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Abstract. A plane geometric graph qr in R 2 conforms to another such graph f~ if 
each edge of c~ is the union of some edges of qr It is proved that, for every c~ with 
n vertices and m edges, there is a completion of a Delaunay triangulation of O(mZn) 
points that conforms to ft. The algorithm that constructs the points is also described. 

I. Introduction 

Decomposi t ions of two- and higher-dimensional domains play a major  role in 
many engineering applications. For  example, the finite element analysis method 
is based on the decomposit ion of a domain into so-called elements [StF].  A 
particularly impor tant  class of  decomposit ions are simplicial cell complexes, 
sometimes referred to as triangulations. Here the domain is decomposed into 
simplices (triangles in two and tetrahedra in three dimensions) so that the 
intersection of two simplices is either empty or a face of both. Applications of 
triangulations can be found in finite element analysis [C],  surface interpolation 
[La],  shape reconstruction [Bo],  and other research areas. 

An impor tant  type of  triangulation is the Delaunay triangulation [De].  It is 
dual to the so-called Voronoi  diagram [V]. The populari ty of the two-dimensional 
Delaunay triangulation is partly due to the fact that it optimizes various quality 
measures, including the smallest angle [Si], the largest circumscribed circle [D 'AS] ,  
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the largest minimum enclosing circle [D'AS], [Ral],  and the integral of the 
gradient squares [Ri]. Algorithms that construct the Delaunay triangulation of 
a given set of n points in the plane in time O(n log n) can be found in [GS], I-F], 
[GKS], and other publications in computational geometry [PS], [Ed]. 

In practical applications it is often the case that a constraining set of points 
and line segments must be part of the triangulation. The constraining set is most 
naturally modeled as a geometric graph whose vertices are the points and 
endpoints and whose edges are the line segments in the set. It is assumed that the 
line segments intersect at most at endpoints. 

Of course, the Delaunay triangulation of the vertices of such a geometric graph 
will, in general, not contain all edges of the graph. This leads to the definitions 
of constrained and of conforming Delaunay triangulations. The constrained 
Delaunay triangulation of a geometric graph is, in some sense, the best approxima- 
tion of the Delaunay triangulation given that it must contain the graph ILL]. For a 
graph with n vertices it can be constructed in time O(n log n), see, e.g., [Se]. A 
conformin9 Delaunay triangulation is a genuine Delaunay triangulation, or, more 
precisely, a completion of a degenerate Delaunay triangulation. Its relation to the 
constraining graph is that each vertex of the graph is also a vertex of the 
triangulation, and each edge of the graph is the union of edges of the triangulation 
[BFL]. Constructing a conforming Delaunay triangulation of a geometric graph 
is usually harder than constructing the constrained Delaunay triangulation. The 
reason is that the graph can force the introduction of a large number of points 
to achieve conformity. Previous work [Bo], [NS], [O], [Sa], [SAP] fails to provide 
upper bounds on the number of points necessary for a conforming Delaunay 
triangulation that are polynomial in the size of the constraining graph. Such a 
bound is given in this paper. 

The paper is organized as follows. Section 2 formalizes the problem and Section 
3 presents some preliminary results. Section 4 proves the upper bound on the 
number of points needed for a conforming Delaunay triangulation. Section 5 
explicitly formulates the algorithm that is implicit in the proof of the upper bound. 
Section 6 concludes the paper with some open problems. 

2. The Problem Definition 

First some notation. Let V be a set of n points in ~2. An edge is a closed line 
segment connecting two points. Let E be a collection of edges. Then fr = (V, E) is 
a plane 9eometric graph if 

(i) no edge contains a vertex other than its endpoints, that is, ab n V = {a, b} 
for every edge ab~ E, and 

(ii) no two edges cross, that is, ab n cd ~ {a, b} for every two edges ab vL cd in E. 

The connected components of R 2 minus all vertices of V and all points on 
edges of E are the faces of ~. For example, if the edges in E are pairwise 
disjoint, then f# is a matching and there is only one face. Another common 
case is when E and V form a single cycle. This cycle is the boundary of a 
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polygon, and ff has two faces, the inside and the outside of the polygon. If 
V is fixed and E is maximal so that no two edges cross, then we call f r  
triangulation. In this case all bounded faces are triangles and their union is 
the convex hull of K 

An edge ab, a, b ~ V, is a Delaunay edge if there is a circle through a and b so 
that all other points of V lie outside the circle. The collection of Delaunay edges 
defines a plane geometric graph ~(V) known as the Delaunay triangulation of K 
In the nondegenerate case, which excludes four or more points on a common 
circle, ~(V) is indeed a triangulation. Even in degenerate cases the faces of ~(V) 
are convex polygons, and these can be further subdivided into triangles using 
additional edges. Each additional edge cd, c, d ~ V, has the property that there is 
a circle through c and d so that all other points of V lie on or outside this circle. 
The resulting triangulation is called a completion of 9(V). 

The problem studied in this paper  can now be described as follows. Let 
fr = (V, E) be a plane geometric graph. A completion cg of a Delaunay triangula- 
tion conJbrms to f~ if every vertex of f~ is a vertex of ~g and every edge of f# is the 
union of edges of oK. The problem is to find a small point set S so that @(S) has 
a completion that conforms to fr We call such a completion a conforming Delaunay 
triangulation of ~. It is also desirable to have an algorithm that constructs S as 
well as a completion of ~(S) that conforms to fr The remainder of this section 
shows that the latter task can be handled by existing constrained Delaunay 
triangulation algorithms [Se], once we have an algorithm that finds the points. 

As mentioned above, each edge ab of a completion of ~(S) satisfies the empty 
open disk property, that is, there exists a circle through a and b so that no point 
of S belongs to the open disk bounded by the circle. We now argue that this 
property is also sufficient for the existence of a conforming Delaunay triangulation: 
Call the closed portion of an edge of ~ between two contiguous points of S on 
this edge an interval. 

2.1. ~(S) has a completion that conforms to f# iff every interval defined by fq 
and S has the empty open disk property with respect to S. 

Proof. The only if part follows from the definition of a completion of ~(S). For 
the if part  assume that every interval ab has the empty open disk property. If ab 
is an edge of ~(S), then nothing has to be proved. Otherwise, no edge of ~(S) can 
cross ab because every circle passing through the endpoints of such an edge 
encloses a or b or both. Because ~ is plane, there is also no other interval that 
crosses ab. So ab, and all other intervals that are not edges of ~(S), can be added 
to ~(S) without introducing any crossing. We can add zero or more noncrossing 
edges arbitrarily until a completion of ~(S) is obtained. [] 

3. Preliminary Results 

An edge ab E E that belongs to the boundary of the convex hull of V automatically 
satisfies the empty open disk property, and no points on ab need to be introduced. 
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Fig. 3.1. An D.(mn) lower bound example on the number of vertices of a conforming Delaunay 
triangulation. In the example shown, m = 6, k = 3, and therefore n = 2m + 2k = 18. 

For other edges ab there are points on both sides of the line that contains ab. It 
is thus possible that ab does not satisfy the empty open disk property, in which 
case points must be added to subdivide ab into smaller intervals. 

In some cases the size of S must be at least quadratic in the size of f~. This 
bound can be shown using the example of Fig. 3.1 which consists of m = I EI edges 
and n = I VI = 2m + 2k vertices. The edges are parallel and very close to each 
other. The isolated vertices come in k pairs, with one vertex on each side of the 
group of edges. Provided the edges are sufficiently close to each other, and the 
vertices are sufficiently close to the edges, it will be necessary to place a point 
approximately between the two vertices of every pair on every edge. This proves 
that at least mk points need to be added to obtain a conforming Delaunay 
triangulation. The lower bound of D~mn) follows for k = ~(n). For smaller k, the 
endpoints of half of the m edges can be used to play the role of the isolated vertices. 

A common approach to produce a conforming Delaunay triangulation is to 
place sufficiently many points on the edges of the constraining graph so that each 
interval has a circle that avoids all other edges [Bo], INS], [O], [Sa], [SAP]. This 
can always be achieved except maybe at places close to shared endpoints where 
sharp angles are formed. This special case is handled by placing points at the 
intersections of the edges with a sufficiently small circle drawn around the common 
endpoint. The method avoids the need for backtracking as no point placed on 
any edge harms any interval that already has such a circle. The price, however, is 
a possibly horrendous number of new points. Indeed, there is no function f(n) 
that can bound the number of points although for every problem instance it is 
finite. In particular, the number of points added grows as the edges move closer 
to each other. 

An upper bound that depends solely on n can be otained as follows. Initially, 
set S -- V and consider all m edges as unprotected. Treat the edges of ~ in turn. 
At the time the ith edge is treated, it may consist of various protected and 
unprotected intervals. Place sufficiently many points on the unprotected intervals 
so that each new interval has a circle that does not enclose any point of the current 
set S. Each such circle may, however, intersect other edges. To prevent points from 
being placed inside the circle later in the process, we place points at the 
intersections between the circle and any unprotected interval of another edge. 
Declare each new interval as protected if it is enclosed by the circle and unprotected 
otherwise. See Fig. 3.2. The number of points needed to treat the ith edge does 
not exceed the current size of S since it suffices to project the current set S 
orthogonally onto the ith edge. Similarly, the number of circles needed for the 
ith edge does not exceed the current size of S. Assume inductively that ISl -< 
n(2m + 1) i- 1 before the next step that treats the ith edge. The next step creates at 
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Fig. 3.2. The original graph, if, has vertices 0-9 and edges 01, 23, 45, 67, and 68. First, edge 01 is 
treated. In the process, two new points are added to 01. The resulting three circles cross the other 
edges in seven points, which are also added. Each edge of ff now consists of protected and unprotected 
intervals. 

most n(2m + 1) i-1 circles intersecting the remaining edges in at most 2m points 
each. The size of S thus increases to at most 

n(2m ~- 1) i - '  + n(2m + 1) I- 12m = n(2m + 1) i. 

The total number of points at the end of the process is therefore at most n(2m + 1)". 
This method apparently produces far too many points. An improvement was 

found by Mehlhorn, Sharir, and Welzl. Their method combines the projection of 
points with a divide-and-conquer scheme and achieves a subexponential although 
not yet polynomial bound. The idea of protected and unprotected intervals turns 
out to be valuable in our effort to obtain a polynomial upper bound on the number 
of points. 

4. The Upper Bound 

Given a plane geometric graph ff = (V, E), with I VI = n and IEI = m, this section 
shows how to find O(m2n) points so that each resulting interval has the empty 
open disk property. As defined earlier, an interval is the closed portion of an edge 
between two contiguous points of S chosen on this edge. If no point of an edge 
belongs to S, except its endpoints, then this edge itself is an interval. 

The Global Idea. The point set S is constructed in two steps, the blocking and 
the propagation phase. Initially, S contains only the vertices of (~, that is, S = V. 

The goal of the blocking phase is to find O(n) pairwise disjoint open disks that 
contain no points of V so that the union of their closures is connected and contains 
V. Each circle bounding such a disk is called a blocking circle. After finding these 
disks, we add the intersections between blocking circles and edges of ff to the set 
S. In addition, we add the O(n) points at which blocking circles touch each other. 
The new set S forms the vertex set Wofa  plane geometric graph ~g' which conforms 
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to ft. The edges of ~ are the intervals of ff together with edges connecting 
contiguous points of S on blocking circles. 

9ff has two types of edges. Each protected edge is enclosed by a blocking circle; 
its endpoints lie on the blocking circle. All other edges are unprotected. By 
construction, protected edges have the empty open disk property with respect to 
the current set S. We make sure that no points inside the blocking circles are 
added to S later so that this property persists with respect to all future sets S. 

The unprotected edges are further subdivided into intervals in the propagation 
phase. For  an edge or interval ab, we define the minidisk of ab, Mab, as the smallest 
open disk whose closure contains ab. If ab is unprotected and its minidisk contains 
a point c ~ S visible from every point of ab, then a point c' subdividing ab into ac' 
and c'b is added to S. This point c' is chosen so that c lies outside Mac, and Mc, b. 

The Blocking Phase. We show how to use a minimum spanning tree of V to 
construct n - 1 open disks D~, D2, . . . ,  D,_ t that satisfy the following properties: 

(1) D i n V = ~ f o r a l l l  < i < n - 1 ,  
(2) D i n D  s = ~ f o r a l l l  < i < j < n - 1 ,  

n = l  (3) D = Ui= 1 (closure of D 3 is connected, and 
(4) V ~ D. 

A minimum spannin9 tree J-  of V is a spanning tree of the complete geometric 

graph (V, ( 2 ) )  whose sum of edge lengths is a minimum. An important property 

of 9- is that the minidisk of every edge of J -  is disjoint from V, see, e.g., Section 
13.2.5 of [Ed]. 

Label the vertices of ~-- (the points of V) from 0 through n - 1 so that, for 
every 0 < j < n - 1, the vertices 0, 1 . . . . .  j induce a subtree of J-. Define ij so that 
ifl is an edge of this subtree. Notice that ij < j and that ij is unique. The edges ijj 
are now used to define the disks D s. The disk D1 is the minidisk of edge 01. The 
disk D~, for 2 < j < n - 1, is maximal so that 

(i) its center lies on i~j, 
(ii) its bounding circle goes through j, and 

(iii) it is disjoint from disks D1 through D j_ t constructed earlier. 

Clearly, Dj ~_ Mij j. This implies property (1). Properties (2), (3), and (4) follow from 
the construction. 

Let V' be the set of points where the blocking circles intersect the edges of if, 
and let V" be the set of points (not in V') where the blocking circles touch each 
other. As described above, the points in V' and V" are added to S. Let W be the 
new set S and let ~ = (W, F) be a plane geometric graph with F = F' u F" defined 
as follows. The set F' contains all intervals on edges of ft. Remember that by 
construction all points of W lie on the n - 1 blocking circles. Consider an open 
disk D i bounded by a blocking circle Ci and let Po, Pl . . . . .  Pk-l, Pk = PO be the 
points of W that lie on C i in this sequence. These points define a convex k-gon 
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Fig. 4.1. The original graph, f~, has vertices 0-7 and edges 17, 23, 46, and 67. The edges of the 
minimum spanning tree, 01, 12, 23, 14, 45, 56, and 57, are indicated by broken lines. Each edge of the 
tree corresponds to a blocking circle. Each blocking circle encloses protected edges of Yr. 

with edges P, Pl+ 1, 0 < l <_ k - 1, termed walls. Some of these walls may be intervals 
on edges of (# and therefore belong to F'. In any case, F" is the collection of all 
walls. This completes the definition of ~ which conforms to fg, see Fig. 4.1. 

Note that each wall is protected by a blocking circle. The collection of walls 
defines another plane geometric graph, J = (W, F"). Clearly, J is a subgraph of 
YF. It is convenient to adopt the topology of the sphere. In this model all faces of 
Yf, including the outside face, are simply connected because ~f' is connected. 
Similarly, all faces of ~ are simply connected. 

The Propagation Phase. The unprotected edges of ~ are further subdivided into 
intervals during a nondeterministic process. Initially, every unprotected edge is 
also an unprotected interval. Consider an unprotected interval ab and its minidisk 
Ma b. Call a point c ~ S visible from ab if the open triangle abc is disjoint from all 
edges of ~ .  Suppose a point c ~ S visible from ab is contained in Mab. We add c' 
to S, where c' is the orthogonal projection of c onto ab, and thus subdivide ab 
into ac' and c'b. Repeat this step until there is no unprotected interval ab with 
such a point c. 

This completes the description of how the point set S is constructed. The 
remainder of this section shows that the eventual size of S is O(m2n). The blocking 
phase adds at most (2m - 1)(n - 1) intersection points between edges and circles 
and fewer than 3n points where circles touch each other. The latter bound follows 
from the planarity of the intersection graph of the blocking circles. 

We now focus on proving that each point created in the blocking phase gives 
rise to at most O(m) points in the propagation phase. We begin by proving a few 
properties of the propagation process. Let ab be an unprotected interval at some 
point in time during the process, and let c ~ S lie in Mob. Then the orthogonal 
projection c' of c onto the line through a and b lies strictly between a and b. 
Furthermore, c ~ Mac, and also c r Mc,b. 

Assume now that c # x, y is a point on some edge x y  of ~9. All points in 
S - (V u V") are of this form. Then we have the following property: 
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4.1. There are at most two intervals, ab and a'b', so that c is visible from both 
and contained in their minidisks. Furthermore, ab and a'b' lie on different sides 
of the line through x and y. 

Property 4.1 holds because if c e M~b, then Lacb > n/2, and if c is visible from 
ab, then a and b lie on the same side of the line through x and y. The same is 
true for a'b'. So if ab and a'b' lie on the same side of the line, then one endpoint 
of a'b' must lie between a and b as seen from c. This contradicts the assumption 
that c is visible from ab and from a'b'. 

Let c e M~b be visible from ab, and let c' be the orthogonal projection of c onto 
ab. Then we have the following property: 

4.2. There is no interval a"b" on the same side of the line through a and b as c 
so that c' is visible from a"b" and c ' e  M~,,b,,. 

Assume such an a"b" exists. Then /a"c 'b"  > n/2 which implies that c lies between 
a" and b" as seen from c'. This either contradicts that c is visible from ab or that 
c' is visible from a"b". 

Assume now that c e S does not lie strictly between the endpoints of an edge 
of ~, so c ~ V u V'. Similar to property 4.1 we have the following property: 

4.3. There are at most three intervals ab so that c is visible from ab and c e M~b. 

The reason for property 4.3 is simply that at most three angles larger than re/2 
can be packed around c. 

A Locality Property. Notice that the propagation phase takes care only of local 
constraints. In other words, it considers only visible point-interval pairs c, ab. 
Although the minidisk of ab can contain other points of S, it is indeed justified 
to ignore such points, as we will see shortly. Let ab be an unprotected interval. 
We call the minidisk M~b locally empty if it contains no point of S that is visible 
from ab. Furthermore, M~b is empty if it contains no point of S at all. 

To prepare for the next lemma we consider an interval ab and a point c ~ Mab. 
If c is not visible from ab, then there are intervals st that intersect the open triangle 
abc. We say that st separates c from ab if both endpoints, s and t, lie outside M~b. 
Otherwise, st hinders the visibility between c and ab but it does not separate. Let 
Ec.ob be the set of intervals that separate c and ab, and define Fc,~b as the set of 
(nonseparating) intervals that hinder the visibility between c and ab. It is interesting 
to observe that Fc, ab = ~ or there is another point d of S in Mab with Ed,~b _~ Er 
and Fa..~ = ~ .  To see this, choose a point x ~ abc so that the open triangle abx 
does not intersect any edge of ~e. Move x continuously and straight toward c 
until either a side of the triangle abx hits a vertex d or x hits a nonseparating 
interval uv of ,g~. In the second case at least one of the two endpoints, say u, lies 
in Mab. Slide x on uv toward u until either a side of the triangle abx hits another 
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vertex d or x reaches u (then d = u), whichever happens first. The path of x crosses 
only intervals that separate c and ab, therefore Ea, ab ~ Ec, ab. 

4.4. I f  the minidisks o f  all unprotected intervals are locally empty, then they are 
all empty. 

Proof  Suppose the claim is false. Then there is an unprotected interval ab whose 
minidisk Mab contains a point c e S. As argued in the preceding paragraph, we 
can make the extremum assumption that ab and c are chosen so that the number 
of separating intervals Ec, ab is a global minimum and Fc.ab = ~ .  Let st be an 
interval that separates ab from c. Note that st is not protected because every circle 
through s and t encloses at least one of a, b, and c. However, if st is an unprotected 
interval, we have c e Ms, because s and t are outside Mab. Furthermore, st cuts 
Mab into two pieces, and the piece that contains c is properly contained in M~t. 
Therefore, Ec.s, ~_ Ee,ab and we have proper containment because st ~ Ec.ab does 
not belong to Ec.s,. This either contradicts the extremum assumption or that st is 
locally empty. [] 

Propagation Sequences. We are now ready to analyze the number of points 
created in the propagation phase. Our particular goal is to show that each 
point c created in the blocking phase generates at most 3m points in the 
propagation phase. We say that a point c 9enerates another point d if there is a 
sequence c = Co, c~ . . . . .  Ck = d so that ci+ ~ is created as the orthogonal projection 
of c~ onto some interval during the propagation phase, for 0 _< i < k - 1. The 
sequence Co, c1 . . . . .  c k is called a propagation sequence. It is nontrivial if k > 1, and 
it is maximal if Co is created in the blocking phase and Ck generates no further 
point. Note that all c~, i > 1, of a maximal propagation sequence lie on unprotected 
edges of ~ ,  and these edges are contained in edges of ft. 

Every point d created in the propagation phase gives rise to at most one point 
d'. To see this note that such a point d lies strictly between the endpoints of an 
edge x y  of (r Now property 4.1 implies that d is visible from at most two intervals 
whose minidisks contain d. By property 4.2 and because d itself is generated by 
orthogonal projection, d generates another point d' on at most one of these two 
intervals. Together with property 4.3, this implies that a point of S constructed 
before the propagation phase gives rise to at most three nontrivial maximal 
propagation sequences. In fact, there are at most two such sequences per point 
not in V u V". To establish that the length of a maximal propagation sequence 
is at most m, it suffices to prove the following: 

4.5. No propaoation sequence can have two or more points on the same edge o f  ~.  

Proof Suppose the claim is false. Consider a minimal propagation sequence, 
c = Co, c 1 . . . . .  Ck = d, so that c and d lie on the same edge x y  of ft. Consider the 
polygon, P, whose boundary consists of the line segments cd and cic~+t, for 
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0 < i < k - 1. Recall that walls are protected, so no points are projected on or 
across them. Thus, P lies completely within a face of J .  Since all vertices of f9 are 
also vertices of J ,  and because all faces of J are simply connected, there can be 
no vertex of ff inside P. Thus, each edge of (# that intersects P has its endpoints 
outside P. It thus intersects the boundary of P in at least two points. Since Co, 
cl . . . . .  c k is minimal, it follows that k = 2 and that Co and c2 lie on the same side 
of the edge x y  of ff that contains Cl. However, this contradicts property 4.2. [] 

As mentioned earlier, I V u V"I < 4n. Each point c ~ V w V" gives rise to at most 
three maximal propagation sequences of length at most m + 1 each. The point c 
itself is the only point of these sequences that does not necessarily lie on an edge 
of f#. The number of other points created during the blocking phase is less than 
2ran. Each such point gives rise to at most two maximal propagation sequences 
of length at most m each. The total number of points after the propagation phase 
is thus less than 

4n(3m + 1) + 2mn(2m - 1) = 4m2n + lOmn + 4n. 

This proves the main result of this paper. 

Theorem 4.6. Let  f# = (V,E) be a plane #eometric #raph with [VI = n and 
IEI = m _> 1. There exists  a point set S o f  size ISI = O(m2n) so that its Delaunay 
triangulation has a completion that conforms to f#. 

5. Implementing the Proof  

The proof of the O(m2n) upper bound presented in Section 4 is constructive and 
can be translated into an algorithm without much effort. The only demanding 
step is the implementation of the propagation phase. In order to keep the 
time-complexity roughly within the same order of magnitude as the number of 
points added, we need to project the points in a sequence that is computationally 
inexpensive. We assume that point coordinates can be stored in a constant amount 
of storage and that basic geometric operations, such as intersecting a circle with 
an edge and projecting a point onto  a line, can be carried out in a constant amount 
of time. 

The Blocking Phase. A minimum spanning tree of a set of  n points in the plane 
can be computed in time O(n log n), see, e.g., Section 13.2.5 of [Ed]. This requires 
the construction of the Delaunay triangulation of the points and running a 
standard minimum spanning tree algorithm on the geometric graph of this 
triangulation, see, e.g., [CLR]. Alternatively, a minimum spanning tree can be 
obtained in time O(n 2) directly from the complete geometric graph of the points. 
The slower method is certainly easier to implement. 
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After computing the tree, we need to find the open disks D 1, D2 . . . . .  D,_ ,  that 
satisfy properties (1)-(4). Most straightforwardly, these disks can be constructed 
one by one as explained in Section 4. For each j, the largest disk Dj needs to be 
found so that its center lies on ifl, j lies on the bounding circle of D j, and Dj avoids 
all Di, i < j. This can be done in time O(j). The total amount of time for this step 
is thus O(n2). The plane graphs d f  and J can be computed by intersecting the 
bounding circles of the D~ with each other and with the edges of ~. The resulting 
O(mn) intersection points can be computed and sorted along circles and edges in 
time O(mn log n). 

A Tree of Regions. Recall that J is a subgraph of 9f~ and contains none of its 
unprotected edges. A point c ~ S is projected onto an edge ab only if ab is 
unprotected. Thus, projections happen only within faces of J .  As mentioned 
earlier, J is connected and therefore its faces are simply connected. We can thus 
restrict our attention to a single face of J .  

Let f be a face of J that is further subdivided into reoions by unprotected edges 
of Jr .  Let .~j be the graph whose nodes are the regions of f ,  and whose arcs 
connect regions that share unprotected edges of dr. Each subdividing unprotected 
edge has both endpoints on the boundary of f,  which implies that ~ I  is a free 
tree. It is convenient to fix an arbitrary node as its root and thus impose a 
parent--child relation on adjacent node pairs. Points are projected onto un- 
protected edges in three stages. The first stage computes an initial set of projections 
that avoids difficult situations in the second stage. The second stage computes and 
sorts segments along the boundary of each region. The last stage consists of a 
postorder and a preorder traversal of M I. 

Consider two adjacent nodes # and v of ~ I ,  and let ab be their shared 
unprotected edge. Points on the boundary of # that are projected onto ab are said 
to be exported from # to v. Symmetrically, we say they are imported by v. The 
points projected onto ab are stored in two separate sorted lists, L,v and Lvu, one 
for each side of ab. The complete list of points exported from # to v, Luv, can be 
computed only after all import lists L~u, for x # v adjacent to #, are available. 
note that the import list from v, L,u, is not necessary for computing Lu, because 
a propagation sequence follows only one direction of a path in M~ (see property 
4.5). 

Stage 1: Subdividin# Unprotected Ed#es. A vertex of # is reflex if the angle inside 
/~ exceeds n. The first stage projects every reflex vertex c onto all unprotected edges 
ab for which there exists a portion a'b' ~_ ab so that c is visible from a'b' and 
c ~ Ma, v. Since / a ' cb '>  n/2 there can be at most three such edges ab. As a 
precaution, we do not require that c be visible from ab. This way c does not need 
to be reconsidered after ab gets subdivided. Although such projections are not 
prescribed by the proof in Section 4, they neither invalidate the correctness nor 
the analysis of the construction. Each reflex vertex is necessarily a vertex in V u V", 
so there are fewer than 4n of them. Since each vertex is projected at most three 
times, we thus increase the number of unprotected edges by less than 12n. 
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Here is how we find the at most three unprotected edges for a reflex vertex c. 
The part of/~ visible from c can be computed in a single walk along the boundary 
of #, see, e.g., [EIA], [Le], [JS]. The amount of time needed for the walk is 
proportional to the number of edges. Select the at most three edges that have 
connected portions visible from c along an angle exceeding n/2. Project c 
orthogonally onto these at most three edges. Each projection subdivides an 
unprotected edge into two such edges. 

The rest of the algorithm uses the subdivision of ~ produced in stage 1. It is 
therefore convenient to call the elements of this subdivision vertices and edges. 
After the completion of stage 1, no reflex vertex visible from an unprotected edge 
ab lies inside the minidisk Mab. It thus follows that if a point c lies in Mab and is 
visible from a point on ab, then it is also visible from ab. 

Stage 2: Computing Boundary Segments. This stage is a preprocessing step that 
speeds up computations in stage 3. It prepares the boundary of/~ in such a way 
that points can be projected onto various unprotected edges in a single walk along 
the boundary of/~. To this end we associate pieces of the boundary, called segments, 
with the unprotected edges of/a. A segment for an unprotected edge ab is a maximal 
connected piece of #'s boundary so that every point x of the segment is visible 
from ab and contained in Mab. Note that segments do not include their endpoints. 
Since # is simply connected, a point x is visible from ab iff it is visible from a and 
also from b. The segments of ab are constructed as follows: 

1. Find the part of/~'s boundary visible from a. As mentioned above, this can 
be done in a single walk along the boundary of #. 

2. Find the part of/~'s boundary that is also visible from b. Again a single walk 
suffices. 

3. Intersect the identified boundary pieces with Mab. 

Define the rank of/~, r(/~), equal to the number of unprotected edges of/~, and let 
I#l be the total number of edges of/~. If an edge bounds/~ on both sides, that is, 
the edge belongs to the interior of the closure of #, then it is counted twice. By 
construction, this can be the case only for protected edges. After carrying out steps 
1-3 for each unprotected edge of #, we obtain a collection of segments. Because 
of property 4.1 the segments along the boundary of # are pairwise disjoint. In 
other words, the segments form a sequence, and they can be sorted in time 
proportional to I~1 plus their number. This is because along an edge of/~ the 
segments are ordered consistently with the order of their corresponding un- 
protected edges. We see later that the number of segments is less than 2r(/~) + [kt t. 

Stage 3: Traversing the Tree. In a postorder traversal, the children x of a node/~ 
are visited before/~. Visiting a node # here means computing the export list to its 
parent v. Notice that because of stage 1,/~ and v may share several unprotected 
edges. Still, their union is the original unprotected edge of # and v, and L~ can 
be obtained by concatenating the lists obtained by projecting points onto these 
unprotected edges. We can assume that, at the time the export list of/~ to v is 
computed, all import lists LK~ are available. 
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List Lu~ is constructed in a single walk along the boundary of #. Whenever a 
segment that belongs to an unprotected edge shared by/z  and v is encountered, 
the points on this segment are projected orthogonally onto the unprotected edge. 
These points can be vertices of # or points in import lists of #. The result is the 
list L~.  It is automatically sorted if we process the points in their order along the 
boundary of #. 

After the postorder traversal of ~y ,  all child-to-parent lists are complete. In 
order to compute the export lists of a node/z to its children x, we first need to 
construct the import list from its parent, Lye. This is done in a preorder traversal 
of ~s -  A node is visited before its children, and visiting a node # now means 
computing all export lists L,~. At the time we compute these lists, all import  lists 
are complete and stored with their unprotected edges. In a final walk along the 
boundary of #, we project points onto the appropriate unprotected edges, as before. 

S o m e  C o m b i n a t o r i a l  R e s u l t s .  The analysis of the above algorithm requires some 
topological and combinatorial results about regions. We begin with a combinator- 
ial lemma. Let el, e2 . . . . .  ek be a sequence of k not necessarily distinct symbols. 
It is a DS2(n)-sequence if only n of the symbols el are different, e i # ei+l for 
1 < i < k - 1, and there are no four indices 1 < il < i 2 < i 3 < i 4 < k so that 
ei~ = ei~ :/: el2 = el,. The length of the sequence is k. 

5.1. The length of any DS2(n)-sequence is at most 2n - 1. 

The upper bound in 5.1 can easily be proved by induction if it is observed that 
the symbol that is introduced last occurs only once. We use such sequences to 
bound the number of segments in a region/~. 

5.2. The number of segments of  # is less than 2r(p) + [#l- 

Proof. Consider the ordered sequence of segments. Replace each segment by the 
name of the corresponding unprotected edge. The resulting sequence contains no 
scattered subsequence of the form 

. . . a b . . . c d . . . a b . . . c d  . . . .  

because otherwise the bounding circles of Mab and Mca would intersect at four or 
more points. So if we compress repetitions we get a DS2(r(!a))-sequence. If two 
consecutive symbols (unprotected edges) are the same, then there must be a vertex 
of/z separating them. This implies that the total number of segments exceeds the 
length of the DS2(r(#))-sequence by at most ]/~1. []  

The total number of unprotected edges before the propagation phase is at most 
O(mn), and it is fairly easy to see that this bound is tight. It is plausible that a 
single region can have only substantially fewer unprotected edges. We now prove 
a more general result that implies a single region indeed cannot exceed O(m + n) 
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unprotected edges. For  a region/~, define its e x c e s s  e(/~) = max{0, r(/~) - 4m}. The 
t o t a l  e x c e s s  is the sum of the e(/~) over all regions # of ~ .  We prove an upper 
bound on the total excess which is sufficient for our purposes but certainly not 
tight. 

5.3. T h e  t o t a l  e x c e s s  is  l e s s  t h a n  36n. 

P r o o f  To help the discussion we replace each edge of (# by a pair of directed 
edges, which we call d i - e d o e s .  A di-edge p q  c o n t r i b u t e s  an edge to a region # if it 
contains the edge and along this edge/z lies to the left of p q .  Consider the sequence 
of unprotected edges in #'s boundary, and replace each such edge by the name of 
the contributing di-edge of fg. This results in a sequence with at most 2m different 
symbols. A straightforward topological argument shows that there is no scattered 
subsequence of the form 

. . . p q  . . . s t  . . . p q  . . . s t  . . . .  

If we ignore repetitions we have a D S 2 ( 2 m ) - s e q u e n c e ,  which implies that the length 
of the sequence without repetitions is less than 4m. Anything exceeding this number 
is counted by e(/~). 

Let a b  and c d  be two consecutive unprotected edges contributed by the same 
di-edge, pq .  Then: 

(i) b = c, or 
(ii) b c  is a protected edge of/~, or 

(iii) there are two or more protected edges between b and c. 

In case (i) we can charge the projection in stage 1 for the repetition, and there are 
fewer than 12n of them. Each projected point is counted twice, once for each side, 
so we have fewer than 24n repetitions of type (i) in total. In case (iii) we can charge 
the vertex common to the first two protected edges after b for the repetition. This 
vertex must be in V w V " .  We have I V w V"]  < 4n, and each such vertex is charged 
at most twice because it can lie on at most two blocking circles. This implies that 
there are fewer than 8n repetitions of type (iii). In case (ii) b c  is a protected edge 
contributed by pq .  We argue in the following that the total number of such edges, 
over all regions and di-edges, is less than 4n. This implies the claim. 

Since b c  is protected, its endpoints lie on a blocking circle Cj bounding Dj. 
Furthermore, since b c  belongs to a region with at least one unprotected edge, it 
must be one of the edges of the convex hull of the vertices on Cj. Consider Dj 
and the edges of ,.~ that lie on edges of f~ and decompose Dj. Each such edge has 
both endpoints on Cj. It follows that the dual graph of the decomposition is a 
free tree. The nodes of the tree are the regions of the decomposition, and the arcs 
correspond to the edges that decompose Dj. The edge b c  corresponds to an arc 
incident to a leaf of the dual graph. We can bound the number of repetitions of 
type (ii) by bounding the total number of leaves of the n - 1 dual graphs defined 
for the blocking circles. 
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To count the total number of leaves, we assume fr is a triangulation. If not, it 
can be converted into one by adding fewer than 3n - m edges; adding these edges 
can only increase the count. The advantage of a triangulation is that now each 
interior node of a dual graph has degree 2 or 3. Furthermore, the number of leaves 
of a dual graph is 2 plus the number of degree-3 nodes. Each degree-3 node of 
the dual graph for Dj corresponds to a triangle of fr each of whose three sides 
intersects Cj. A triangle can intersect at most one blocking circle in this manner. 
Therefore, the total number of degree-3 nodes is at most the number of triangles, 
i.e., 2n - 5. This number plus twice the number of blocking circles is less than 4n, 
as claimed. [] 

A region cannot have more than 4n vertices shared by adjacent protected edges, 
because each such vertex is a vertex in V w V". Each such vertex is encountered 
at most twice, which implies I~1 -< 2r(/0 + 8n. The result in 5.3 thus implies a 
bound on the number of edges of a region. 

5.4. For a region ta of ~ ,  [Pl = O(m + n). 

The Final Analysis. Stages 1 and 2 require at most O([#[r(#)) time per region/~. 
By definition, r(#) < 4m + e(#), so the time is bounded by a constant times 

I/~lm + ~ I~le(/~). 

The first sum is O(m2n) because W has only O(mn) edges and stage 1 adds only 
O(n) to this number. The second sum is O(n 2) because 

[#le(p) = O((n + m) ~ e(#)) 

and, by 5.3, ~ e(/~) < 36n. This implies that O(m2n + n 2) is an upper bound for the 
time spent in the first two stages of the algorithm. After that, O(m2n) time suffices 
to compute all import and export lists in stage 3. This implies the main result of 
this section. 

Theorem 5.5. Let f# = (V,E) be a plane geometric graph with IV[ = n and 
IE[ = m > 1. A point set S of size O(m2n) that admits a completion of its Delaunay 
triangulation conforming to f# can be computed in time O(m2n + n2). 

6. Discussion and Open Problems 

The main result of this paper is the existence of O(m2n) points that admit a 
completion of their Delaunay triangulation conforming to a plane geometric graph 
with n vertices and m > 1 edges. This result is superficially similar to the 
triangulation results of [BDE], [BEG], [BE], and [MS]. The best lower bound 
for the number of points necessary is f~(mn), and its proof is fairly straightforward. 
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It would be interesting to close the gap between the two bounds. The O(mZn) points 
can be constructed in time O(mZn + n2), provided infinite precision arithmetic in 
constant time is assumed. This assumption is unrealistic because the number of 
bits necessary to represent a point accurately increases at each projection along 
a propagation sequence. Is it possible to construct the points within the same 
time-bound without this assumption? 

A seemingly difficult open problem is the generalization of our polynomial 
bound to three dimensions. The somewhat easier version of the generalized 
problem considers a graph whose vertices are embedded as points in •3, and edges 
are represented by straight line segments connecting embedded vertices. More 
relevant, however, is the problem for the crossing-free embedding of a complex 
consisting of vertices, edges, and triangles. 
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