
 Open access  Journal Article  DOI:10.1038/NRENDO.2016.193

An updated view of hypothalamic–vascular–pituitary unit function and plasticity
— Source link 

Paul Le Tissier, Pauline Campos, Pauline Campos, Pauline Campos ...+9 more authors

Institutions: University of Edinburgh, French Institute of Health and Medical Research, University of Montpellier,
Centre national de la recherche scientifique ...+2 more institutions

Published on: 01 May 2017 - Nature Reviews Endocrinology (Nature Publishing Group)

Topics: Neuroendocrinology, Pituitary gland, Anterior pituitary and Hypothalamus

Related papers:

 Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function.

 Anterior pituitary cell networks.

 Existence of long-lasting experience-dependent plasticity in endocrine cell networks

 Ion Channels and Signaling in the Pituitary Gland

 Related pituitary cell lineages develop into interdigitated 3D cell networks

Share this paper:    

View more about this paper here: https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-
2d24m6dun7

https://typeset.io/
https://www.doi.org/10.1038/NRENDO.2016.193
https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7
https://typeset.io/authors/paul-le-tissier-1ci1f6p2yu
https://typeset.io/authors/pauline-campos-3lixz9c18v
https://typeset.io/authors/pauline-campos-3lixz9c18v
https://typeset.io/authors/pauline-campos-3lixz9c18v
https://typeset.io/institutions/university-of-edinburgh-1ow1wfk0
https://typeset.io/institutions/french-institute-of-health-and-medical-research-1ov9c83o
https://typeset.io/institutions/university-of-montpellier-ckz1qiox
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/nature-reviews-endocrinology-1vhbwn9n
https://typeset.io/topics/neuroendocrinology-9pcyazem
https://typeset.io/topics/pituitary-gland-cd6pqjy2
https://typeset.io/topics/anterior-pituitary-w6c0japo
https://typeset.io/topics/hypothalamus-pemcvb33
https://typeset.io/papers/cellular-in-vivo-imaging-reveals-coordinated-regulation-of-29t5qpq2ci
https://typeset.io/papers/anterior-pituitary-cell-networks-488wu7wf8t
https://typeset.io/papers/existence-of-long-lasting-experience-dependent-plasticity-in-145fksb1z9
https://typeset.io/papers/ion-channels-and-signaling-in-the-pituitary-gland-qq5agw6qpn
https://typeset.io/papers/related-pituitary-cell-lineages-develop-into-interdigitated-3a7pf1lwh7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7
https://twitter.com/intent/tweet?text=An%20updated%20view%20of%20hypothalamic%E2%80%93vascular%E2%80%93pituitary%20unit%20function%20and%20plasticity&url=https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7
https://typeset.io/papers/an-updated-view-of-hypothalamic-vascular-pituitary-unit-2d24m6dun7


 
 

University of Birmingham

An updated view of
hypothalamic–vascular–pituitary unit function and
plasticity
Le Tissier, Paul; Campos, Pauline; Lafont, Chrystel; Romano, Nicola; Hodson, David;
Mollard, Patrice

DOI:
10.1038/nrendo.2016.193

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Le Tissier, P, Campos, P, Lafont, C, Romano, N, Hodson, D & Mollard, P 2017, 'An updated view of
hypothalamic–vascular–pituitary unit function and plasticity', Nature Reviews Endocrinology, vol. 13, pp. 257-
267. https://doi.org/10.1038/nrendo.2016.193

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the accepted manuscript before final editorial and formatting changes were carried out. The final version of record is available at:
http://dx.doi.org/10.1038/nrendo.2016.193

Checked for eligibility: 05/09/2016.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 31. May. 2022

https://doi.org/10.1038/nrendo.2016.193
https://doi.org/10.1038/nrendo.2016.193
https://birmingham.elsevierpure.com/en/publications/d04011a6-a981-4b7a-aa49-f7e981e8391a


 

A 21
st
 century perspective on hypothalamic–vascular–pituitary unit function  

[Au: our journal style is to write 21
st
 century in full as ‘twenty first’, which would take 

the title over the length limits for this type of article. We also use ‘perspective’ for a 

specific opinion-based article. To reduce the length of the title and avoid the use of 

perspective, I suggest the following title modification:  

“An updated view of hypothalamic–vascular–pituitary unit function”. OK?] 

[Au: you use a mixture of hypothalmo and hypothalamic in the main text. I suggested 

consistently using on hypothalamic, changes throughout main text also OK?] 
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Abstract [Au: edits OK?] 

The discovery of novel functional adaptations of the hypothalamus and anterior pituitary 

gland for physiological regulation has transformed our understanding their interaction. The 

activity of a small number of hypothalamic neurons can control complex hormonal signalling, 

which is disconnected from a simple stimulus and subsequent hormone secretion relationship 

but is dependent on physiological status. The interrelationship of hypothalamic neurons and 

pituitary cells with the vasculature has an important role in determining the pattern of 

neurohormone exposure. Cell in the pituitary gland form networks with distinct organizational 

motifs that are related to the duration and pattern of output. These networds are modified in 

different physiological states and can persist after cessation of demand, which results in 

enhanced function [Au: edit OK?]. Consequently, the hypothalamus and pituitary can no 

longer be considered as having a simple stratified relationship: they form a tripartite system 

with the vasculature, which must function in concert for appropriate hypothalamic regulation 

of physiological processes, in particular reproduction [Au: edit OK? I think it’s important 

mailto:Paul.LeTissier@ed.ac.uk
mailto:patrice.mollard@igf.cnrs.fr


to mention reproduction in the abstract here]. An improved understanding of the 

mechanisms underlying these regulatory features has implications for current and future 

therapies that correct defects in the hypothalamic–pituitary axis. In addition, recapitulating 

proper network organization will be an important challenge for regenerative stem cell 

treatment. 

[Au:For your information, H1 and H3 refer to the level of heading and will be removed 

before proofs are made. H1 subheadings can have max 38 characters inc spaces. H3 

subheads can be of any length. Subheads have been edited to fit these limits, where 

indicated] 

[Au: I think the Review would benefit from a figures introducing the basics of the 

concepts you discuss. I think this will be important to increase the impact of the 

paper, and for our less informed readers who are endocrinologists, but not particularly 

familiar with the neuroendocrine aspects. I have included the details of the figures you 

might wish to consider adding at the end of this document. I have also indicated in the 

main text where I think new figures might be useful additions. When you submit your 

revisions, please submit any new figures and I will work with our art editor to generate 

the first versions. We can revise these before making the final proof. If you wish to 

discuss these in greater detail before submitting, please do not hesitate to contact me] 

[H1] Introduction [Au: I have moved the second section (originally called 

‘Hypothalamic–pituitary axes’ of your original draft to here to serve as an introduction 

(the opening section is always titled ‘Introduction’ in our style guide). I think this text is 

more appropriate here and sets up the rest of the article nicely. Please also include the 

appropriate references in this section] 

To maximize reproductive success, via the appropriate timing of ovulation, lactation or body 

growth, the output of several hypothalamic–pituitary axes are dramatically altered  [Au: edit 

OK?]. These adaptive changes occur over differing time scales, with varying frequencies and 

levels of predictability [Au: is there a general review you can cite here?]. For example, the 

increase in growth hormone (GH) output at puberty is largely predictable [Au: meaning the 

levels are predictable or simply that it occurs?]. On a relatively short time scale [Au: 

meaning measured in days?], the surge in luteinizing hormone (LH) secretion required for 

oestrus is an acute change that occurs regularly once every reproductive cycle and, in humans, 

continues for years in the absence of pregnancy. On a longer time scale [Au: meaning 

months/years?], the increase in prolactin required for lactation is maintained for a variable 

time (which depends on when offspring are weaned) and recurs at each pregnancy, but is 

unpredictable before gestation [Au: edit OK to avoid repetition of ‘pregnancy’?]. These 

large changes in output require modification of both hypothalamic and pituitary function, but 

are reversed after pregnancy, which  likely reflects the fact that these processes need to be 



repeated in subsequent pregnancies [Au: edit OK is this what you?]. A mechanistic 

understanding of these alterations in hypothalamic–pituitary function is fundamental to 

interpret and treat defects that lead to endocrine diseases [Au: please be more specific here 

as to the diseases you mean in this context to set the scene for your review]. In this 

Review, we will focus on three pituitary axes that have roles in driving changes in 

physiology; the gonadatropin, prolactin and growth hormone axes [Au: addition OK?]. The 

level of our understanding varies for each of these axes and  the features that might serve as 

general principles will be highlighted in the text [Au: edit OK?].  

 

[H1] Beyond stimulus-secretion coupling [Au: I think you could include a simple figure 

in this section on stimulus-secretion as an addition to BOX 1.  And based on the 

summary figure you have already submitted. I think these concepts will work well in 

graphical form for our less informed readers] 

The speed of communication between the brain and peripheral tissues is highlighted by 

muscle contraction, which requires the transfer of electrical signals from axons via the 

neuromuscular junction [Au: edit OK? Is this what you mean here?]. This sequence of 

events, known as excitation-contraction coupling
1
, takes <1 s in mammals and is highly 

plastic [Au: please elaborate on what you mean by plastic in this instance]. Similarly, in 

the hypothalamus just a few thousand neurons can also send signals to the periphery, in this 

case toward the median eminence (ME) via a specialized neurohaemal junction [Au: edits 

OK?]. Here, nerve terminal depolarization, either originating from the perikarya
2
 or the 

terminal itself
3
, allows the sufficiently rapid entry of calcium ions to trigger exocytosis of 

neurohormones towards the first loop of the portal fenestrated capillaries [Au: please 

reference this statement here]. This rapid (< 1 s) sequence of events was termed ‘stimulus-

secretion coupling’ due to the clear similarities with excitation-contraction coupling
4,5

. Soon 

after release, neurohormones pervade the second loop of fenestrated capillaries within the 

downstream pituitary gland, before binding to cognate receptors on endocrine cells to induce 

pituitary hormone exocytosis through a second ‘stimulus-secretion coupling’ event
6-9

.  [Au: I 

think here might be a nice place to include a figure detailing these events for our less 

informed readers. A simple outline/schematic would be sufficient and that will set the 

scene for understanding the different axes later in the text] 

In the second half of the twentieth century (and building on Harris’ work on the 

hypothalamus–pituitary axis [Au: please reference this statement with a reference to 



Harris’ work for our less informed readers]) the analogy between excitation-contraction 

and stimulus-secretion coupling was developed further [Au: edit OK?]
10

. However, 

important and fundamental differences exist between the two processes. Specifically, in the 

hypothalamus, endogenous [Au: circadian] rhythms exist and the time scale for pituitary 

hormone release is much longer (measured in minutes to several hours) [Au: edit OK? 

Please reference this statement]. Nevertheless, the analogy with neural control of locomotor 

activity led to a generally accepted model of hypothalamic regulation of pituitary function. 

Specifically, the excitation of specific hypothalamic neuron populations, determined by 

higher brain centres and peripheral feedback, is relayed as an unmodified series of signals to 

drive balanced pituitary hormone output [Au: please reference this statement]. The release 

of neurohormones and subsequent transportation and the effects on target cells were 

previously considered to be passive events in the regulation of pituitary hormone secretion, 

with only variation in the number of endocrine cells seeming to affect response levels
11,12

. 

Similarly, the alterations in gene expression and cell proliferation, which support maintenance 

of hormone output, were simply considered a correlated response to hypothalamic regulation 

of secretion [Au: please reference this statement].  

In the early twentyfirst century, a series of paradigm shifts in our understanding of the 

hypothalamic–pituitary system was established as a consequence of newly developed tools 

and techniques [Au: such as?] for use in genetically modified mice [Au: please reference 

this statement with some examples]. The use of these methods have shown that both the 

pituitary gland and portal system can no longer be considered as static structures simply 

responding to neurohormonal regulation (BOX 1) [Au: edits OK to shorten sentence? I 

think the text box should be cited later in the text as more of a summary section]. In 

addition, hypothalamic neuron function has been found to be more dynamic than initially 

thought, which might, rather than changes in excitation, contribute to modifications in its 

regulation of the pituitary under different physiological states [Au: edit OK? Please 

reference this statement].  

 

 [H1] Gonadotroph axis 

The reproductive system is critically dependent upon pulsatile secretion of gonadotrophin-

releasing hormone (GnRH) and LH; however, the understanding of pulse generation has been 

hampered by the complexity of the regulatory mechanisms, many of which are lost in in vitro 

preparations [Au: please include the references here also as examples]. Investigators 



working in the late 1980s using pituitary portal bleeding and microdialysis documented the 

pulsatile nature of GnRH release into the portal vasculature of the sheep, monkey and rat
25-31

, 

and showed a strong correlation between GnRH and LH pulses
28,32,33

. However, the scattered 

distribution and relative paucity of GnRH cell bodies limited the investigation of the cellular 

events that lead to pulsatile secretion of LH in vivo. In the past few years, the development of 

optogenetic techniques in rats and mice and an ultra-sensitive ELISA capable of measuring 

LH levels in small whole blood samples
34

 has enables investigators to dissect the GnRH 

neuron excitation parameters that generate LH pulses
35

. In these studies, the stimulation of 

just 60 GnRH neurons can trigger short-lived increases in LH secretion that resemble 

endogenous pulses [Au: Edits OK? please reference this statement]. Given the critical 

importance of GnRH neurons to the survival of all mammalian species, a degree of functional 

redundancy within this cell population is expected. Indeed, activating ~5% of the GnRH 

hypophysiotropic neurons seems to be sufficient to generate an LH pulse [Au: please 

reference this statement]. This finding is consistent with studies in which just 10% of the 

GnRH neuron population is sufficient to maintain pulsatile LH secretion
36,37

. When the timing 

and frequency of stimulation is varied a brief (2 min) optogenetic stimulation at high 

frequency (10 Hz) evokes an LH pulse, whereas shorter periods and lower frequencies cannot 

elicit LH output that resembles endogenous pulses
35

. [Au: edit OK?] This finding was also 

the case for a bursting pattern of stimulation [Au: meaning of LH secretion? How is a 

bursting pattern defined in this context?], which had been assumed to be effective for pulse 

generation and the focus of many previous studies
38 

[Au: meaning that this mechanism was 

the only one thought to be necessary of LH output?]. Whether such a stimulatory signal 

exists in situ [Au: meaning within the organism?] and where its origin might be is 

unknown, although a ‘GnRH pulse driver’ might be located in the mediobasal–hypothalamus, 

specifically at the level of neurons co-expressing kisspeptin, neurokinin B, as well as 

dynorphin A (so-called ‘KNDy’ neurons)
39,40

. [Au: Edits OK? perhaps you can expand on 

that specific evidence here for clarify?] 

Pulsatile secretion of GnRH requires synchronization [Au: of the secretion and/or pulsatilty 

itself? What do you mean in this context?] within the GnRH neuron population. While the 

cell bodies of GnRH neurons are scattered throughout the basal forebrain, their projections 

have dendrodendritic bundling, that is they share synapses [Au: edit OK, is this what you 

mean?]
41

, and become highly concentrated around the ME [Au: please reference this 

statement]. Fascinatingly, these projections simultaneously receive and integrate synaptic 



inputs — they possess both axonal and dendritic characteristics, leading to their description as 

‘dendrons’, before finally acquiring an axonal morphology within the ME and ramifying into 

numerous terminals that appose blood vessels
42

. [Au: I think this could be represented in 

the Figure also. It will then also give context to the vasculature aspect of the article] 

Dendrons might be an ideal location for putative afferent axons to modulate the excitability of 

multiple GnRH neuron dendrites, and for multiple GnRH neurons to align their firing pattern, 

which thereby provides a potential mechanism for their synchronized activity directly in the 

mediobasal hypothalamus [Au: is this your opinion?]. An additional source of pulse 

synchronization is in the ME, where hypophysiotropic GnRH neurons terminate within the 

external zone close to endothelial cells of the portal vasculature
43

. Endothelial cells in the ME 

might modulate GnRH release through nitric oxide secretion (which has been reviewed 

elsewhere
44

) [Au: edit OK? I would include some of the original reference here also to 

reduce the nu,ber of other reviews cited]. At the ME, nitric oxide is spontaneously 

released from an endothelial source and follows a pulsatile and cyclic pattern of 

secretion
45

, and inhibition of nitric oxide synthesis [Au: by local do you mean specifically 

in the ME or a wider area?] can disrupt reproductive cyclicity
46

. Conversely, in the GnRH 

neuron perikarya, basal nitric oxide synthase activity might provide the tonic inhibition of the 

GnRH neural system required to maintain nadir levels of LH [Au: edit OK?] 
47

. [Au: this 

mechanism to be represented in the figure also?] 

Once released into the ME, the transport of GnRH to the pituitary, and the pattern of 

gonadotroph exposure to the neurohormone, have been largely assumed to represent a simple 

linear process [Au: please reference this statement]. However, the use of fluorescent 

tracking using 4 kDa dextran, which mimics the size of most hypothalamic neurohormones, 

has shown that the diffusion processes, both at the level of the ME and the pituitary 

capillaries, are complex and non-linear 
7
. [Au: edit OK?] Consequently, the portal vessel 

network might function as a ‘physical integrator’, enabling neurohormones to be transferred 

from the ME to the gonadotroph within a few seconds [Au: can you cite a reference here?]. 

Once in the blood stream, the moderately rapid clearance rate [Au: can you define this rate 

here?] of LH underlies [Au: meaning it generates it?] the specific asymmetric pulse shape 

of this hormone, which is characterized by a fast increase immediately followed by a slower 

decrease
34

. Importantly, a faithful delivery of the pulsatile pattern of GnRH secretion to the 

pituitary is crucial for gonadotroph function
48 

[Au: please include some of the original key 

references for this finding]. For example, high GnRH pulse frequencies (>1 pulse per h) 



activate LH production, whereas low frequencies (<1 pulse per 2–3 h) preferentially induce 

follicle-stimulating hormone (FSH) synthesis and release
49

. Overall, the intricate relationships 

between pulsatile GnRH release, secretory competency of the pituitary gonadotrophs and 

regulatory mechanisms within the vasculature, generate the rhythmic fluctuations in LH 

secretion.  

[H3] GnRH and LH surge generation 

The GnRH/LH surge mechanism is sex specific and normally occurs only in women 
50-52

 [Au: 

Please include the original references and only one Review here; it might be interesting 

to add a note about when it might occur in men]. During the oestrous cycle, increasing 

concentrations of plasma oestrogen alter feedback to the GnRH neuronal afferent networks 

and gonadotrophs from negative to positive to induce the gonadotrophin surge [Au: please 

reference this statement]. That the oestrogen-responsive kisspeptin neurons in the rostral 

periventricular area of the third ventricle have a critical role in enabling ovulation in rodents 

by activating GnRH neurons is now well accepted 
53

.  Importantly, the relative contribution of 

the hypothalamic and pituitary levels to the oestrogen-induced gonadotropin surge seems to 

be species-dependent, with the latter the predominant mechanism in human and non-human 

primates
54

. In the female sheep, the GnRH surge is composed of high-frequency pulsatile 

events superimposed on a constantly elevated level of GnRH release, although whether the 

surge is driven by a fundamentally altered pattern of GnRH secretion55, or by a simple increase 

in the frequency of pulsatile secretion is unclear [Au: edit OK?]56. This huge increase in GnRH 

secretion continues for a period of 24 h, considerably longer that the duration of the LH surge 

it induces, before returning to a strictly episodic pattern of release
31,55,57

. The firing pattern of 

GnRH neurons needed to generate the GnRH/LH surge is unknown. However, that the 

prolonged firing of an increased number of GnRH neurons is required for the secretion of 

surge levels, compared with that required for a pulse, is a reasonable assumption [Au: edit 

OK? Have I retained your meaning here?]. Indeed, mice with 10% of the normal GnRH 

neuronal content failed to ovulate [Au: meaning 90% were ablated? How so?], but cyclicity 

was restored when approximately 30% of the GnRH population was present 
36,37

.  [Au: please 

include a little more detail of how these studies were conducted] 

In addition to the putative change in GnRH population electrical activity, anatomical changes 

are found within the external zone of the ME where GnRH nerve terminals are ensheathed by 

tanycytes
58,59

. The cellular conformation changes with fluctuating oestrogen profiles 

throughout the oestrous cycle. For example. in rats, semaphorin-7a-dependent structural 



remodelling of tanycytes occurs during the preovulatory surge, resulting in release of the 

engulfed axons and direct access of GnRH nerve terminals to the portal vasculature [Au: 

please reference this statement also]. By contrast, fenestrated endothelial cells of the 

hypothalamic–hypophyseal portal vessels release semaphorin-3A, which is thought to induce 

GnRH neuron axonal growth and sprouting within the ME as a function of the oestrous 

cycle
60

. [Au: also data from rats?] These mechanisms are likely to enable the generation of 

high concentrations of GnRH, which evoke the GnRH/LH surge, to be released into the 

pituitary portal circulation
61-63

. 

Within the pituitary, the distinct network organization of gonadotrophs
14

 and their large scale 

reorganization during puberty
15

 suggests that homotypic cell organisation [Au: meaning the 

cells reorganize according to their type? Please expand on what you mean here. Can this 

be included in the figure?] might have a functional role [Au: in puberty itself?]. However, 

this reorganisation [Au: edit OK? Is this what you mean here?] has not been studied in 

detail in the other pituitary axes to date. Although the dynamic gonadotroph responses at the 

time of the proestrous surge have not yet been described in vivo, static snapshots [Au: 

meaning ‘individual readings’?] in rats and sheep suggest that changes occur in 

gonadotrophin subunit expression, granule distribution and GnRH receptor abundance
64,65

. 

[Au: edit OK?] However, mRNA sequencing of the anterior pituitary glands from women 

[Au: of what age?] reveal that genes regulating [Au: gonadatroph?] secretion, blood 

pressure and cell adhesion were all enriched during proestrus
66

. Likewise, immortalized cell 

lines and cells in pituitary slices both extend cellular processes and increase their cellular 

movement at [Au: stages that replicate puberty?] puberty
15

 and following GnRH 

stimulation
67

. These findings suggest that changes in the relationship of the gonadotroph 

network with the vasculature might modify the secretory response of gonadotrophs
68,69

. [Au: 

edit OK?] 

[H3] Clinical relevance 

The mechanisms that underlie both pulsatile secretion and surge generation of LH have 

important implications for the treatment of infertility in women [Au: edit OK?]. For example, 

polycystic ovarian syndrome (PCOS), the most common anovulatory cause of infertility
70

 and 

affects >100 million women worldwide, is associated with a dysregulation of the normal 

pattern of LH secretion [Au: please reference the latter part of this statement also]. 

Whether the origin of this multi-factorial disorder is at the level of the hypothalamic–pituitary 

axis is unknown
71

, but PCOS is characterized by increases in GnRH pulse frequency [Au: of 

javascript:void(0);


how much? Can this be quantified?] and sensitivity of the pituitary gland to the 

neurohormone
72,73

. Consequently, potential interventions that modify the dynamics of GnRH 

output, its transport to the ME or its actions in the pituitary might have implications for the 

treatment of PCOS [Au: is this opinion?]. This is also the case for congenital 

hypogonadotropic hypogonadism  [Au: we avoid using two letter abbreviations where 

possible. HH removed OK?], which results from a pituitary or a hypothalamic defect with or 

without anosmia [Au: please reference this statement for clarity also]. Several novel gene 

mutations that are associated with this disorder have been identified, including those encoding 

neuropeptides [Au: such as?], transcription factors [Au: such as?] and G-protein coupled 

receptors[Au: such as?] [Au: please give examples here]
74

. To induce female fertility, 

hypogonadotropic hypogonadism of pituitary origin can be reversed by subcutaneous 

injections of FSH followed by human chorionic gonadotrophin or LH to trigger ovulation 

[Au: please reference this statement]. Conversely, hypogonadotropic hypogonadism of 

hypothalamic origin can be treated using GnRH pumps to restore pituitary hormone secretion 

[Au: please reference this statement]. Pulsatile GnRH has the advantage of decreasing the 

risk of multiple pregnancy and ovarian hyperstimulation syndrome
75

. In both situations, the 

pulsatility of GnRH or the rhythmic secretion of FSH and/or [Au: OK?] LH is required to 

obtain sufficient follicular maturation and proper ovulation
76

. Advances in understanding of 

GnRH secretion and its interactions with LH are essential for designing novel, and indeed 

modifying existing, therapies for hypogonadotropic hypogonadism. For example, some 

patients [Au: roughly how many? Is there a % you can include here?] with this disease, 

who are yet to undergo treatment, have transient phases of normal fertility
77 

[Au: edit OK?]. 

The underlying mechanisms and relevant therapeutic interventions to maintain this 

phenomenon might be elucidated by further investigation of pulsatility and rhythmicity [Au: 

edit OK?]. 

 

[H1] The prolactin axis 

The prolactin axis is unique amoung the pituitary hormonal systems, as in men and women 

who have not previously had sexual intercourse, it can be considered a system primed for 

activation by tonically inhibited by hypothalamic dopamine
78

 [Au: edit OK? Is this what 

you mean?]. [Au: ‘In this situation’?] Low concentrations [Au: can this be quantified?] of 

circulating prolactin are maintained by short-loop feedback, with prolactin receptor-mediated 

stimulation of dopamine neuron firing rate leading to an increase in catecholamine 



production
79

 and output
2
. The timescale of the secretory response for prolactin (~10–20 min) 

requires the coordination of multiple neurons [Au: please reference this statement]. 

Specifically, tuberoinfundibular dopamine neurons undergo long-term coordinated changes in 

firing rate, which correlate with episodic secretion [Au: of prolactin?] in mice
2
. [Au: please 

expand on this finding. How do you mean long-term and what are the changes in the 

firing rate? I think you need to include a little more explanation here] Gap junctions and 

local dendritic dopamine release have been proposed to mediate this activity
80,81

, and 

integration of single cell firing rates seems to be involved in the generation of longer DA [Au: 

DA meaning dopamine?] release output events (N. Romano and P. Mollard, unpublished 

data).  

Variations in prolactin output occur in virgin female rats as a surge at proestrus, which 

coincides with that of LH
82

. Prolactin also increases following vaginal stimulation of rodents 

[Au: meaning it is true in mice and rats? Or has this only been shown in rats?] as twice 

daily surges
83

. These surges are coordinated by signals from the suprachiasmatic nucleus
83

, 

most likely through the actions of vasoactive-intestinal peptide
84

. At the level of the pituitary, 

lactotrophs form a network of honeycomb motifs that allow the congregation of cells along 

the fine pituitary capillary network
85

. [Au: can this be represented in a figure summarising 

the Prolactin axis?] This organization supports low levels of cell-cell coordination
16

, with a 

small proportion [Au: how many? Can this be defined?] of cells acting as coordinating 

nodes by functionally connecting distant ensembles [Au: please reference this latter part of 

the statement]. In addition to synchronizing Ca
2+

 activity, cellular organization also mediates 

the coordination of gene transcription
86,87

, with gap junction signalling enabling local 

correlation of bursts of transcriptional activity that are otherwise randomly timed [Au: please 

reference this latter part of the statement]. This mechanism resembles quorum-sensing 

where apparently random systems display complex activity as long as the components (in this 

case the cells) can interact, and might contribute to hormone gene expression and cell 

proliferation
87,88,89

. [Au: edit OK?] How gap junctions might orchestrate this mechanism 

remains unknown; however, regenerative Ca
2+

 waves and Ca
2+

-regulation (e.g. through 

NFAT) could be one possibility
90

. [Au: I think you need to expand on this highlighted (in 

grey) statement — e.g. why specifically could it be a possibility — or remove it 

altogether if this is too speculative] 

[H3] Increased prolactin output during lactation 



The long-term requirement for large increases of circulating prolactin in lactation is 

associated with a decrease in dopamine output, which begins in late pregnancy
91

 and is 

coincident with a surge of pituitary prolactin secretion [Au: please reference this latter 

statement – 91 also? Edit OK to simplify sentence and avoid repetition?]. The dopamine 

tone needs to be strongly decreased throughout lactation to enable the necessary increase in 

circulating prolactin, and is mediated by a decrease in phosphorylation of tyrosine 

hydroxylase, the rate-limiting enzyme for dopamine synthesis
91

. This mechanism is not the 

result of a reduced feedback of prolactin on dopamine neurons, which remain electrically 

responsive at the level of the cell body,  but rather, neuronal firing becomes uncoupled from 

dopamine secretion
2
. [Au: edit OK? have I retained your meaning here?s] Remarkably, 

the reduction in dopamine tone is accompanied by the production of opioids
92,93

, which might 

enable these neurons to stimulate prolactin secretion [Au: is this latter statement an 

opinion?]. 

In concert with changes in the hypothalamic inhibition of prolactin secretion, substantial 

alterations occur in the pituitary to support the 10–50-fold increase in prolactin secretion that 

is required for milk production in mammals
93 

[Au: edit OK?]. In humans and rats, this [Au: 

milk production?]  is generally accompanied by proliferations of lactotrophs, with some 

evidence of hypertrophy [Au: of the lactrotrophs?], although these results [Au: meaning 

the hypertrophy results?] are based on 2D histological studies [Au: edit OK?]
94

. By 

contrast, in lineage tracing and FACS studies in mice, lactotrophs become hypertrophied 

during lactation and increase their volume threefold rather than simply increasing in number 

[Au: edit OK?]
95

. Other investigators have confirmed these findings, and also showed that 

the lactotroph network in situ becomes highly-connected during lactation, which is associated 

with the strength of the suckling stimulus
16

. [Au: edit OK?] This increase in structural 

connectivity leads to a substantial increase [Au: of how much?] in the proportion of the 

subpopulation of lactotrophs that function as coordinating nodes and orchestrate increased 

output of prolactin [Au: please reference this statement].  

[H3] Memory of prolactin demand after weaning [Au: edit OK?] 

At weaning [Au: edit OK? I think the term weaning is well-enough understood to omit 

an explanation], a rapid decrease in prolactin secretion occurs as a result of a return of 

dopamine inhibition
96

. In rodents
97,98

 and humans
99

 basal prolactin secretion is reduced below 

that of virgin animals, which might reflect an enhanced pituitary response to dopamine 

inhibition
100

. Strikingly, and despite this reduction in basal prolactin secretion, lactotrophs 



remain enlarged and well-connected [Au: with each other? Or generally within the 

network? Please clarify here] at both the structural and functional levels
16

, with an increased 

proportion of cells acting as nodes [Au: what is the proportion? What does it change from 

and to? What is the specific function of the nodes at this stage? Possibly to be included 

in a new figure on the prolactin axis], which persists for many months after lactation has 

ceased [Au: edit OK, is this what you mean? please reference this statement]. Such hard-

wiring or ‘memory’ of previous stimuli, which was previously thought to only exist for 

neurons and immune cells, leads to a lactotroph network behaviour [Au: what do you mean 

specifically by ‘lactotroph network behaviours’ in this instance?] during subsequent 

lactations [Au: meaning after subsequent births?], which drives even higher concentrations 

of prolactin
16

. This mechanism is independent of reproductive experience per se, since it can 

be prevented by reducing the suckling demand [Au: please reference this statement].  

[H3] Clinical relevance 

The dysregulation of the prolactin axis, owing to either pituitary adenomas
101

 or as an adverse 

effect of treatment with antipsychotic drugs
102

, leads to impaired fertility. 

Hyperprolactinaemia is the second most common cause of infertility in women after PCOS 

[Au: please reference this statement; how many individuals does hyperprolactinaemia 

affect?]. A clear understanding of the interactions that lead to altered dopamine output and 

the response of the pituitary might help to identify novel treatment strategies for this disease. 

For example, further understanding the regulation of prolactin release by dopamine might 

enable the reduction in the doses of commonly-used dopamine receptor agonists, as their 

safety in the treatment of prolactinomas has been questioned
103

. [Au: why so? Please include 

a little extra detail] In rodent studies, prolactin seems to affect multiple neuroendocrine axes 

[Au: such as? Please include the axes here for clarity] 
77

, and these warrant further study to 

determine the potential effects of its over-secretion in humans. For example, 

hyperprolactinaemia might lead to changes in GnRH neuron activity via interactions with the 

GPR54/kisspeptin pathway in mice
104

 and GnRH pulsatility has been reinstated in mice with 

physiological hyperprolactinaemia by administration of kisspeptin
105

. [Au: edit OK?] By 

contrast, in studies using sheep with a lower prolactin dose [Au: lower dose than what? And 

how much lower?], no effects on hypothalamic kisspeptin expression have been seen [Au: in 

response to this treatment/administration please clarify here? edit OK?]
106

. An improved 

understanding of these pathways could aid the development of treatments for women with 



hyperprolactinaemia that is resistant to dopamine agonists [Au: please provide a reference 

for this dopamine agonist-resistant hyperprolactinaemia].  

[H1] The GH axis [Au: suggest a new figure for this section including the organisation 

and plasticity of the GH axis] 

In humans and animals in which it can be measured [Au: such as?], pulsatile GH output is 

present from birth
107,108,109

. However, the output is markedly increased at puberty when 

sexually-dimorphic body growth occurs
110

. [Au: edit OK?] Since the discoveries of GH 

releasing hormone (GHRH) and somatostatin that control GH secretion from pituitary 

somatotrophs
111-113

,  a remarkable advancement our understanding of GH pulse generation 

during critical physiological windows has taken place [Au: edit OK?].  

[H3] Pulsatile GHRH output 

Using genetically-modified mouse models with GHRH neurons marked with green 

fluorescent protein
114

, several investigators have defined the mechanisms that underlie pulse 

generation using ex vivo slices of brain [Au: edit OK?]. Before puberty, GHRH neurons are 

excitable neuroendocrine neurons with complex synaptic inputs
115

. These early stages of 

hypothalamic development ensure appropriate regulation of the somatotroph axis, as in the 

Ames dwarf mice in which loss of GH leads to a compensatory increase in GHRH cell 

number
116

, [Au: edit OK?] and programming effects of steroids on GHRH cell number and 

gene expression
117 

[Au: please expand on this latter statement. What specifically do you 

mean by ‘programming’ and how does the cell number and gene expression change?]. 

Modification of these synaptic inputs and electrical properties over the first 6 postnatal weeks 

correlates with and likely drives, at least in part, increased pituitary GH output and sexual 

dimorphism
118

. In all these studies, the intrinsic hourly rhythms of GHRH neuronal activity 

predicted by simulation studies of in vivo GH pulsatility have not been indentified
115,119

. 

However, somatostatin can generate GHRH neuron pulsatile output by delaying oscillations 

of action potential firing via a recurring inhibition of inhibitory GABAergic interneurons (that 

is, inhibition of inhibition)
119

. [Au: edit OK? Have I retained your meaning here?] 

Consequently, somatostatin can both acutely inhibit the excitability of GHRH neurons and 

also promote their patterned output together with more sustained GHRH neuron stimulation in 

response to other stimuli in the brain (for example, acetylcholine
118

) and peripheral tissues 

(such as, ghrelin) 
113

.  [Au: edit OK?] [Au: can these processes be represented in the a 

figure on the GH axis? E.g. to highlight the plasticity of these neurons during puberty?] 



[H3] Modification of pituitary somatotroph output 

No full description of the in vivo dynamics of GHRH and somatostatin neurons and their 

regulation of pituitary somatotrophs exist [Au: edit OK?]. This event can be viewed as a 

three-step process: delivery of neurohormone to target cells; cellular secretory responses to 

regulation; and entry of pituitary hormone into the peripheral circulation [Au: please 

reference this statement. Or is this based on opinion?]. In vivo imaging of the mouse portal 

system and somatotroph network have provided insights into the first step in this process and 

the role of the vasculature in shaping the pattern of exposure of the pituitary to hypothalamic 

neuropeptides
7
. Delivery of neuropeptides such as GHRH to the somatotroph network, which 

extends throughout the pituitary gland, follows specific vascular/capillary routes and results in 

specific temporal patterned regulation rather than a homogenous ‘immersion’ [Au: by 

‘immersion’ meaning the whole pituitary exposure to the secretagogue?] of the pituitary 

parenchyma in secretagogue [Au: please reference this statement]. In addition, the initial 

stimulation by GHRH evokes a coordinated enhancement of oxygen to the stimulated 

somatotroph network via increased capillary blood flow, which provides fuel for energy-

depleting secretory responses [Au: please reference this statement]. Indeed, the GH [Au: 

neuronal?] network is spatially organized versus the vasculature [Au: Do you mean that the 

GH network is organized in the same spatial manner as the vasculature? Do you mean 

all of the vasculature in this instance? please reference this statement], which suggests an 

important role of local oxygen regulation on GH release and that this may also be the case for 

other pituitary axes [Au: is there any evidence to support this highlighted statement? If 

not I suggest you remove it]. The second step in pituitary regulation has been characterized 

using ex vivo data from acute pituitary slices where the somatotroph network organization is 

preserved, in which the homotypic network-mediated coordination of stimulation, triggering 

long-lasting GH secretion
20

. These studies have also shown that network organization is likely 

to have a major role in the increased GH output at puberty. In particular, the GH network 

undergoes large changes in the volume to surface ratio [Au: of what specifically?] that 

coincides with the onset of puberty, before gradually returning to normal pre-pubertal levels 

by [Au: postnatal?] day 100 in mice [Au: please reference this statement]. Such changes 

correlate with sexually dimorphic patterns of output
13

. [Au: please expand on this 

statement, what do you mean precisely here?] Sex steroid manipulation also leads to rapid 

and dramatic increases in cell motility that remodels the network organization
120 

[Au: please 

can you expand on the details of this finding here]. [Sentences rearranged to improve 



flow OK? Have I retained you meaning here?] These findings highlight the importance of 

somatotroph network organization and its plasticity in the generation of pituitary somatotroph 

output. The vasculature also has an important role in somatotroph output, where in vivo 

imaging shows that capture of secreted GH is a controlled event where the perivascular space 

acts as a gate-keeper for hormone entry into the capillary lumen
120

. The relationship between 

neuronal network organization and the vasculature in the pituitary is, therefore, central to the 

delivery of incoming hypothalamic signals, and the build-up of GH pulses within capillaries. 

[H3] Clinical relevance 

GH deficiency resulting from congenital defects or acquired following traumatic brain injury, 

pituitary tumours or cranial irradiation
121,122

, is commonly treated with a daily subcutaneous 

dose of recombinant GH in childhood to increase growth rate [Au: please reference this 

latter statement]. However, considerable uncertainty exists regarding the optimal dosage or 

regime, and current treatments [Au: specifically GH injections?] do not fully recapitulate the 

physiological pattern of GH secretion [Au: please reference this statement]. One potential 

therapy is repopulation of the pituitary with stem cells, which has been investigated in the 

mouse [Au: addition OK? was this approach successful?]
123

. However, such approaches 

would require the recapitulation of the normal cellular organization to achieve normal 

pulsatility and homeostatic regulation [Au: edit OK?].  

Patients with acromegaly, which results from a GH secreting pituitary adenoma, frequently 

have glycaemic disorders: a lack of GH pulsatility modifies lipolysis, whereas overall GH 

hypersecretion can induce insulin resistance
124

. Consequently, an improved understanding of 

the mechanisms that determine the pattern of GH output might help to define new therapeutic 

options for dyslipidaemia or diabetes mellitus. In addition, GH pulsatilty also has an 

important role in a subgroup of patients who have clinical acromegaly with increased insulin-

like growth factor 1  [Au: abbreviation used once removed OK?], but unaltered mean 24-h 

GH concentration compared with healthy controls
125,126

. Altered GH pulsatility might explain 

the clinical presentation of this sub-group of patients, and our new understanding of the 

mechanisms underlying patterning of pituitary output might explain the abnormal GH axis 

function in these individuals and warrants further investigation [Au: edit OK?].   

[H1] Conclusions  

The examples in this Review provide new insights into regulation of three hypothalamic–

pituitary axes and demonstrate that these mechanisms are not a simple relay of stimulus-



secretion coupled events [Au: edit OK?]. The disconnection or modulation of hypothalamic 

excitation and neurohormone release, and an active role of the vasculature and pituitary in the 

network-mediated modification of responses, demonstrates that this view of the 

hypothalamic–pituitary system is over-simplistic (FIG. 1). [Au: we avoid first citing figures 

in the conclusions, but I think the addition of new figures as suggested above we negate 

the need for this Figure here and these points can be introduced earlier. You can then 

refer back to the ealier figures here in the conclusions] [Au: sentence removed here to 

avoid repetition] Given that the hypothalamic arcuate nucleus contains no more than a few 

thousand parvocellular neurons, the rapid development of techniques for interrogating 

neuronal function should enable the characterization of this structure’s regulation and output. 

Such studies will be invaluable for the deeper understanding of mammalian physiology, as 

this region controls a much larger panel of known body functions than any other brain region. 

In the vasculature and pituitary gland, many of the mediators of functional modulation remain 

unknown. Although loss of Prop1, which is essential for pituitary hormonal cell development, 

leads to loss of organ vascularization
127

, studies of the processes leading to normal 

vascularization and its modification have not been reported to date. Similarly, hypothalamic 

and steroid factors have been shown to regulate cell network organization
19,20,120

 but the 

underlying mechanisms and mediating factors are yet to be identified. The alteration of the 

gonadotroph network in mice with a developmental block of corticotroph terminal 

differentiation
14

, suggests that the mechanisms will be complex and involve interaction 

between multiple pituitary cell types. [Au: I suggest moving this information (highlighted 

in grey) into the preceding sections where appropriate. We try to avoid including new 

information like this in the conclusions, which should be for summing up the key points. 

These findings might have more impact in the earlier sections]  

The regulation of pulsatile pituitary secretion must now be considered as an integration of 

hypothalamic, vasculature and pituitary regulation, which has further implications for the 

understanding of disease [Au: edit OK?]. For example, the identification of kisspeptin has 

provided an exciting new target for the treatment of infertility
128

. The uncoupling of neuronal 

excitation and hormone output also has deeper implications such as in the case of ageing [Au: 

addition OK? Is this what you mean here?]. For example, the reduction in GH output with 

age might be due to a failure of neurohormone secretion from GHRH neurons that are excited 

under normal conditions [Au: edit OK?]
129

. The human pituitary gland can be accessed by 

transphenoidal surgery, which makes this structure ideal target organ for regenerative therapy 



[Au: please reference this statement]. The pituitary neuronal networks and their relationship 

with the vasculature must be considered for such therapy and the microenvironment clearly 

has an important role in the regulation of the pituitary gland, which might also affect the 

development of tumours [Au: edit OK?] 
130

. Finally, as pituitary networks are sensitive to 

peripheral regulation and their modification can persist for extended periods, they are a 

potential target for endocrine disrupting chemicals (EDCs). Indeed, the identification of EDC 

[Au: bisphenol A?]-mediated changes in expression of ICAM5 [Au: which specifically?] in 

the pituitary
131

 has led us to speculate that some EDC effects might be mediated by changes in 

pituitary organization132. These possibilities require further investigation for the understanding 

of both the aetiology and treatment of diseases associated with pituitary hormones [Au: edits 

OK?].    
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Key points [Au: edits OK?] 

• The activity of hypothalamic neurons is modified by inputs leading to heterogeneous 

activity; a small proportion of the total population can drive pituitary hormone 

pulsatility 

• Neurohormone output can vary following neuron excitation according to physiological 

status, which might  also lead to declining neuroendocrine output with age  

• The release of hypothalamic factors into the blood is modified by alterations in the 

juxtaposition of nerve terminals with the vasculature and tanycytes in the median 

eminence 

• Cells in the pituitary gland form homotypic networks, the organization of these 

relationships with the vasculature are distinct for each endocrine axis, which modifies 

responses to regulatory factors and patterns of output in response to demand [Au: edit 

OK?] 

• Reorganisation of the pituitary network can store long-term memories of increased 

output and learn to increase function on repeated challenge  

• Understanding the importance of coordinated hypothalamic–vasculature–pituitary 

function provides new understanding of a range of endocrine axes defects and targets 

for novel therapies  

 

[Au: a list of suggested Figures and content:  

Figure 1 – General introduction of the relationship between the 3
rd

 ventricle, median 

eminence, portal vessels, vasculature and pituitary. We have a range of in-house options 

that can be adapted for this purpose. – I can send you an example or two if you wish 



Figure 2 – The gondadotroph axis – to include the organisation of the GnRH/LH network 

in the hypothalamic/pituitary/vasculature and with factors that might influence (e.g. NO). 

Might also include the homotypic organisation at puberty. E.g. a ‘before’ and ‘after’ panel 

Figure 3 – The prolactin axis – could include a representation of the lactotrophs and their 

development into networks – e.g. an expansion of what is represented in the bottom left of 

current Figure 1. 

Figure 4 – The GH axis – to include a graphical view of this axis and could include how 

this axis is modified to develop the pulsatility or the modification of pituitary somatotroph 

output 

If simpler, perhaps proposed Figures 2, 3 and 4 could be combined into a single, multi-

panel figure if you wish? 

Figure 5 – summary of our current understanding – based on your submitted figure 1, 

although some of these elements can be included in the above figure 

 

Figure 1 | Regulation of the hypothalamic-pituitary axes. In the past decade, a more 

complex relationship between the hypothalamus and pituitary than previously 

appreciated has emerged. a) At the level of the parvocellular neurons, complex inputs 

modify the excitation of neurons, which can vary coupling with neurohormone output at 

terminals of the median eminence (ME) through modification of intracellular pathways. 

b) Alterations in tanycyte ensheathment and the anatomical location of neuron 

terminals modify their interactions with the vasculature, changing the dynamics of 

neurohormone release. c) In the pituitary gland, changes in blood flow in the portal 

circulation alter the pattern of exposure of pituitary cells to neurohormone and nutrient 

supply to facilitate secretion. d) Cells of the pituitary gland are organised into 

intermingled networks with distinct morphological features, which can be altered to 

meet physiological demand, and relationships with the vasculature. 

  



[Au: I have made a number of edits to the text in this box to adhere to journal style 

and the overall flow of the article. However, I think some of these concepts could be 

represented in the suggested figures] 

Box 1 | Organization of pituitary cells into homotypic networks  

During the past decade, we and others have shown that the pituitary somatotroph13, 

corticotroph14, gonadotroph14,15 and lactotroph16 lineages form 3D organized cell networks 

(reviewed in17,18) with the following features: 

• The lineages have distinct developmental programmes  

o Placement of each endocrine cell network occurs at distinct stages of pituitary 

organogenesis, before expansion in early post-natal life [Au: please include the 

references here].  

• The networks have distinct motifs that might relate to function.  

o For example, the organization of somatotrophs as clusters linked with strands13, 

while lactotrophs form a honeycomb structure16. [Au: how do these relate to 

function specifically? Or is this just an association?] 

• Hypothalamic factors generate network motifs  

o For example, the loss of growth hormone-releasing hormone (GHRH) itself leads 

to isolated somatotrophs, whereas somatotroph ablation with intact GHRH 

stimulation results in clusters of cells that are isolated from each other19.  

• The pituitary networks have functional relevance.  

o Critical roles have been described for pituitary networks in the integration, 

amplification and propagation of the neurohaemal hypothalamic signals that 

arrive via the median eminence. For example, the male somatotroph network 

responds to GHRH input with large, coordinated and oscillatory Ca2+ rises that 

outlast stimulus to drive large excursions in hormone secretion20.  

• Endocrine and non-endocrine cells interact to form homotypic networks [Au: edit OK? Is 

this what you mean here?].  

o For example, gap-junctions mediate coupling [Au: of what cells specifically?] 

with folliculostellate cells16,21, paracrine and autocrine interactions17,22 as well as 

the relationship between networks and the vasculature7,23,24. These interactions 

might help to alter [Au: somatotroph or simply hormone?] output. The distinct 

network motifs of lactotrophs are aligned with the fine pituitary capillary 

network, while somatotrophs form strands and clusters along the same vessels17. 

Similarly, gonadotrophs are in close approximation to one or more blood vessels 

via their protrusions15, whereas the corticotroph network has a looser 

arrangement 14. [Au: meaning these differences will shape how the 

neurohormones are released e.g. in terms of timing?]  
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