloacetic transaminase elevation, hepatotoxicity,
and inhibition of 3A4 oxidation of midazolam [28]. Accord-
ing to Lipinski’s rule of five, a compound is considered to be
orally bioactive if its physicochemical properties lies within the
permissible limits such as molecular weight ðMWÞ ≤ 500,
partition coefficient between n − octanol andwaterÞ ðlogPÞ ≤ 5,
number of hydrogen bond donor ðHBDÞ ≤ 5, and number of
hydrogen bond acceptor ðHBAÞ ≤ 10 [48]. Some commonly
used ADMET properties include human gastrointestinal
absorption (HIA), blood-brain barrier (BBB) permeation, P-
glycoprotein (P-gp) inhibition, cytochromes P450 (CYP) inhi-
bition, and plasma protein binding [49]. Besides the pharmaco-

kinetic properties, drug, and safety, the synthetic accessibility of
these compounds should also be taken into account.

2.4. Molecular Docking and Scoring Functions. Molecular
docking is a computational technique to study the interaction
between a target receptor and ligand at the molecular level
and allows ranking of the ligands by assessing their binding
affinity towards the receptor using various scoring functions
[50]. The favorable binding poses of the ligands with a target
active site rely on two factors: (a) wide conformational space
taking into consideration different binding poses and (b)
explicit prediction of binding affinity of ligands correspond-
ing to each binding pose [51]. A list of frequently used
molecular docking programs is enumerated in Table 1.
Molecular docking can be classified into two types:
flexible-ligand search docking and flexible-protein docking.
The ligand flexibility in the case of the flexible-ligand
search docking method most commonly uses three algo-
rithms such as systematic method, stochastic method, and
simulation method [52], whereas flexible-protein docking
usually relies on Monte Carlo (MC) and molecular dynamic
(MD) methods [53, 54].

2.5. Molecular Dynamic (MD) Simulation. The MD simula-
tion of a protein was first performed in the late 1970s [55].
This powerful physical technique is used to predict the posi-
tions of each atom in a molecular system with respect to time
which is based on Newton’s laws of motions governing inter-
atomic interactions [56]. The forces between interacting

Table 1: Molecular docking tools for protein-ligand interaction studies.

Tools Key features Reference

AutoDock
The methods available for conformational searching in AutoDock are Lamarckian genetic algorithm, simulated
annealing search, and a traditional genetic algorithm search. The prediction of binding free energies of small

molecules to protein targets is based on a semiempirical free energy force field
[62]

AutoDock
Vina

AutoDock Vina calculations rely on a sophisticated gradient optimization method and achieve approximately two
orders of magnitude improvement in speed and better accuracy of predicting binding modes compared to

AutoDock
[63]

GOLD
GOLD (genetic optimization for ligand docking) is an automated ligand docking program that allows full ligand
conformational flexibility with partial flexibility of the protein and explores the binding conformations using a

genetic algorithm
[64]

CDOCKER
CDOCKER (CHARMm-based DOCKER) is an automated MD docking program that uses the CHARMm19
family of force fields and offers full flexibility of ligand and CHARMm engine with reduced computation time

[65]

FlexX
FLEXX is a full automated docking tool for flexible ligands which produces reliable results with good accuracy.
The FlexXmethod is dependent on the selection and placement of base fragments of ligand and placement and the

assumption that the best base fragments interacting with the active site give a good score
[66]

Surflex
Surflex is a docking program that uses a combination of combined Hammerhead’s empirical scoring function and

molecular similarity method to produce putative poses of ligand fragments
[67]

GLIDE
Glide (grid-based ligand docking with energetics) performs an exhaustive search of the positional, orientational,
and conformational space of a ligand binding to a receptor with reasonable computational speed. The scoring of

the binding conformations is based on the ChemScore function.
[68]

DOCK6
DOCK 6 is a docking program that evaluates the conformational sampling of small molecules based on the

anchor-and-grow search algorithm
[69]

SwissDock
SwissDock is a web server that allows the docking of small molecules to target proteins that are based on the

EADock DSS engine
[70]
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atoms are estimated using a suitable force field which is used
to determine the overall energy of the system [57]. MD sim-
ulations have been widely used for several reasons. The posi-
tion and motion of every atom of the system are captured at
every point in time, which is quite tough using any experi-
mental technique. The simulation conditions are exactly
known and can be carefully modulated [58]. MD simulations
have been extensively used in the structure-based drug dis-
covery process as this technique helps to unravel many atom-
istic details such as binding, unbinding, and conformational
changes in the receptor at a fine resolution which normally
cannot be obtained from experimental studies [59, 60]. Fur-
ther, using MD simulation it is possible to explore the
dynamics of receptor-ligand interactions (association and
dissociation) and quantify the thermodynamics, kinetics,

and free energy landscape [61]. Some examples of MD simu-
lation programs include GROMACS, AMBER, CHARMM,
NAMD, and Desmond (Table 2).

3. Ligand-Based Drug Design

Ligand-based drug design is another widely used approach
used in computer-aided drug design and is employed when
the three-dimensional structure of the target receptor is not
available. The information derived from a set of active com-
pounds against a specific target receptor can be used in the
identification of physicochemical and structural properties
responsible for the given biological activity which is based
on the fact that structural similarities correspond to similar
biological functions [77]. Some of the common techniques

Table 2: A summary of commonly used molecular dynamic (MD) simulation software.

Software Key features Simulation system Reference

GROMACS

GROMACS (Groningen MAchine for chemical simulation) is an efficient
and versatile MD program with source code that is suited for the simulation
of biological (macro) molecules in aqueous and membrane environments.
The program can be run on single processors or parallel computer systems

and is compatible with various force fields such as GROMOS, OPLS,
AMBER, and ENCAD force fields.

Proteins, lipids,
carbohydrate, nucleic

acids
[71]

AMBER

Amber is an extensively used biomolecular simulation program with an
assembly of codes that are designed to work together. It is a collection of
codes that are designed to work together and principally divided into three
major step-system preparation (antechamber, LEaP programs), simulation

(sander), and trajectory analysis (ptraj analysis program).

Proteins, nucleic acids,
carbohydrates

[72]

CHARMM

CHARMM (chemistry at HARvard molecular mechanics) is a widely used
molecular simulation program that is primarily designed to study biological
molecules such as proteins, peptides, lipids, nucleic acids, carbohydrates, and

small molecule ligands. The calculations are based on different energy
functions (quantum mechanical-molecular mechanical force fields, all-atom
classical potential energy functions) and models such as explicit solvent,

implicit solvent, and membrane models.

Proteins, lipids,
carbohydrates, nucleic

acids
[73]

NAMD

NAMD is a high-performance biomolecular simulation program that
employs the prioritized message-driven execution capabilities of the charm+
+/converse parallel runtime system compatible with parallel supercomputers

and workstation clusters.

Proteins, lipids,
carbohydrates, nucleic

acids,
[74]

Desmond

Desmond is a powerful molecular dynamic simulation program designed by
D. E. Shaw with considerable speed, accuracy, and scalability. It supports
explicit solvent simulations with periodic boundary conditions and can be

used to model explicit membrane systems under various conditions.

Proteins, lipids
https://www

.schrodinger.com/
desmond

Tinker

Tinker is a molecular modeling and dynamic package written primarily in a
standard Fortran 95 with OpenMP extensions. It supports a wide variety of
classical molecular simulations particularly biomolecular calculations and

offers various force fields including the modern polarizable atomic
multipole-based AMOEBA model.

Proteins, nucleic acids [75]

LAMMPS

LAMMPS (large-scale atomic/molecular massively parallel simulator) is a
classical molecular dynamic code for materials modeling. It has potentials
for soft matter (biomolecules, polymers), solid-state materials (metals,

semiconductors), and coarse-grained or mesoscopic systems.

Proteins, lipids,
carbohydrates, nucleic

acids

https://lammps
.sandia.gov/

DL_POLY
DL_POLY is a general purpose molecular dynamic simulation package,

which allows the study of liquids of large complexity. The code is developed
using the replicated data (RD) parallelization strategy.

Membranes, proteins [76]
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used in the ligand-based virtual screening approach include
pharmacophore modeling, quantitative structure-activity
relationships (QSARs), and artificial intelligence (AI).

3.1. Pharmacophore Modeling. A pharmacophore model elu-
cidates the spatial arrangement of chemical features in
ligands that are required for interaction with the target recep-
tor [78]. Some of the chemical features used in pharmaco-
phore modeling include hydrogen bond donors, hydrogen
bond acceptors, aromatic ring systems, hydrophobic areas,
positively charged ionizable groups, and negatively charged
ionizable groups [79]. Ligands having different scaffolds but
the similar spatial arrangement of key interacting functional
moieties can be identified using pharmacophore-based vir-
tual screening. The bioactive conformation of the molecules
within the target binding site can be incorporated into the
pharmacophore model. The pharmacophore model is also
often used in QSAR studies in the molecular alignment stage
[80]. Some frequently used programs which allow automatic
construction of the pharmacophore model include Catalyst,
PHASE, LigandScout, GALAHAD, and PharmMapper
(Table 3). A good pharmacophore model also incorporates
spatial constraints in regions occupied by inactive molecules
and often optimized further to make the model less restric-
tive. All the pharmacophoric features which are not consis-
tently detected in active molecules are either made optional
or removed from the final model [7]. The pharmacophore
model generated should have optimum sensitivity and spec-
ificity to minimize the chances of false negative and false pos-
itive results and must be validated using an independent
external test set [81]. If the information about the 3D struc-
ture of a receptor and a set of known active compounds are
lacking, then a sequence-derived 3D pharmacophore model
is quite useful. For example, Pharma3D utilizes knowledge
of the 3D crystal structures and homology models to derive
the common sequence motif important for receptor-ligand
biomolecular interactions in protein families [81, 82].

3.2. Quantitative Structure-Activity Relationships (QSARs).
QSAR studies are based on the principle that variations in
the bioactivity of the compounds can be correlated with
changes in the molecular structures. They are widely used
in the drug discovery process in the hit to lead identification
or lead optimization. A statistical model is constructed using
these correlation studies, and the final model can be used to
predict the biological activity of new molecules [80]. The
key requirements for the generation of a reliable QSAR
model are (a) a sufficient number of data sets with biological
activities obtained from common experimental protocols, (b)
the training and test set compounds must be appropriately
selected, (c) no autocorrelation among the physiochemical
properties of the ligands that may cause overfitting of the
data, and (d) the applicability and predictivity of the final
model must be checked using internal and external validation
methods [96]. Based on how the descriptors are derived,
QSAR can be classified into six different types: (a) 1D-
QSAR which studies the correlation between global molecu-
lar properties such as logP and pKa with biological activities,
(b) 2D-QSAR wherein biological activities are correlated

with the structural patterns such as 2D-pharmacophores
and connectivity indices, (c) 3D-QSAR which studies how
the biological activities correlated with noncovalent interac-
tion fields surrounding the ligands, (d) 4D-QSAR which is
an extension of 3D-QSAR with the addition of an ensemble
of ligand configurations, (e) 5D-QSAR which incorporates
various induced-fit models in 4D-QSAR, and (f) 6D-QSAR
further extends 5D-QSAR by including different solvation
models [97]. Some examples of 3D QSAR programs include
the HypoGen module of Catalyst [98], PHASE [89], compar-
ative molecular field analysis (CoMFA) [99], and compara-
tive similarity indices analysis (CoMSIA) [100]. A list of
tools for the calculation of molecular descriptors is enumer-
ated in Table 4. QSAR technique can be classified into two
types: linear and nonlinear based on chemometric methods.
The linear method includes linear regression (LR), multiple
linear regression (MLR), partial least squares (PLS), principal
component analysis (PCA), and principal component regres-
sion (PCR). The examples of nonlinear QSAR methods are k
-nearest neighbours (kNN), artificial neural networks
(ANN), and Bayesian neural nets [97].

3.3. Artificial Intelligence and Drug Discovery. Artificial intel-
ligence (AI) is a type of machine intelligence that relies on the
ability of computers to learn from existing data. AI has been
used in various computational modeling methods to predict
the biological activities and toxicities of drug molecules
[97]. Further, AI has wide applications in drug discovery
such as prediction of protein folding, protein-protein interac-
tion, virtual screening, QSAR, evaluation of ADMET proper-
ties, and de novo drug design [103]. There are two powerful
methods widely used in rational drug design which include
machine learning (ML) and deep learning (DL) [104]. ML
algorithms that have been extensively used in drug discovery
include support vector machine (SVM) [105], Random For-
est (RF) [106], and Naive Bayesian (NB) [107]. Few examples
of the deep learning methods are convolutional neural net-
work (CNN), deep neural network (DNN), recurrent neural
network (RNN), autoencoder, and restricted Boltzmann
machine (RBN) [4]. The conventional QSAR methods can
efficiently predict simple physicochemical properties such
as logP and solubility. However, the QSAR prediction of
complex biological properties such as drug efficacy and side
effects is often not optimal as the methods use small training
sets [108] and has coverage of limited chemical space [109].
The big data generated using high-throughput screening
(HTS) techniques are huge challenges to traditional QSAR
methods and machine learning techniques [40]. AI methods
have been developed to deal with this big data of high volume
and multidimensional nature to efficiently predict drug effi-
cacy and side effects in animals or humans. The most prom-
ising approach in the present big data world is deep learning
which was first used in the drug discovery process in 2012
QSAR machine learning challenge backed by Merck [110].
The results showed that deep learning models were true
which can accurately predict the ADMET properties com-
pared to traditional machine learning methods. Although,
AI is an impressing method in identification of preclinical
candidates in more cost and time-efficient manner, and the
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accurate prediction of binding affinity between a drug mole-
cule and a receptor using AI remains challenging for quite a
several reasons. Firstly, AI is a data mining method whose

performance heavily relies on the amount and quality of
the available data [4, 111]. Variability in the source of data
especially those derived from different biological assays and

Table 3: A list of pharmacophore modelling tools.

Tools Description Reference

Catalyst

Catalyst program is based on an algorithm that identifies three-dimensional
configurations of chemical features common to a set of ligands, wherein each

configuration is scored based both on estimated rarity and the level to which it is
common to the input set.

[83]

LigandScout

LigandScout is a fully automated tool for generating pharmacophore models which detect
and classifies protein-ligand interactions (hydrogen bond interactions, charge transfers,
and lipophilic regions) which form the basis of the pharmacophore model used for high

throughput virtual screening.

[84]

DISCO
DISCO is an automated pharmacophore method which examines the data to find all

pharmacophore hypothesis that fit and serves as a complement to 3D QSAR.
[85]

PharmaGist
PharmaGist is a freely available web server used for generating ligand-based

pharmacophore models, wherein the input is a set of drug-like molecules (maximum
limit of 32 drug-like molecules) that have a binding affinity to the target protein.

[86]

PharmMapper
PharmMapper server is a freely available web server that is commonly used for the
identification of potential target receptors for a given small molecule using the

pharmacophore mapping approach.
[87]

Pharmer
Pharmer is a pharmacophore search program that organizes molecular data using the
Pharmer KDB-tree and bloom fingerprints which allow rapid screening of millions of

molecules in a reasonable time.
[88]

PHASE
PHASE is an advanced pharmacophore-based tool that comprehensively maps the

common spatial arrangement of functional groups in a set of bioactive ligands using a
novel tree-based partitioning algorithm.

[89]

ZINCPharmer

ZINCPharmer is an online web server for the screening of small molecules from the
ZINC database using the Pharmer pharmacophore search program. An initial

pharmacophore hypothesis can be derived either from PDB structures or by importing
pharmacophore models developed using other third-party tools.

[90]

e-
Pharmacophore

The e-pharmacophore method generates energetically optimized, structure-based
pharmacophore models which can be used for screening of millions of compounds. The
method uses the glide XP scoring function to score protein-ligand interactions and has

good database screening enrichments.

https://www.schrodinger.com/
e-pharmacophores

GASP
GASP program uses a genetic algorithm (GA) for the superimposition of a set of flexible
ligands where the ligand possessing the lowest number of chemical features are chosen as

a template, onto which other molecules are fitted.
[91]

Shape4
Shape4 is a structure-based pharmacophore program developed is to enhance increase
the efficiency of database searching by considering the topographical constraints of the
target binding site and consequently helps to help minimize the false positive rate.

[92]

Snooker

Snooker is a structure-based pharmacophore tool that generates pharmacophore
hypotheses from homology models with critical residues for ligand binding identified
through the study of Shannon entropies of structurally conserved positions in multiple
sequence alignments and does not rely on the prior information of ligand structure or

interactions.

[93]

Pocketv.2
Pocket v.2 is an automated program to generate a pharmacophore model from a given
protein−ligand complex structure and has been designed using the pocket module of

LigBuilder.
[94]

GALAHAD
GALAHAD is a pharmacophore program developed to perform flexible alignment of
small molecules that bind to a target protein and share similar interaction patterns and

shapes.
[95]
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lack of high-quality data from public databases presents dif-
ficulty in efficient AI learning [112, 113].

4. Case Study of COVID-19

Both ligand-based and structure-based drug design
approaches have been widely used in the drug discovery pro-
cess against coronavirus disease-19 (COVID-19), an infec-
tious viral disease caused by SARS-CoV-2. To date, only a
few drug-candidate molecules have undergone clinical trials,
and these molecules are mostly repurposed approved drugs
(Figure 2).

The lack of approved drugs and vaccines for COVID-19
and the high mortality rate of the pandemic necessitate iden-
tification of effective therapeutics. With the availability of the
complete genome sequence of SARS-CoV-2 [114] and struc-
tural elucidation of the viral proteins through X-ray crystal-
lography, NMR spectroscopy, electron microscopy and
homology modeling, COVID-19 research has been rapidly
pursued. Some of the important drug targets of SARS-CoV-
2 are the structural protein-spike (S) protein, envelope (E)
protein, membrane (M) protein, and the nucleocapsid (N)
protein (Figure 3); nonstructural proteins (Nsps) (Figure 4)
such as the main protease which is also known as 3C-like
protease 3CLpro (nsp5), papain-like protease (PLpro, nsp3),

Table 4: List of programs available for calculating molecular descriptors for building QSAR models.

Programs Molecular descriptors Reference

ADMET
Predictor

Predicts over 140 properties such as solubility, logP, pKa, sites of CYP metabolism, and
Ames mutagenicity.

https://www.simulations-plus.com/
software/admetpredictor/

ChemAxon
It provides a wide range of chemical calculations such as molecular weight, elemental
composition, LogP, pKa, LogD, LogS, hydrogen bond donor/acceptor (HBDA) count,

and various 2D topological descriptors and 3D geometrical descriptors.

https://chemaxon.com/products/
calculators-and-predictors

PaDEL-
Descriptor

PaDEL-descriptor is a standalone software for calculating molecular descriptors and
fingerprints including 797 descriptors (663 1D, 2D descriptors, and 134 3D descriptors)

and 10 types of fingerprints.
[101]

E-
DRAGON

E-DRAGON is the electronic remote version of the noted software DRAGON, which is
an application for the calculation of molecular descriptors (>1,600 molecular

descriptors) used for evaluating molecular structure-activity or structure-property
relationships.

http://www.vcclab.org/lab/edragon/

DRAGON
7.0

Dragon 7.0 calculates 5,270 molecular descriptors including the simplest atom types,
functional groups and fragment counts, topological and geometrical descriptors, and

three-dimensional descriptors which are organized into thirty logical blocks.

https://chm.kode-solutions.net/
products_dragon.php

CODESSA
PRO

CODESSA PRO (comprehensive descriptors for structural and statistical analysis) is an
extensive program for studying quantitative structure-activity/property relationships
(QSAR/QSPR) by facilitating the calculation of a wide range of molecular descriptors

derived from the 2D/3D geometrical structure and/or quantum-chemical wave
function of small molecules.

[102]

Pre-
ADMET

PreADMET is a web-based program that can be used for the calculation of drug-like
physicochemical descriptors such as lipophilicity (logP), molecular weight, polar

surface area, and water solubility.
https://preadmet.bmdrc.kr/

QikProp

QikProp program allows the prediction of various pharmacologically important
descriptors of chemical compounds such as octanol/water and water/gas log Ps, log S,
log BB, overall CNS activity, Caco-2, and MDCK cell permeabilities, log KHSA for

human serum albumin binding, etc.

https://www.schrodinger.com/
qikprop

ACD/labs
ACD/labs is a multipurpose tool that can be used for the calculation of a variety of

physicochemical descriptors such as aqueous solubility, boiling point/vapour pressure,
logD, logP, and pKa and ADME properties.

https://www.acdlabs.com/

Corina
Symphony

CORINA symphony is a cheminformatic tool for structure representation and
calculation of molecular descriptors of six types: global molecular descriptors, shape
descriptors, quantum-mechanical properties, 2D property-weighted autocorrelation,
3D property-weighted autocorrelation, property-weighted radial distribution functions

(RDF), and autocorrelation of surface properties.

https://www.mn-am.com/products/
corinasymphony

MOPAC

MOPAC (molecular orbital PACkage) is a semiempirical molecular orbital package for
studying solid-state and molecular structures and reactions and offers calculations of
various descriptors of molecules, radicals, ions, and polymers such as the vibrational
spectra, thermodynamic parameters, isotopic substitution effects, and force constants.

http://openmopac.net/
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RNA-dependent RNA polymerase (RdRp, nsp12), nsp15
endoribonuclease, nsp16 2′-O-methyltransferase, nsp13
helicase, and host-based pharmacological targets are
angiotensin-converting enzyme 2 (ACE2), transmembrane
protease serine 2 (TMPRSS2), furin, and cathepsin [115].
The details of the nonstructural proteins are briefly discussed
here. The main protease is a cysteine protease with a catalytic
dyad (cysteine and histidine) in its active pocket [116]. The

action of the catalytic activity of Mpro on polyproteins results
in the release of the vital proteins required for viral replica-
tion by cleaving at least 11 sites around the C-terminal and
the central regions of the viral polyproteins with sequence
consensus X-(L/F/M)-Q↓(G/A/S)-X [117, 118]. Papain-like
protease (PLpro) is the second SARS-CoV-2 proteases poten-
tially targetable with small molecules which cleave three sites,
with recognition sequence consensus “LXGG↓XX” [118]. It

1. Remdesivir

6. Lopinavir

11. Nafamostat

12. Bromhexine

13. Enzalutamide

14. Chloroquine 15. Hydroxychloroquine

7. Ritonavir 8.Ivermectin

9.Disulfiram
10. Camostat mesylate

2. Favipiravir

3.Oseltamivir 4. Galidesivir 5. Sofosbuvir1. Remdesivir

6. Lopinavir

11. Nafamostat

13. Enzalutamide

14. Chloroquine 15. Hydroxychloroquine

7. Ritonavir 8.Ivermectin

9.Disulfiram
10. Camostat mesylate

2. Favipiravir

3.Oseltamivir 4. Galidesivir 5. Sofosbuvir

Figure 2: Molecules currently investigated in clinical trials where molecules 1-5 in the orange box are RNA polymerase inhibitors, molecules
6-8 in the yellow box are 3C-like protease inhibitors, molecule 9 in the green box is a papain-like protease inhibitor, molecules 10-13 in the
blue box are TMPRSS2 inhibitors, and molecules 14-15 in the grey box are inhibitors of endosomal acidification.

Membrane (M)
protein

Viral RNA

Envelope (E)
protein

Spike (S)
protein

Nucleocapsid (N)
protein

Figure 3: The structural proteins of SARS-CoV-2.
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is an attractive drug target because of its essential role in not
only the cleavage and maturation of viral polyproteins and
assembly of the replicase-transcriptase complex but also dis-
ruption of host immune responses [119]. RNA-dependent
RNA polymerase (RdRp) is the cleavage product of the poly-
proteins 1a and 1ab from ORF1a and ORF1ab and is
involved in the replication and transcription of the SARS-
CoV-2 genome [120]. The catalytic core of the enzyme
resembles the human right hand with differentiated palm,
fingers, and thumb domains. Targeting this enzyme to halt
the viral replication seems an effective therapeutic approach
since the active site of the RdRp is a highly conserved and
accessible region [121]. Nsp15 is a uridine-specific endoribo-
nuclease involved in RNA processing and widely distributed
in all kingdoms of life. Its catalytic C-terminal domain
exhibits sequence similarity and functionality of the EndoU
family enzymes [122]. The active 234-kDa hexameric
enzyme cleaves both single- and double-stranded RNA at
uridine sites generating 2′,3′-cyclic phosphodiester and 5′

-hydroxyl termini [123]. The SARS CoV-2 2′-o-methyltrans-

ferase (nsp16) is another important enzyme target essential
for viral multiplication. The enzyme precisely protects the
viral RNA from the cellular innate immunity by participating
in the formation of a specific arrangement known as RNA
cap, a structure which contributes to viral RNA stability
and effective process of translation [124]. SARS-Cov-2
Nsp13 helicase is one of the critical enzyme among the 16
known CoV Nsp proteins which shows the highest sequence
conservation across the CoV family, indicating their impor-
tance for viral multiplication. The enzyme possesses the
NTPase and RNA helicase functions that can hydrolyze all
types of NTPs and unwind RNA helix in an ATP-
dependent process [125]. The transmembrane protease ser-
ine 2 (TMPRSS2) is a major host factor which regulates
virus-host cell membrane fusion and cell entry by priming
of the virus spike (S) protein via cleavage of the S proteins
at the S1/S2 and S2 sites [126]. Furin is a type of proprotein
convertases (PCs) found in the trans-Golgi complex and gets
activated by acidic pH. The enzyme recognizes and hydro-
lyzes the unique “RRAR” motif in SARS-CoV-2-spike

a) Mpro

c) PLpro

b) RdRp

d) Nsp15
endoribonuclease

f) Nsp16 (2’-O-
methyltransferase)

e) SARS-CoV-2
helicase

SARS-CoV-2
Molecular

targets

Figure 4: Macromolecular target structures of SARS-CoV-2. (a) X-ray crystal structure of the SARS-CoV-2main protease in complex with an
inhibitor N3 (PDB ID: 7BQY). (b) Crystal structure of Nsp12 (RdRp) bound to triphosphate form of remdesivir (PDB ID: 7BV2). (c) Crystal
structure of the SARS-CoV-2 papain-like protease in complex with peptide inhibitor VIR250 (PDB ID: 6WUU). (d) Crystal structure of
Nsp15 endoribonuclease from SARS-CoV-2 in complex with potential repurposing drug tipiracil (PDB ID: 6WXC). (e) Crystal structure

of the SARS-CoV-2 helicase (PDB ID: 6ZSL). (f) Crystal structure of Nsp16 (2′-O-methyltransferase) from SARS-CoV-2 in complex with
sinefungin. The secondary structure elements—helices, sheets, and loops—are colored in red, cyan, and grey, respectively, and the bound
inhibitors are rendered as a ball-and-stick model.
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protein [127]. Cathepsin L is a lysosomal cysteine protease
belonging to a family of proteases involved in proteolysis of
protein antigens produced by pathogen endocytosis. The
protease cleaves the S1 subunit of the coronavirus spike gly-
coprotein which is required for the virus entry into human
host cells, virus, and host cell endosome membrane fusion
[128]. These structures solved through experimental tech-
niques or computational homology modeling techniques
can be used for structure-based virtual screening for identifi-
cation of specific inhibitors of the target proteins.

The CADD methods have been successfully used in the
COVID-19 drug discovery process. Selvaraj et al. (2020)
solved the three-dimensional structure of SARS-CoV-2
guanine-N7 methyltransferase (nsp14) using the homology
modeling method and further proposed five TCM database
compounds—TCM 57025, TCM 3495, TCM 5376, TCM
20111, and TCM 31007 as potential antiviral phytochemicals
based on molecular docking and simulation studies [129].
Gao et al. (2021) characterized the physicochemical property,
subcellular localization, and homology model of the SARS-
CoV-2nucleocapsid protein and further explored its biological
function using mass spectrometry analysis and flow cytometry
[130]. Beck et al. (2020) used a pretrained deep learning-based
drug-target interaction model called molecule transformer
drug and identified a few Food and Drug Administration
(FDA) approved antiviral drugs such as atazanavir, remdesi-
vir, efavirenz, ritonavir, and dolutegravir showing inhibitory
potential against SARS-CoV-2 3C-like proteinase [131]. Elfiky
(2020) used homology modeling, molecular dynamic simula-
tions, and molecular docking approaches to target the SARS-
CoV-2 RdRp enzyme and reported the suitability of sofosbu-
vir, ribavirin, galidesivir, remdesivir, favipiravir, cefuroxime,
tenofovir, and hydroxychloroquine as candidate drugs for
clinical trials [132]. Elmezayen et al. (2020) used a structure-
based virtual screening method to identify lead molecules
against main proteases and human TMPRSS2. Four potential
inhibitors against Mpro enzyme identified were talampicillin,
lurasidone, ZINC000000702323, and ZINC000012481889,
whereas promising inhibitors identified against TMPRSS2
include rubitecan, loprazolam, ZINC000015988935, and
ZINC000103558522 [133]. Das et al. (2020) used a molecular
docking approach to identify potential inhibitors against
SARS-CoV-2main protease by screening a set of natural prod-
ucts, antivirals, antifungal, antinematodes, and antiprotozoal.
The inhibitors identified from the study include rutin (a natu-
ral compound), ritonavir (control drug), emetine (antiproto-
zoal), hesperidin (a natural compound), lopinavir (control
drug), and indinavir (antiviral drug) [134]. Gurung et al.
(2020) used a molecular docking approach and identified
three antiviral phytochemicals: bonducellpin D, 5,7-
dimethoxyflavanone-4′-O-β-d-glucopyranoside and caesal-
min B as potential inhibitors of SARS-CoV-2 Mpro, SARS-
CoV Mpro, and Middle East respiratory syndrome-
coronavirus (MERS-CoV) Mpro [135]. Joshi et al. (2020)
identified natural molecules such as δ-viniferin, myricitrin,
taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide
A, afzelin, biorobin, hesperidin, and phyllaemblicin B as
potential inhibitors of SARS-CoV-2 MPro using molecular
docking approach [136]. Wahedi et al. (2021) explored stilbe-

noid analogues as potential anti-COVID-19 drug candidates
using molecular docking and molecular dynamic simulation
studies and identified piceatannol and resveratrol as important
lead molecules for disrupting SARS-CoV-2 and ACE-2 com-
plex formation [137]. Khan et al. (2020) attempted to target
chymotrypsin-like protease (3CLpro) with small molecules
using molecular docking and molecular dynamic simulation
approach, and the study revealed three FDA approved drugs
(remdesivir, saquinavir, and darunavir) and two natural com-
pounds (flavone and coumarin derivatives) as promising
inhibitors of the target enzyme [138]. Further, the potentiality
of many dietary flavonols as antiviral drugs targeting the
SARS-CoV-2 enzymes and proteins (3CLpro, PLpro, S protein
and RdRp) has been discussed comprehensively by Mouffouk
et al. (2021) [139]. Umesh et al. (2021) screened chemical spe-
cies from Indian spices using a computational approach
(molecular docking and molecular dynamic simulation) and
identified carnosol, arjunglucoside-I, and rosmanol as potent
inhibitors of the novel coronavirus main protease (SARS-
CoV-2 Mpro) [140]. Abdelli et al. (2021) explored essential
oil from antiviral and antimicrobial plant Ammoides verticil-
lata (Desf.) Briq. that blocks the function of the SARS-CoV-
2 angiotensin-converting enzyme 2 (ACE2) receptor using in
silico approach (molecular docking, pharmacophore map-
ping, andMD simulation) and identified isothymol as a prom-
ising functional inhibitor of ACE2 receptor [141]. Al-Khafaji
et al. (2020) employed a covalent docking screening procedure
coupled with the MD simulation technique to identify mole-
cules that can form a covalent bond with Cys145 within the
binding pocket of SARS-CoV-2 main protease and identified
FDA approved drugs: saquinavir, ritonavir, and remdesivir
as top three molecules [142]. Peele et al. (2020) screened
FDA approved antiviral drugs, antimalarial drugs, and plant-
derived natural drugs with antiviral activity throughmolecular
docking and identified lopinavir, amodiaquine, and theaflavin
digallate as promising inhibitors against SARS-CoV-2 main
protease and confirmed their stability in the binding pocket
of the target enzyme using molecular dynamics simulation
[143]. Wang (2020) identified three potential inhibitors of
SARS-CoV-2 main protease: carfilzomib, eravacycline, valru-
bicin, lopinavir, and elbasvir using virtual docking screening
of approved drugs and drug candidates in clinical trials
followed by MD simulation and binding free energy calcula-
tion [144]. Mittal et al. (2021) used antiprotease molecules
for drug repurposing against COVID-19 and identified six
potential inhibitors of main protease enzyme-leupeptin, hemi-
sulphate, pepstatin A, nelfinavir, birinapant, lypression, and
octreotide using virtual screening andmolecular dynamic sim-
ulation approach [145]. Using molecular modeling and virtual
screening approach, Kandeel and Al-Nazami (2020) identified
ribavirin and telbivudine as potential inhibitors of SARS-CoV-
2 main protease enzyme from a set of FDA approved drugs
[146]. ul Qamar et al. (2020) used the homology structure
model of SARS-CoV-2 3CLpro for the screening of antiviral
phytochemicals and identified three lead compounds 5,7,3′

,4′-tetrahydroxy-2′-(3,3-dimethylallyl) isoflavone, myricitrin,
and methyl rosmarinate as potential inhibitors of the target
enzyme through molecular docking and molecular dynamic
simulation approach [147]. Islam et al. (2020) used molecular
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docking and MD simulation technique and identified five
antiviral phytochemicals, viz., hypericin, cyanidin 3-glucoside,
baicalin, glabridin, and α-ketoamide-11r which showed a good
binding affinity with SARS-CoV-2 main protease enzyme
[148]. Beura and Chetti (2021) studied few derivatives of chlo-
roquine using pharmacophore modeling, molecular docking,
binding free energy calculation, and ADME property analysis
and discovered molecule CQD15 as a promising inhibitor of
SARS-CoV-2 main protease which shows better interactions
with the target enzyme as compared to chloroquine and
hydroxychloroquine [149]. Mahanta et al. (2021) screened
FDA approved antimicrobial drugs using a combined
approach of molecular docking and molecular dynamic simu-
lation and proposed viomycin as a potential inhibitor of the
main protease of SARS-CoV-2 [150]. Enmozhi et al. (2021)
explored the potentiality of antiviral phytocompound from
Andrographis paniculata as an SARS-CoV-2 main protease
(Mpro) inhibitor using molecular docking and ADME predic-
tion [151]. Kumar et al. (2020) screened hydroxyethylamine-
(HEA-) based library of chemical compounds using molecular
docking where HEA is a pharmacophore derived from indin-
avir. They identified compound 16 as a promising inhibitor of
SARS-CoV-2 3CLpro which shows drug-like properties and
stable binding within the binding pocket of the target enzyme
throughout MD simulation studies [152]. Arun et al. (2020)
used the crystal structure of SARS-CoV-2 in complex with
an imidazole carboxamide inhibitor and generated an E-
pharmacophore hypothesis for the repurposing of drugs. They
identified two drugs binifibrate and bamifylline which bind
strongly to the enzyme active site pocket as revealed from
molecular docking, binding free energy calculation, and
molecular dynamic simulation [153]. Gentile et al. (2020)
screened marine natural product (MNP) library using
hyphenated pharmacophore model, molecular docking, and
molecular dynamic simulation approach and identified a total
of 17 compounds (belong to the class phlorotannins isolated
from the brown alga, Sargassum spinuligerum) as potential
SARS-CoV-2 Mpro inhibitors [154]. Amin et al. (2020) con-
structed a Monte Carlo optimization-based QSAR model
and used it for the virtual screening of some inhouse chemi-
cals. The thirteen identified compounds showed good drug-
likeness from SwissADME in silico study, and molecular
docking studies further show their favorable interactions with
target SARS-CoV-2 PLpro, thereby suggesting their potential-
ity as a seed for drug design and optimization against SARS-
CoV-2 PLpro [155]. Similarly, Ghosh et al. (2020) used the
Monte Carlo optimization-based QSAR model for screening
a library of nature product hits. Fragment analysis of the active
molecules suggests that novel potential SARS-CoV-2 Mpro

enzyme inhibitors may be synthesized by joining fragments/-
features together or attaching with other scaffolds [156]. Phar-
macophore modeling is a fast and effective approach in the
identification of interesting lead molecules for drug discovery
against COVID-19. A ligand-based pharmacophore model
was generated by Law et al. (2020) using established antiviral
drugs, and themodel was used to estimate the antiviral activity
of twenty vanillin derivatives asMpro inhibitors of SARS-CoV-
2. Further, the structure-based pharmacophore model sug-
gests that vanillin derivatives (1-20) exhibited promising

results, and these compounds were suggested to be potent
COVID-19 antiviral compounds [157]. Using the X-ray crys-
tallographic structure of COVID-19 main protease (Mpro),
Daoud et al. (2020) constructed a pharmacophore model
and further conducted a molecular docking study to identify
antiviral drugs as potential COVID-19 main protease inhibi-
tors. Five FDA-approved antiviral drugs (lopinavir, remdesi-
vir, ritonavir, saquinavir, and raltegravir) were successfully
captured by the pharmacophore model, and docking studies
revealed that these compounds exhibit many specific binding
interactions comparable to that of the cocrystallized inhibitor
(X77) [158]. Skariyachan et al. (2020) explored the binding
potentiality of six approved drugs (chloroquine, hydroxy-
chloroquine, favipiravir, lopinavir, remdesivir, and ritonavir)
against fifteen potential drug targets of SARsS-CoV-2 (spike
glycoprotein, RNA dependent RNA polymerase, nsp7, nsp8,
papain-like protease, main protease, nucleocapsid protein,
heptad repeat of domain 2, ADP ribose phosphatase, nsp9
RNA binding protein, endoribonuclease, orf7a, nsp10, and
nsp1) using molecular docking and molecular dynamic simu-
lation approach and concluded that out of all the six drugs,
ritonavir and lopinavir showed better binding with the prior-
itized drug targets [159]. Furthermore, the antiviral mecha-
nisms of these drugs (remdesivir, lopinavir/ritonavir, and
chloroquine/hydroxychloroquine) against SARS-CoV-2 have
been thoroughly reviewed by Uzunova et al. (2020) [160].
Singh et al. (2021) performed docking-based virtual screening
from a library of 1764 antiviral drugs against SARS-CoV-2
NSP12 (RNA polymerase) and identified five compounds,
viz., paritaprevir, glecaprevir, velpatasvir, remdesivir, and riba-
virin which exhibited high-binding affinity with the drug tar-
get [161]. Gowrishankar et al. (2021) screened a total of 57
phytochemicals from threemost commonly used Indian herbs
(Justicia adhatoda, Eucalyptus globulus, and Vitex negundo)
used in “steam inhalation therapy” against four structural pro-
tein targets of SARS-CoV-2 viz. 3CLpro, ACE2, spike glycopro-
tein, and RdRp using molecular docking approach, and the
best five lead molecules identified were apigenin-o-7-glucuro-
nide, ellagic acid, eudesmol, viridiflorene, vasicolinone, and
anisotine [162]. Ibrahim et al. (2021) explored the potentiali-
ties of eighteen repurposed drugs in clinical development
against SARS-CoV-2Mpro using combinedmolecular docking
and molecular dynamic (MD) techniques and identified
TMC-310911 and ritonavir as promising drugs for the treat-
ment of COVID-19 [163].

5. Strengths and Challenges of CADD in
COVID-19 Research

With the steady rise in the number of confirmed positive and
death cases from SARS-CoV-2 infection, computer-aided
drug design (CADD) emerges as a fast and reliable technique
in pharmaceutical and medicinal research since it not only
saves time but also helps to cut costs of designing therapeutic
agents [164]. Further, realizing the severity of COVID-19
and the lack of approved therapeutic agents warrants the
need for finding potent drugs in less time, and the CADD
method makes this possible by facilitating the discovery of
new drugs or repurposing FDA-approved drugs whose safety
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and adverse effects are already known [165]. Since the inher-
ent mutability of the SARS-CoV-2 genome may hinder dis-
ease prevention and treatment, CADD can be used
efficiently to predict the effects of mutation on drug binding
with the molecular receptors [166]. Therefore, CADD can
greatly help in accelerating the drug discovery and develop-
ment process. However, CADD methods have some limita-
tions such as lead molecules derived from the virtual
screening process that still need validation through preclini-
cal and clinical assessments before market approval [167].
The fact that the molecular mechanism studies underlying
the disease pathogenesis of COVID-19 are still underway,
and the existence of bias and imbalance in the limited data
available can have a major impact on the prediction accuracy
of CADD methods such as artificial intelligence [168].

6. Conclusions

Structure-based and ligand-based drug design form two
branches of the computer-aided drug discovery process
which plays a significant role in the design and identification
of drug molecules in reduced time and cost. The increase in
the number of positive cases and deaths from COVID-19
and the lack of approved drugs and vaccines continue to be
a matter of global health concern which necessitates the
urgent discovery of drugs for the prevention and cure of the
disease. The structural elucidation of pharmacological targets
of SARS-CoV-2 has helped the researchers in the structure-
based virtual identification of inhibitors, and the discovery
of few lead molecules against COVID-19 has led to the use
of scaffolds that can be optimized through ligand-based drug
design. Realizing the possible mutability of this RNA virus
and the emergence of drug resistance problems, it is, there-
fore, necessary to take a step further and consider targeting
multiple drug targets that will be more effective and might
help in overcoming drug resistance barriers.

Data Availability

The data is not required.

Conflicts of Interest

The authors report no conflicts of interest in this work.

Acknowledgments

The authors would like to extend their sincere appreciation
to the Deanship of Scientific Research at King Saud Univer-
sity for its funding of the research through the research
group project #RG-1438-015. J. Lee thank the Chungnam
National University, Daejeon, Republic of Korea, for the
funding support.

References

[1] C. M. Song, S. J. Lim, and J. C. Tong, “Recent advances in
computer-aided drug design,” Briefings in Bioinformatics,
vol. 10, no. 5, pp. 579–591, 2009.

[2] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, “Innova-
tion in the pharmaceutical industry: New estimates of R&D
costs,” Journal of Health Economics, vol. 47, pp. 20–33, 2016.

[3] D. Vohora and G. Singh, Pharmaceutical Medicine and
Translational Clinical Research, Academic Press, 2018.

[4] F. Zhong, J. Xing, X. Li et al., “Artificial intelligence in drug
design,” Science China Life Sciences, vol. 61, no. 10,
pp. 1191–1204, 2018.

[5] T. Hou and X. Xu, “Recent development and application of
virtual screening in drug discovery: an overview,” Current
Pharmaceutical Design, vol. 10, no. 9, pp. 1011–1033, 2004.

[6] W. Yu and A. D. Mac Kerell, “Computer-aided drug design
methods,” in Antibiotics, Humana Press, New York, NY,
2017.

[7] S. J. Y. Macalino, V. Gosu, S. Hong, and S. Choi, “Role of
computer-aided drug design in modern drug discovery,”
Archives of Pharmacal Research, vol. 38, no. 9, pp. 1686–
1701, 2015.

[8] W. Duch, K. Swaminathan, and J. Meller, “Artificial intelli-
gence approaches for rational drug design and discovery,”
Current Pharmaceutical Design, vol. 13, no. 14, pp. 1497–
1508, 2007.

[9] H.-J. Huang, H. W. Yu, C.-Y. Chen et al., “Current develop-
ments of computer-aided drug design,” Journal of the Taiwan
Institute of Chemical Engineers, vol. 41, no. 6, pp. 623–635,
2010.

[10] M. Hassan Baig, K. Ahmad, S. Roy et al., “Computer aided
drug design: success and limitations,” Current Pharmaceuti-
cal Design, vol. 22, no. 5, pp. 572–581, 2016.

[11] S. Skariyachan, S. B. Challapilli, S. Packirisamy, S. T. Kumar-
gowda, and V. S. Sridhar, “Recent aspects on the pathogenesis
mechanism, animal models and novel therapeutic interven-
tions for Middle East respiratory syndrome coronavirus
infections,” Frontiers in Microbiology, vol. 10, p. 569, 2019.

[12] S. A. Amin and T. Jha, “Fight against novel coronavirus: a
perspective of medicinal chemists,” European Journal of
Medicinal Chemistry, vol. 201, article 112559, 2020.

[13] B. Goyal and D. Goyal, “Targeting the dimerization of the
main protease of coronaviruses: A potential broad-spectrum
therapeutic strategy,” ACS Combinatorial Science, vol. 22,
no. 6, pp. 297–305, 2020.

[14] W. Dai, B. Zhang, X.-M. Jiang et al., “Structure-based design
of antiviral drug candidates targeting the SARS-CoV-2 main
protease,” Science, vol. 368, no. 6497, pp. 1331–1335, 2020.

[15] Y.-F. Tu, C.-S. Chien, A. A. Yarmishyn et al., “A review of
SARS-CoV-2 and the ongoing clinical trials,” International
Journal of Molecular Sciences, vol. 21, no. 7, p. 2657, 2020.

[16] D. Gopal and S. Skariyachan, Recent Perspectives on COVID-
19 and Computer-Aided Virtual Screening of Natural Com-
pounds for the Development of Therapeutic Agents Towards
SARS-CoV-2, Methods in Pharmacology and Toxicology,
Springer, 2020.

[17] T. Pillaiyar, S. Meenakshisundaram, and M. Manickam,
“Recent discovery and development of inhibitors targeting
coronaviruses,” Drug Discovery Today, vol. 25, no. 4,
pp. 668–688, 2020.

[18] M. Batool, B. Ahmad, and S. Choi, “A structure-based drug
discovery paradigm,” International Journal of Molecular Sci-
ences, vol. 20, no. 11, p. 2783, 2019.

[19] E. Lionta, G. Spyrou, D. K. Vassilatis, and Z. Cournia, “Struc-
ture-based virtual screening for drug discovery: principles,

13BioMed Research International



applications and recent advances,” Current Topics in Medici-
nal Chemistry, vol. 14, no. 16, pp. 1923–1938, 2014.

[20] S. Kalyaanamoorthy and Y.-P. P. Chen, “Structure-based
drug design to augment hit discovery,” Drug Discovery
Today, vol. 16, no. 17–18, pp. 831–839, 2011.

[21] A. Wlodawer and J. Vondrasek, “Inhibitors of HIV-1 prote-
ase: a major success of structure-assisted drug design,”
Annual Review of Biophysics and Biomolecular Structure,
vol. 27, no. 1, pp. 249–284, 1998.

[22] D. E. Clark, “What has computer-aided molecular design
ever done for drug discovery?,” Expert Opinion on Drug Dis-
covery, vol. 1, no. 2, pp. 103–110, 2006.

[23] A. C. Anderson, “The process of structure-based drug
design,” Chemistry & Biology, vol. 10, no. 9, pp. 787–797,
2003.

[24] S. Grover, M. A. Apushkin, and G. A. Fishman, “Topical dor-
zolamide for the treatment of cystoid macular edema in
patients with retinitis pigmentosa,” American Journal of Oph-
thalmology, vol. 141, no. 5, pp. 850–858, 2006.

[25] H. Marrakchi, G. Lanéelle, and A. Quémard, “InhA, a target
of the antituberculous drug isoniazid, is involved in a myco-
bacterial fatty acid elongation system, FAS-II,” Microbiology,
vol. 146, no. 2, pp. 289–296, 2000.

[26] S. Dadashpour, T. Tuylu Kucukkilinc, O. Unsal Tan,
K. Ozadali, H. Irannejad, and S. Emami, “Design, synthesis
and in vitro study of 5, 6-dDiaryl-1, 2, 4-triazine-3-ylthioace-
tate derivatives as COX-2 and β-amyloid aggregation inhibi-
tors,” Archiv der Pharmazie, vol. 348, no. 3, pp. 179–187,
2015.

[27] Z. Miller, K.-S. Kim, D.-M. Lee et al., “Proteasome inhibitors
with pyrazole scaffolds from structure-based virtual screen-
ing,” Journal of Medicinal Chemistry, vol. 58, no. 4,
pp. 2036–2041, 2015.

[28] X. Wang, K. Song, L. Li, and L. Chen, “Structure-based drug
design strategies and challenges,” Current Topics inMedicinal
Chemistry, vol. 18, no. 12, pp. 998–1006, 2018.

[29] V. K. Vyas, R. D. Ukawala, C. Chintha, and M. Ghate,
“Homology modeling a fast tool for drug discovery: current
perspectives,” Indian Journal of Pharmaceutical Sciences,
vol. 74, no. 1, pp. 1–17, 2012.

[30] C. M.-R. Lemer, M. J. Rooman, and S. J. Wodak, “Protein
structure prediction by threading methods: evaluation of cur-
rent techniques,” Proteins: Structure, Function, and Genetics,
vol. 23, no. 3, pp. 337–355, 1995.

[31] J. Lee, P. L. Freddolino, and Y. Zhang, “Ab initio protein
structure prediction,” in From protein structure to function
with bioinformatics, Springer, 2017.

[32] M. T. Muhammed and E. Aki-Yalcin, “Homology modeling
in drug discovery: Overview, current applications, and future
perspectives,” Chemical Biology & Drug Design, vol. 93, no. 1,
pp. 12–20, 2019.

[33] J. Xu, F. Jiao, and L. Yu, “Protein structure prediction using
threading,” in Protein structure prediction, Springer, 2008.

[34] M. Yousef, T. Abdelkader, and K. El-Bahnasy, “Performance
comparison of ab initio protein structure prediction
methods,” Ain Shams Engineering Journal, vol. 10, no. 4,
pp. 713–719, 2019.

[35] L. Pan, C. L. Gardner, F. A. Pagliai, C. F. Gonzalez, and G. L.
Lorca, “Identification of the tolfenamic acid binding pocket
in PrbP from Liberibacter asiaticus,” Frontiers in Microbiol-
ogy, vol. 8, 2017.

[36] T. A. Binkowski, S. Naghibzadeh, and J. Liang, “CASTp: com-
puted atlas of surface topography of proteins,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3352–3355, 2003.

[37] A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey, “DoGSi-
teScorer: a web server for automatic binding site prediction,
analysis and druggability assessment,” Bioinformatics,
vol. 28, no. 15, pp. 2074-2075, 2012.

[38] J. Sun and K. Chen, “NSiteMatch: prediction of binding sites
of nucleotides by identifying the structure similarity of local
surface patches,” Computational and Mathematical Methods
in Medicine, vol. 2017, Article ID 5471607, 16 pages, 2017.

[39] K. P. Tan, R. Varadarajan, and M. S. Madhusudhan,
“DEPTH: a web server to compute depth and predict small-
molecule binding cavities in proteins,” Nucleic Acids
Research, vol. 39, suppl_2, pp. W242–W248, 2011.

[40] H. Zhu and M. T. Pisabarro, “MSPocket: an orientation-
independent algorithm for the detection of ligand binding
pockets,” Bioinformatics, vol. 27, no. 3, pp. 351–358, 2011.

[41] B. Huang, “MetaPocket: a meta approach to improve protein
ligand binding site prediction,” OMICS: A Journal of Integra-
tive Biology, vol. 13, no. 4, pp. 325–330, 2009.

[42] A. T. R. Laurie and R. M. Jackson, “Q-SiteFinder: an energy-
based method for the prediction of protein-ligand binding
sites,” Bioinformatics, vol. 21, no. 9, pp. 1908–1916, 2005.

[43] J. J. Irwin and B. K. Shoichet, “ZINC − a free database of com-
mercially available compounds for virtual screening,” Journal
of Chemical Information and Modeling, vol. 45, no. 1,
pp. 177–182, 2005.

[44] S. Kim, P. A. Thiessen, E. E. Bolton et al., “PubChem Sub-
stance and Compound databases,” Nucleic Acids Research,
vol. 44, no. D1, pp. D1202–D1213, 2016.

[45] A. Gaulton, L. J. Bellis, A. P. Bento et al., “ChEMBL: a large-
scale bioactivity database for drug discovery,” Nucleic Acids
Research, vol. 40, no. D1, pp. D1100–D1107, 2012.

[46] D. S. Wishart, C. Knox, A. C. Guo et al., “DrugBank: a knowl-
edgebase for drugs, drug actions and drug targets,” Nucleic
Acids Research, vol. 36, suppl_1, pp. D901–D906, 2008.

[47] H. E. Pence and A. Williams, Chem Spider: An Online Chem-
ical Information Resource, ACS Publications, 2010.

[48] C. A. Lipinski, “Lead- and drug-like compounds: the rule-of-
five revolution,” Drug Discovery Today: Technologies, vol. 1,
no. 4, pp. 337–341, 2004.

[49] A. Daina, O. Michielin, and V. Zoete, “SwissADME: a free
web tool to evaluate pharmacokinetics, drug-likeness and
medicinal chemistry friendliness of small molecules,” Scien-
tific Reports, vol. 7, no. 1, 2017.

[50] S.-Y. Huang and X. Zou, “Advances and challenges in
protein-ligand docking,” International Journal of Molecular
Sciences, vol. 11, no. 8, pp. 3016–3034, 2010.

[51] I. M. Kapetanovic, “Computer-aided drug discovery and
development (CADDD): in silico-chemico- biological
approach,” Chemico-Biological Interactions, vol. 171, no. 2,
pp. 165–176, 2008.

[52] S. F. Sousa, P. A. Fernandes, andM. J. Ramos, “Protein-ligand
docking: current status and future challenges,” Proteins:
Structure, Function, and Bioinformatics, vol. 65, no. 1,
pp. 15–26, 2006.

[53] C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand
docking using a genetic algorithm,” Journal of Computer-
Aided Molecular Design, vol. 9, no. 2, pp. 113–130, 1995.

14 BioMed Research International



[54] T. N. Hart and R. J. Read, “A multiple-start Monte Carlo
docking method,” Proteins: Structure, Function, and Genetics,
vol. 13, no. 3, pp. 206–222, 1992.

[55] J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of
folded proteins,” Nature, vol. 267, no. 5612, pp. 585–590,
1977.

[56] M. Karplus and J. A. McCammon, “Molecular dynamics sim-
ulations of biomolecules,” Nature Structural Biology, vol. 9,
no. 9, pp. 646–652, 2002.

[57] M. De Vivo, M.Masetti, G. Bottegoni, and A. Cavalli, “Role of
molecular dynamics and related methods in drug discovery,”
Journal of Medicinal Chemistry, vol. 59, no. 9, pp. 4035–4061,
2016.

[58] S. A. Hollingsworth and R. O. Dror, “Molecular dynamics
simulation for all,” Neuron, vol. 99, no. 6, pp. 1129–1143,
2018.

[59] J. D. Durrant and J. A. McCammon, “Molecular dynamics
simulations and drug discovery,” BMC Biology, vol. 9, no. 1,
pp. 1–9, 2011.

[60] H. Zhao and A. Caflisch, “Molecular dynamics in drug
design,” European Journal of Medicinal Chemistry, vol. 91,
pp. 4–14, 2015.

[61] D. Huang and A. Caflisch, “The free energy landscape of
small molecule unbinding,” PLoS Computational Biology,
vol. 7, no. 2, article e1002002, 2011.

[62] G. M. Morris, R. Huey, W. Lindstrom et al., “AutoDock4 and
AutoDockTools4: automated docking with selective receptor
flexibility,” Journal of Computational Chemistry, vol. 30,
no. 16, pp. 2785–2791, 2009.

[63] O. Trott and A. J. Olson, “AutoDock Vina: improving the
speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading,” Journal of Com-
putational Chemistry, vol. 31, no. 2, pp. 455–461, 2009.

[64] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor,
“Development and validation of a genetic algorithm for flex-
ible docking1,” Journal of Molecular Biology, vol. 267, no. 3,
pp. 727–748, 1997.

[65] G. Wu, D. H. Robertson, C. L. Brooks III, and M. Vieth,
“Detailed analysis of grid-based molecular docking: a case
study of CDOCKER?A CHARMm-based MD docking algo-
rithm,” Journal of Computational Chemistry, vol. 24, no. 13,
pp. 1549–1562, 2003.

[66] B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the
FLEXX incremental construction algorithm for protein-
ligand docking,” Proteins: Structure, Function, and Genetics,
vol. 37, no. 2, pp. 228–241, 1999.

[67] A. N. Jain, “Surflex: fully automatic Flexible molecular dock-
ing using a molecular similarity-based search engine,” Jour-
nal of Medicinal Chemistry, vol. 46, no. 4, pp. 499–511, 2003.

[68] R. A. Friesner, J. L. Banks, R. B. Murphy et al., “Glide: a new
approach for rapid, accurate docking and scoring. 1. Method
and assessment of docking accuracy,” Journal of Medicinal
Chemistry, vol. 47, no. 7, pp. 1739–1749, 2004.

[69] W. J. Allen, T. E. Balius, S. Mukherjee et al., “DOCK 6: impact
of new features and current docking performance,” Journal of
Computational Chemistry, vol. 36, no. 15, pp. 1132–1156,
2015.

[70] A. Grosdidier, V. Zoete, and O. Michielin, “SwissDock, a
protein-small molecule docking web service based on
EADock DSS,” Nucleic Acids Research, vol. 39, suppl,
pp. W270–W277, 2011.

[71] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E.
Mark, and H. J. C. Berendsen, “GROMACS: fast, flexible,
and free,” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1701–1718, 2005.

[72] D. A. Case, T. E. Cheatham 3rd, T. Darden et al., “The Amber
biomolecular simulation programs,” Journal of Computa-
tional Chemistry, vol. 26, no. 16, pp. 1668–1688, 2005.

[73] B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr. et al.,
“CHARMM: the biomolecular simulation program,” Journal of
Computational Chemistry, vol. 30, no. 10, pp. 1545–1614, 2009.

[74] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD:
Biomolecular simulation on thousands of processors,” in
ACM/IEEE SC 2002 Conference (SC'02), p. 36, Baltimore,
MD, USA, 2002.

[75] J. A. Rackers, Z. Wang, C. Lu et al., “Tinker 8: software tools
for molecular design,” Journal of Chemical Theory and Com-
putation, vol. 14, no. 10, pp. 5273–5289, 2018.

[76] W. Smith, C. W. Yong, and P. M. Rodger, “DL_POLY: appli-
cation to molecular simulation,” Molecular Simulation,
vol. 28, no. 5, pp. 385–471, 2002.

[77] P. Prathipati, A. Dixit, and A. K. Saxena, “Computer-aided
drug design: integration of structure-based and ligand-based
approaches in drug design,” Current Computer-Aided Drug
Design, vol. 3, no. 2, pp. 133–148, 2007.

[78] D. Schaller, D. Šribar, T. Noonan et al., “Next generation 3D
pharmacophore modeling,” Wiley Interdisciplinary Reviews:
Computational Molecular Science, vol. 10, no. 4, article
e1468, 2020.

[79] J. H. Van Drie, “Generation of three-dimensional pharmaco-
phore models,” Wiley Interdisciplinary Reviews: Computa-
tional Molecular Science, vol. 3, no. 5, pp. 449–464, 2013.

[80] C. C. Melo-Filho, R. C. Braga, and C. H. Andrade, “3D-QSAR
approaches in drug design: perspectives to generate reliable
CoMFA models,” Current Computer-Aided Drug Design,
vol. 10, no. 2, pp. 148–159, 2014.

[81] A. Vuorinen and D. Schuster, “Methods for generating and
applying pharmacophore models as virtual screening filters
and for bioactivity profiling,” Methods, vol. 71, pp. 113–134,
2015.

[82] T. Klabunde, C. Giegerich, and A. Evers, “Sequence-derived
three-dimensional pharmacophore models for G-protein-
coupled receptors and their application in virtual screening,”
Journal of Medicinal Chemistry, vol. 52, no. 9, pp. 2923–2932,
2009.

[83] D. Barnum, J. Greene, A. Smellie, and P. Sprague, “Identifica-
tion of common functional configurations among mole-
cules,” Journal of Chemical Information and Computer
Sciences, vol. 36, no. 3, pp. 563–571, 1996.

[84] G. Wolber and T. Langer, “LigandScout: 3-D pharmaco-
phores derived from protein-bound ligands and their use as
virtual screening filters,” Journal of Chemical Information
and Modeling, vol. 45, no. 1, pp. 160–169, 2005.

[85] Y. C. Martin, Distance comparisons: a new strategy for exam-
ining three-dimensional structure—activity relationships,
ACS Publications, 1995.

[86] D. Schneidman-Duhovny, O. Dror, Y. Inbar, R. Nussinov,
and H. J. Wolfson, “PharmaGist: a webserver for ligand-
based pharmacophore detection,” Nucleic Acids Research,
vol. 36, no. Web Server, pp. W223–W228, 2008.

[87] X. Liu, S. Ouyang, B. Yu et al., “PharmMapper server: a web
server for potential drug target identification using

15BioMed Research International



pharmacophore mapping approach,” Nucleic Acids Research,
vol. 38, suppl_2, pp. W609–W614, 2010.

[88] D. R. Koes and C. J. Camacho, “Pharmer: efficient and exact
pharmacophore search,” Journal of Chemical Information
and Modeling, vol. 51, no. 6, pp. 1307–1314, 2011.

[89] S. L. Dixon, A. M. Smondyrev, and S. N. Rao, “PHASE: a
novel approach to pharmacophore modeling and 3D data-
base searching,” Chemical Biology & Drug Design, vol. 67,
no. 5, pp. 370–372, 2006.

[90] D. R. Koes and C. J. Camacho, “ZINCPharmer: pharmaco-
phore search of the ZINC database,” Nucleic Acids Research,
vol. 40, no. W1, pp. W409–W414, 2012.

[91] G. Jones, P. Willett, and R. C. Glen, “A genetic algorithm for
flexible molecular overlay and pharmacophore elucidation,”
Journal of Computer-Aided Molecular Design, vol. 9, no. 6,
pp. 532–549, 1995.

[92] J. O. Ebalunode, Z. Ouyang, J. Liang, and W. Zheng, “Novel
approach to structure-based pharmacophore search using
computational geometry and shape matching techniques,”
Journal of Chemical Information and Modeling, vol. 48,
no. 4, pp. 889–901, 2008.

[93] M. P. A. Sanders, S. Verhoeven, C. de Graaf et al., “Snooker: a
structure-based pharmacophore generation tool applied to
class a GPCRs,” Journal of Chemical Information and Model-
ing, vol. 51, no. 9, pp. 2277–2292, 2011.

[94] J. Chen and L. Lai, “Pocket v.2: Further Developments on
receptor-based pharmacophore modeling,” Journal of Chem-
ical Information and Modeling, vol. 46, no. 6, pp. 2684–2691,
2006.

[95] N. J. Richmond, C. A. Abrams, P. R. N. Wolohan,
E. Abrahamian, P. Willett, and R. D. Clark, “GALAHAD: 1.
Pharmacophore identification by hypermolecular alignment
of ligands in 3D,” Journal of Computer-Aided Molecular
Design, vol. 20, no. 9, pp. 567–587, 2006.

[96] A. Cherkasov, E. N. Muratov, D. Fourches et al., “QSAR
modeling: where have you been? Where are you going to?,”
Journal of Medicinal Chemistry, vol. 57, no. 12, pp. 4977–
5010, 2014.

[97] H. M. Patel, M. N. Noolvi, P. Sharma et al., “Quantitative
structure–activity relationship (QSAR) studies as strategic
approach in drug discovery,” Medicinal Chemistry Research,
vol. 23, no. 12, pp. 4991–5007, 2014.

[98] H. Li, J. Sutter, and R. Hoffmann, “Hypo Gen: an automated
system for generating 3D predictive pharmacophore
models,” Pharmacophore Perception, Development, and Use
in Drug Design, vol. 2, p. 171, 2000.

[99] R. D. Cramer, D. E. Patterson, and J. D. Bunce, “Comparative
molecular field analysis (CoMFA). 1. Effect of shape on bind-
ing of steroids to carrier proteins,” Journal of the American
Chemical Society, vol. 110, no. 18, pp. 5959–5967, 1988.

[100] G. Klebe, U. Abraham, and T. Mietzner, “Molecular similar-
ity indices in a comparative analysis (CoMSIA) of drug mol-
ecules to correlate and predict their biological activity,”
Journal of Medicinal Chemistry, vol. 37, no. 24, pp. 4130–
4146, 1994.

[101] C.W. Yap, “PaDEL-descriptor: an open source software to cal-
culatemolecular descriptors and fingerprints,” Journal of Com-
putational Chemistry, vol. 32, no. 7, pp. 1466–1474, 2011.

[102] A. R. Katritzky, R. Petrukhin, H. Yang, and M. Karelson,
CODESSA PRO, User’s manual. University of Florida, Flor-
ida, 2002.

[103] L. Wang, J. Ding, L. Pan, D. Cao, H. Jiang, and X. Ding, “Arti-
ficial intelligence facilitates drug design in the big data era,”
Chemometrics and Intelligent Laboratory Systems, vol. 194,
article 103850, 2019.

[104] L. Patel, T. Shukla, X. Huang, D. W. Ussery, and S. Wang,
“Machine learning methods in drug discovery,” Molecules,
vol. 25, no. 22, p. 5277, 2020.

[105] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[106] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[107] C. Sammut and G. I. Webb, Naïve Bayes BT-Encyclopedia of
Machine Learning, Springer Science & Business Media, 2010.

[108] P. P. Roy, J. T. Leonard, and K. Roy, “Exploring the impact of
size of training sets for the development of predictive QSAR
models,” Chemometrics and Intelligent Laboratory Systems,
vol. 90, no. 1, pp. 31–42, 2008.

[109] T. R. Stouch, J. R. Kenyon, S. R. Johnson, X.-Q. Chen,
A. Doweyko, and Y. Li, “In silico ADME/Tox: why models
fail,” Journal of Computer-Aided Molecular Design, vol. 17,
no. 2/4, pp. 83–92, 2003.

[110] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik,
“Deep neural nets as a method for quantitative structure–
activity relationships,” Journal of Chemical Information and
Modeling, vol. 55, no. 2, pp. 263–274, 2015.

[111] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[112] M. Davies, M. Nowotka, G. Papadatos et al., “ChEMBL web
services: streamlining access to drug discovery data and util-
ities,” Nucleic Acids Research, vol. 43, no. W1, pp. W612–
W620, 2015.

[113] V. Rotemberg, A. Halpern, S. Dusza, and N. C. Codella, “The
role of public challenges and data sets towards algorithm
development, trust, and use in clinical practice,” Seminars
in Cutaneous Medicine and Surgery, vol. 38, no. 1, pp. E38–
E42, 2019.

[114] N. Zhu, D. Zhang, W.Wang et al., “A novel coronavirus from
patients with pneumonia in China, 2019,” New England Jour-
nal of Medicine, vol. 382, no. 8, pp. 727–733, 2020.

[115] C. Gil, T. Ginex, I. Maestro et al., “COVID-19: Drug targets
and potential treatments,” Journal of Medicinal Chemistry,
vol. 63, no. 21, pp. 12359–12386, 2020.

[116] S. Ullrich and C. Nitsche, “The SARS-CoV-2 main protease
as drug target,” Bioorganic & Medicinal Chemistry Letters,
vol. 30, no. 17, article 127377, 2020.

[117] L. Zhang, D. Lin, X. Sun et al., “Crystal structure of SARS-
CoV-2 main protease provides a basis for design of improved
α-ketoamide inhibitors,” Science, vol. 368, no. 6489, pp. 409–
412, 2020.

[118] J. Osipiuk, S.-A. Azizi, S. Dvorkin et al., “Structure of papain-
like protease from SARS-CoV-2 and its complexes with non-
covalent inhibitors,” Nature Communications, vol. 12, no. 1,
pp. 1–9, 2021.

[119] D. Shin, R. Mukherjee, D. Grewe et al., “Papain-like protease
regulates SARS-CoV-2 viral spread and innate immunity,”
Nature, vol. 587, no. 7835, pp. 657–662, 2020.

[120] J. Ahmad, S. Ikram, F. Ahmad, I. U. Rehman, and
M. Mushtaq, “SARS-CoV-2 RNA Dependent RNA polymer-
ase (RdRp) - A drug repurposing study,”Heliyon, vol. 6, no. 7,
article e04502, 2020.

16 BioMed Research International



[121] Y. Wang, V. Anirudhan, R. Du, Q. Cui, and L. Rong, “RNA‐
dependent RNA polymerase of SARS-CoV-2 as a therapeutic
target,” Journal of Medical Virology, vol. 93, no. 1, pp. 300–
310, 2021.

[122] R. Ulferts and J. Ziebuhr, “Nidovirus ribonucleases: struc-
tures and functions in viral replication,” RNA Biology,
vol. 8, no. 2, pp. 295–304, 2011.

[123] Y. Kim, H. Y. Hwang, E. S. Ji, J. Y. Kim, J. S. Yoo, and H. J.
Kwon, “Activation of mitochondrial TUFM ameliorates met-
abolic dysregulation through coordinating autophagy induc-
tion,” Communications Biology, vol. 4, no. 1, pp. 1–11, 2021.

[124] M. A. El Hassab, T. M. Ibrahim, S. T. Al-Rashood, A. Alharbi,
R. O. Eskandrani, andW.M. Eldehna, “In silico identification
of novel SARS-COV-2 2′-O-methyltransferase (nsp16)
inhibitors: structure-based virtual screening, molecular
dynamics simulation and MM-PBSA approaches,” Journal
of Enzyme Inhibition and Medicinal Chemistry, vol. 36,
no. 1, pp. 727–736, 2021.

[125] T. Shu, M. Huang, D.Wu et al., “SARS-Coronavirus-2 Nsp 13
possesses NTPase and RNA helicase activities that can be
inhibited by bismuth salts,” Virologica Sinica, vol. 35, no. 3,
pp. 321–329, 2020.

[126] G. Ragia and V. G. Manolopoulos, “Inhibition of SARS-CoV-
2 entry through the ACE2/TMPRSS2 pathway: a promising
approach for uncovering early COVID-19 drug therapies,”
European Journal of Clinical Pharmacology, vol. 76, no. 12,
pp. 1623–1630, 2020.

[127] C. Wu, M. Zheng, Y. Yang et al., “Furin: a potential therapeu-
tic target for COVID-19,” Iscience, vol. 23, no. 10, article
101642, 2020.

[128] T. Liu, S. Luo, P. Libby, and G.-P. Shi, “Cathepsin L-selective
inhibitors: a potentially promising treatment for COVID-19
patients,” Pharmacology & Therapeutics, vol. 213, article
107587, 2020.

[129] C. Selvaraj, D. C. Dinesh, U. Panwar, R. Abhirami, E. Boura,
and S. K. Singh, “Structure-based virtual screening and
molecular dynamics simulation of SARS-CoV-2 guanine-
N7 methyltransferase (nsp 14) for identifying antiviral inhib-
itors against COVID-19,” Journal of Biomolecular Structure
and Dynamics, pp. 1–12, 2021.

[130] T. Gao, Y. Gao, X. Liu et al., “Identification and functional
analysis of the SARS-COV-2 nucleocapsid protein,” BMC
Microbiology, vol. 21, no. 1, p. 58, 2021.

[131] B. R. Beck, B. Shin, Y. Choi, S. Park, and K. Kang, “Predicting
commercially available antiviral drugs that may act on the
novel coronavirus (SARS-CoV-2) through a drug-target
interaction deep learning model,” Computational and Struc-
tural Biotechnology Journal, vol. 18, pp. 784–790, 2020.

[132] A. A. Elfiky, “SARS-CoV-2 RNA dependent RNA polymerase
(RdRp) targeting: an in silico perspective,” Journal of Biomo-
lecular Structure and Dynamics, vol. 39, no. 9, pp. 3204–3212,
2021.

[133] A. D. Elmezayen and K. Yelekçi, “Homology modeling andin
silicodesign of novel and potential dual-acting inhibitors of
human histone deacetylases HDAC5 and HDAC9 isozymes,”
Journal of Biomolecular Structure and Dynamics, pp. 1–19,
2020.

[134] S. Das, S. Sarmah, S. Lyndem, and A. Singha Roy, “An inves-
tigation into the identification of potential inhibitors of
SARS-CoV-2 main protease using molecular docking study,”
Journal of Biomolecular Structure and Dynamics, pp. 1–11,
2020.

[135] A. B. Gurung, M. A. Ali, J. Lee, M. A. Farah, and K. M. Al-
Anazi, “Unravelling lead antiviral phytochemicals for the
inhibition of SARS-CoV-2 Mpro enzyme through in silico
approach,” Life Sciences, vol. 255, article 117831, 2020.

[136] R. S. Joshi, S. S. Jagdale, S. B. Bansode et al., “Discovery of
potential multi-target-directed ligands by targeting host-
specific SARS-CoV-2 structurally conserved main protease,”
Journal of Biomolecular Structure and Dynamics, vol. 39,
no. 9, pp. 1–16, 2020.

[137] H. M. Wahedi, S. Ahmad, and S. W. Abbasi, “Stilbene-based
natural compounds as promising drug candidates against
COVID-19,” Journal of Biomolecular Structure and Dynam-
ics, vol. 39, no. 9, pp. 3225–3234, 2021.

[138] S. A. Khan, K. Zia, S. Ashraf, R. Uddin, and Z. Ul-Haq, “Iden-
tification of chymotrypsin-like protease inhibitors of SARS-
CoV-2 via integrated computational approach,” Journal of
Biomolecular Structure and Dynamics, vol. 39, no. 7,
pp. 2607–2616, 2020.

[139] C. Mouffouk, S. Mouffouk, S. Mouffouk, L. Hambaba, and
H. Haba, “Flavonols as potential antiviral drugs targeting
SARS-CoV-2 proteases (3CLpro and PLpro), spike protein,
RNA-dependent RNA polymerase (RdRp) and angiotensin-
converting enzyme II receptor (ACE2),” European Journal
of Pharmacology, vol. 891, article 173759, 2021.

[140] D. Umesh, C. Kundu, C. Selvaraj, S. K. Singh, and V. K.
Dubey, “Identification of new anti-nCoV drug chemical com-
pounds from Indian spices exploiting SARS-CoV-2 main
protease as target,” Journal of Biomolecular Structure and
Dynamics, vol. 39, no. 9, pp. 3428–3434, 2021.

[141] I. Abdelli, F. Hassani, S. Bekkel Brikci, and S. Ghalem, “In sili-
costudy the inhibition of angiotensin converting enzyme 2
receptor of COVID-19 byAmmoides verticillatacomponents
harvested from western Algeria,” Journal of Biomolecular
Structure and Dynamics, vol. 39, no. 9, pp. 3263–3276, 2021.

[142] K. Al-Khafaji, D. Al-Duhaidahawi, and T. Taskin Tok,
“Using integrated computational approaches to identify safe
and rapid treatment for SARS-CoV-2,” Journal of Biomolecu-
lar Structure and Dynamics, vol. 39, no. 9, pp. 1–9, 2020.

[143] K. A. Peele, C. Potla Durthi, T. Srihansa et al., “Molecular
docking and dynamic simulations for antiviral compounds
against SARS-CoV-2: a computational study,” Informatics
in Medicine Unlocked, vol. 19, article 100345, 2020.

[144] J. Wang, “Fast identification of possible drug treatment of
coronavirus disease-19 (COVID-19) through computational
drug repurposing study,” Journal of Chemical Information
and Modeling, vol. 60, no. 6, pp. 3277–3286, 2020.

[145] L. Mittal, A. Kumari, M. Srivastava, M. Singh, and S. Asthana,
“Identification of potential molecules against COVID-19
main protease through structure-guided virtual screening
approach,” Journal of Biomolecular Structure and Dynamics,
vol. 39, no. 10, pp. 3662–3680, 2021.

[146] M. Kandeel and M. Al-Nazawi, “Virtual screening and repur-
posing of FDA approved drugs against COVID-19 main pro-
tease,” Life Sciences, vol. 251, article 117627, 2020.

[147] M. Tahir ul Qamar, S. M. Alqahtani, M. A. Alamri, and L. L.
Chen, “Structural basis of SARS-CoV-2 3CLpro and anti-
COVID-19 drug discovery from medicinal plants,” Journal
of Pharmaceutical Analysis, vol. 10, no. 4, pp. 313–319, 2020.

[148] R. Islam, R. Parves, A. S. Paul et al., “A molecular modeling
approach to identify effective antiviral phytochemicals
against the main protease of SARS-CoV-2,” Journal of

17BioMed Research International



Biomolecular Structure and Dynamics, vol. 39, no. 9, pp. 1–
12, 2020.

[149] S. Beura and P. Chetti, “In-silico strategies for probing chlo-
roquine based inhibitors against SARS-CoV-2,” Journal of
Biomolecular Structure and Dynamics, vol. 39, no. 10,
pp. 3747–3759, 2021.

[150] S. Mahanta, P. Chowdhury, N. Gogoi et al., “Potential anti-
viral activity of approved repurposed drug against main pro-
tease of SARS-CoV-2: anin silicobased approach,” Journal of
Biomolecular Structure and Dynamics, vol. 39, no. 10,
pp. 3802–3811, 2021.

[151] S. K. Enmozhi, K. Raja, I. Sebastine, and J. Joseph, “Andro-
grapholide as a potential inhibitor of SARS-CoV-2 main pro-
tease: an in silico approach,” Journal of Biomolecular
Structure and Dynamics, vol. 39, no. 9, pp. 3092–3098, 2021.

[152] S. Kumar, P. P. Sharma, U. Shankar et al., “Discovery of new
hydroxyethylamine analogs against 3CLproProtein target of
SARS-CoV-2: molecular docking, molecular dynamics Simu-
lation, and structure-activity relationship studies,” Journal of
Chemical Information and Modeling, vol. 60, no. 12,
pp. 5754–5770, 2020.

[153] K. G. Arun, C. S. Sharanya, J. Abhithaj, D. Francis, and
C. Sadasivan, “Drug repurposing against SARS-CoV-2 using
E-pharmacophore based virtual screening, molecular dock-
ing and molecular dynamics with main protease as the tar-
get,” Journal of Biomolecular Structure and Dynamics, pp.
1–12, 2020.

[154] D. Gentile, V. Patamia, A. Scala, M. T. Sciortino, A. Piperno,
and A. Rescifina, “Putative Inhibitors of SARS-CoV-2 Main
Protease from A Library of Marine Natural Products: A Vir-
tual Screening and Molecular Modeling Study,” Marine
Drugs, vol. 18, no. 4, p. 225, 2020.

[155] S. A. Amin, K. Ghosh, S. Gayen, and T. Jha, “Chemical-infor-
matics approach to COVID-19 drug discovery: Monte Carlo
based QSAR, virtual screening and molecular docking study
of some in-house molecules as papain-like protease (PLpro)
inhibitors,” Journal of Biomolecular Structure and Dynamics,
pp. 1–10, 2020.

[156] K. Ghosh, S. A. Amin, S. Gayen, and T. Jha, “Chemical-infor-
matics approach to COVID-19 drug discovery: exploration of
important fragments and data mining based prediction of
some hits from natural origins as main protease (Mpro)
inhibitors,” Journal of Molecular Structure, vol. 1224, article
129026, 2020.

[157] W. Y. Law,M. R. Asaruddin, S. A. Bhawani, and S. Mohamad,
“Pharmacophore modelling of vanillin derivatives, favipira-
vir, chloroquine, hydroxychloroquine, monolaurin and tetro-
dotoxin as M pro inhibitors of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2),” BMC Research
Notes, vol. 13, no. 1, pp. 1–8, 2020.

[158] S. Daoud, S. J. Alabed, and L. A. Dahabiyeh, “Identification of
potential COVID-19 main protease inhibitors using
structure-based pharmacophore approach, molecular dock-
ing and repurposing studies,” Acta Pharmaceutica, vol. 71,
no. 2, pp. 163–174, 2020.

[159] S. Skariyachan, D. Gopal, S. Chakrabarti et al., “Structural
and molecular basis of the interaction mechanism of selected
drugs towards multiple targets of SARS-CoV-2 by molecular
docking and dynamic simulation studies- deciphering the
scope of repurposed drugs,” Computers in Biology and Medi-
cine, vol. 126, article 104054, 2020.

[160] K. Uzunova, E. Filipova, V. Pavlova, and T. Vekov, “Insights
into antiviral mechanisms of remdesivir, lopinavir/ritonavir
and chloroquine/hydroxychloroquine affecting the new
SARS-CoV-2,” Biomedicine & Pharmacotherapy, vol. 131,
article 110668, 2020.

[161] S. K. Singh, A. K. Upadhyay, and M. S. Reddy, “Screening of
potent drug inhibitors against SARS-CoV-2 RNA polymer-
ase: an in silico approach,” 3 Biotech, vol. 11, no. 2, pp. 1–
13, 2021.

[162] S. Gowrishankar, S. Muthumanickam, A. Kamaladevi et al.,
“Promising phytochemicals of traditional Indian herbal
steam inhalation therapy to combat COVID-19 - an in silico
study,” Food and Chemical Toxicology, vol. 148, p. 111966,
2021.

[163] M. A. A. Ibrahim, A. H. M. Abdelrahman, K. S. Allemailem,
A. Almatroudi, M. F. Moustafa, and M.-E. F. Hegazy, “In
silico evaluation of prospective anti-COVID-19 drug candi-
dates as potential SARS-CoV-2 main protease inhibitors,”
The Protein Journal, pp. 1–14, 2021.

[164] A. T. Onawole, K. O. Sulaiman, T. U. Kolapo, F. O. Akinde,
and R. O. Adegoke, “COVID-19: CADD to the rescue,” Virus
Research, vol. 285, article 198022, 2020.

[165] S. C. Basak and L. B. Kier, “COVID-19 pandemic: how can
computer-assisted methods help to rein in this global men-
ace?,” Current Computer-Aided Drug Design, vol. 17, no. 1,
p. 1, 2021.

[166] T. Sharma, M. Abohashrh, M. H. Baig et al., “Screening of
drug databank against WT and mutant main protease of
SARS-CoV-2: towards finding potential compound for
repurposing against COVID-19,” Saudi Journal of Biological
Sciences, vol. 28, no. 5, pp. 3152–3159, 2021.

[167] P. K. Ojha, S. Kar, J. G. Krishna, K. Roy, and J. Leszczynski,
“Therapeutics for COVID-19: from computation to practi-
ces—where we are, where we are heading to,” Molecular
Diversity, vol. 25, pp. 625–659, 2020.

[168] A. Keshavarzi Arshadi, J. Webb, M. Salem et al., “Artificial
intelligence for COVID-19 drug discovery and vaccine devel-
opment,” Frontiers in Artificial Intelligence, vol. 3, p. 65, 2020.

18 BioMed Research International


	An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19
	1. Introduction
	2. Structure-Based Drug Design
	2.1. Preparation of the Target Structure
	2.2. Identification of the Ligand Binding Site
	2.3. Compound Library Preparation
	2.4. Molecular Docking and Scoring Functions
	2.5. Molecular Dynamic (MD) Simulation

	3. Ligand-Based Drug Design
	3.1. Pharmacophore Modeling
	3.2. Quantitative Structure-Activity Relationships (QSARs)
	3.3. Artificial Intelligence and Drug Discovery

	4. Case Study of COVID-19
	5. Strengths and Challenges of CADD in COVID-19 Research
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

