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An Upper Bound for Self-Dual Codes
C. L. MaLLows anD N. J. A. SLOANE

Bell Laboratories, Murray Hill, New Jersey

Gleason has described the general form that the weight distribution of a
self-dual code over GF(2) and GF(3) can have. We give an explicit formula for
this weight distribution when the minimum distance d between codewords is
made as large as possible. It follows that for self-dual codes of length 7 over
GF(2) with all weights divisible by 4, d < 4[#/24] + 4; and for self-dual codes
over GF(3), d < 3[n/12] + 3; where the square brackets denote the integer
part. These results improve on the Elias bound. A table of this extremal
weight distribution is given in the binary case for # < 200 and » = 256.

1. PRELIMINARIES

Let C be a linear code over GF(q) of block length #, containing ¢* code-
words at a minimum distance of 4 apart. We call C an [, &, d] code. The
dual code C™ consists of all vectors x such that

n—1

X'y= zxryTZO

r=0

for all y e C. Then C is self-dual if C = C*.
The weight wt(u) of a vector u is the number of its nonzero components.
The weight enumerator of a code C is

W(X, Y) == Z Xn—wt(u)th(u).

ueC

We consider self-dual codes in 3 cases:

Case 1. Over GF(2) with all weights divisible by 2,
Case 2. Over GF(2) with all weights divisible by 4,

Case 3. Over GF(3) with all weights divisible by 3.
188
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SELF-DUAL CODES 189

Case 1 includes all binary self-dual codes, since such a code must have all
weights divisible by 2. Similarly Case 3 includes all ternary self-dual codes.

II. GrLEAsON’s THEOREM

Gleason (1971) has shown that the weight enumerator W(X, Y) of a
self-dual code of length % is a polynomial in the polynomials f and g where

Casel. f=X?+4+ Y2 g = X?Y?3X? — Y?)? and so n must be even;

Case 2. f= X84 14X2Y% 4 Y8, g = XYHX* — V%4 and so » must
be divisible by 8;

Case 3. f=X*+ 8XY3 g = Y3X?— Y37 and so n must be divisible
by 4.

See Berlekamp ez al. (1972) and MacWilliams, Mallows and Sloane (1972)
for alternative proofs, examples, and generalizations of this theorem.

To obtain a unified notation for the 3 cases we replace X by 1 and Y by y,
and make the following definitions:

Casel. w=2R=4,8=2a=1f=1+ay,g=951—p)»
Case2. w=4,R=3S=8a=14,f=1-+ay+ 3% g =yl —y);
Case3. w=3,R=38S=4a=8,f=14 oy, g=31—y)~

Here R is the ratio of the original degrees of f and g, and » must be a
multiple of S.

With the unified notation Gleason’s theorem now states that, in all 3 cases,
the weight enumerator of a code C of length n = Sj is given by

m n/w
W(y) = ). apfi=Rigt = 3 A", 1
=0 %&=0

where m = [j/R] = [#/RS], the a4 are integers, and A, is the number of
codewords in C of weight 7.

III. ExTrREMAL WEIGHT ENUMERATORS
Let the integers @, in Eq. (1) be chosen so as to make 4, =1,
Ay =4,="++=A4,=0, where r is as large as possible (regardless of

whether or not a code exists with this weight enumerator). The resulting

643/22/2-6



190 MALLOWS AND SLOANE

W () is called an extremal weight enumerator. If a code does exist with this
weight enumerator, it has the largest possible minimum distance between
codewords of any self-dual code in which all weights are divisible by .

There are m integers a ,..., 4,, to be chosen because g, is always 1. The
smallest power of y remaining in the extremal weight enumerator is therefore
y™+1, unless we are lucky and A,y is accidentally zero. But Corollary 3
says this never happens. The minimum distance of a self-dual code is there-
fore at most:

Case 1. 2[n/8] + 2,
Case 2. 4[n/24] + 4,
Case 3. 3[n/12] -+ 3.

We now study the properties of extremal weight enumerators.

IV. Ax Expricit ForMm FOR THE EXTREMAL WEIGHT ENUMERATOR

TurorEM 1. The extremal weight enumerator is given by
W(y) = ). anfr-Rg*

k=0

where ay = 1 and a;,, 1 < k < m, is equal to

Cases 1 and 3:
- p—1
j . Rk—i—r (w+Dk—r—2
F e (TR YT
Case 2:
j 7 — o LrsD)sel (—1) (—14)r+1-2 (j — 3k 4+ —i)!
TZO( ( r—l) Z.;) (j—3R(r +1—2i)4!

Proof. From Eq. (1) 4; must be chosen so that

m n/w
W(y) =), afRgb =14 3 Aud® 2
k=0 k=m+1

which becomes, upon dividing by f7,

m

7 =Y agt+ O@gm™), ®)

k=0
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where ¢ = ¢(y) = g/[f®. Using Biirmann’s Theorem (Whittaker and Watson
(1963), p. 128) we expand f—7 in powers of ¢ and obtain

1y der df
] [dyk T gy (;) L_O
-
= — & [ e —y>—w'f]
_ Iy (k-
w7 )%
by the Leibniz formula for the derivative of a product (Hardy (1944), p. 229),

. B—1
— J R—1y d™ gy 457 —wk
S G=RH [;( y )dy’”rlf] dy’“—’—l (1=2) L=0. @)

The theorem now follows from the formulae

¥=0

e (1= 9]

y=0 »

ar a1 =140,
[W(l+ay)] —‘*(T_T(—“),

y=0

[rZ:/2] (_I)z (—(x)'“zi 7! (s —147r— i)! )

dT 2\—s —
[7137(1 oy 59 ]H B G DI — 214!

i=0

(The second of these is easily obtained from di Bruno’s formula for the
derivative of a composite function (Riordan, 1958, p. 36)).

V. NumMmBER oF CODEWORDS OF MiNIMUM WEIGHT

TueorEM 2. The number Aypniy of codewords of minimum nonzero
weight in the exiremal weight enumerator is equal to:

Case 2.

(151)(51:1: 12)/ (4m 5+ 4)’ if n = 24m;
__(omt
m! (4m + 41’

(5m + 2)!

%n(n — )(n — 2)(n—4) if n=24m 4 8§;

%n(n —2) if n==24m 4+ 16;
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Case 3.
m (Am — 2\ 3m 4 3 ) B .
2(5)(111—1)/( 5 ) if 7= 12m;
2n(n — 1)(n — 2) m—,(gn%?, if n=12m +4;
(4m - 2)! .
67’1""1!—(3”’{-_‘1_‘3—)!; if n=12m -+ 8.

Remarks. (1) It follows from Theorem 4.2 of Assmus and Mattson (1969)
that (a) in Case 2, if # is a multiple of 24, the codewords of any fixed weight
form a 5-design; and (b) in case 3, if # is a multiple of 12 and o is in the range
In 4+ 3 < v < 3n + 3, the nonzero coordinates of the codewords of weight
v form a 5-design. We have written 4, in these cases in terms of
binomial coefficients to emphasize this combinatorial interpretation.

(2) The corresponding expressions for Case 1 are omitted, since these
weight enumerators usually do not correspond to codes—see the next section.

(3) The proof of the theorem can be used to give an explicit expression
for any A, .

Proof. 1In Eq. (3) let f~7 be expanded further as

m n/w
7= L adt e ¥ b+ 0@, ©)

where b, is also given by Eq. (4). From Egs. (2), (5),

n/w n/w

Y Ayt =1 Y bt O,
k=m+1 k=m+1
n/w .
= — % Byl — )R Ofytnie),
k=m+1

and A4, is obtained by expanding the right-hand side in powers of y. In
particular A1) = ~bpyy » and the theorem follows from Eq. (4).

CoroLLARY 3. The number Ayy,.y) of codewords of minimum nonzero
weight in the extremal weight enumerator is never zero. Therefore the minimum
distance of a self-dual code is at most w(m -+ 1), i.e.,

Case 1. d < 2[n/8] 4 2,
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Case 2. d < 4[nj24] + 4,
Case 3. d < 3[nf12] + 3.

VI. Existence oF CODES

In this section we consider the question of whether an extremal weight
enumerator is in fact the weight enumerator of a code. In Cases 1 and 3
the answer is no if # is large:

THeoREM 4. In Cases | and 3, for all n sufficiently large, there is no code
corresponding to the extremal weight enumerator.

Proof. Case 1. From Corollary 3 such a code would have d/n ~ 1,
violating the Elias bound which is d < .196# at rate 4 for # large [Berlekamp
(1968), p. 321].

Case 3. 'We show that for # large the extremal weight enumerator always
contains a negative coeflicient, either Ay, (the coefficient of the highest
power of ¥) or Ay(m_y) (the next-to-highest coefficient).

From Theorem 1, a, is the coefficient of 81 in

—(87/k)(1 + 86)~C-3k+1)(1 — 9)‘?7»";
ie.,
a, = —(8j/2mik) fﬁ(l 1 82)~U=3k+1) (1 — 2)~3 Ja/ak,

where the path of integration is a small circle around the origin. The integral
around a very large circle is negligible, so

a;, = — sum of residues at +1 & at —(1/8)
R dw
= ik ¢ (9 T Seo) o611 (— ) (1 & )t
dw
+§ (8w) 51 (9]8 — w)P* (—1/8 w)k]

— 8 413k 3k~1 gis g — 9
:T&[(l) o (§) (] jik3zs)(4kk—21 s)

9 9

=0

e W N Gty (e

$=0
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Let j — 3k = a be fixed and let £ — oo; then

a, ~ —

1 ég)’“ . ﬂl‘i(——m%)k .

1
3e-1 %V&}Zc ( 27 729

al

Therefore for m = [j/3] and j large, a,, , and a,, are both negative.
Now from Eq. (1) we have

Agyim = (—1)" 837a,,
Asim—yy = (—1)1 873mi3q, A (—1)" 8=3"-Y(j — 2Tm) a,,
and for j large one of these is always negative.

CoroLLARY 5 (Asymptotic bounds). For that self-dual code of length n
over GF(2) with all weights divisible by 4 which has the largest possible minimum
distance d,

1 d __1 4
-1(2) A g
H (3) & 0.1100 <= < 2+ 7,

n

Jor all n sufficiently large. For that self-dual code of length n over GF(3) which
has the largest possible minimum distance d,

0.1595 < g <

-

for all n sufficiently large.

Proof. 'The upper bounds follow from Corollary 3 and Theorem 4, and
the lower bounds from MacWilliams, Sloane and Thompson (1972) and
Pless and Pierce (1973).

Corollary 5 improves on the Elias bound, which at rate } is d/n < 0.196
(GF(2)) and 0.281 (GF(3)).

VII. NumericAL REesULTS

A computer program was written in the rational function manipulating
language ALTRAN (Brown (1971), Hall (1970)) to compute the extremal
weight enumerator W, . The results are as follows:
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Case 1. For n = 32, 40, 42, 48, 50, 52 and > 56, W, contains a negative
coefficient. From the table in Pless (1972a), for n =2, 4, 6, 8, 12, 14, 24 a
self-dual code exists with weight enumerator W, , but for » = 10, 16, 18, 20
no such (linear) code exists. However, W, for n = 16 is realized by the
Nordstrom—Robinson nonlinear code. In the remaining cases it is not known
if a code exists.

Case 2. 'This is the most important case, since as far as we know at the
present time codes may exist corresponding to all of the extremal weight
enumerators W, . These were computed for n <{ 496, and found to be non-
negative: we conjecture that this is always the case.

Codes are known to exist corresponding to W, for n = §, 16, 24 (the Golay
code), 32, 40, 48 (a quadratic residue code [Pless (1963)]), 56, 64, 80, 88, and
104 (a quadratic residue code (Karlin (1969)).

Case 3. The coefficient of the highest power of y is negative for
n=24 ({>3), 24i +4 ({ = 7)...., and the next-to-highest coefficient is
negative for # = 24i -+ 12 (¢ = 11),... . The negative coeflicient at # = 72
was first observed by J. N. Pierce (see Gleason (1971)). The exact value of »
beyond which W, always contains a negative coefficient (in accordance with
Theorem 4) is not known; it is greater than 320.

Codes exist corresponding to W, for n = 4, 8, 12 (the Golay code), and
24, 36, 48, 60 (Pless’s symmetry codes [Pless (1969), (1970), (1972)]).

VIII. TasLE oF ExTrREMAL WEIGHT ENUMERATORS

Because of the importance of case 2, we have included a table of the extremal
weight enumerator in this case for # <{ 200 and # = 256. For some values
of n (see Section VII) the corresponding codes are known, and it is useful
to have the enumerators on record; in the other cases it is hoped that knowl-
edge of the enumerator will assist in deciding the existence of the codes.

Thus the table gives the weight distribution {4,} of the (hypothetical)
binary self-dual code of length #, in which all weights are divisible by 4,
and having the greatest possible minimum distance. When # is a multiple
of 24 these codes correspond to 5-designs (Section V).

For each value of #, the first column of the table gives 4, , the number of
codewords of weight 7, and the second column gives ¢. Only the first half of
each enumerator is given, since it is symmetrical about /2. The tables were

checked by verifying that > 4, = 2%/2,
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n=80

=8

1 0

14 L

n=32

i 0

620 8
13888 12
36518 16

n=56

1 0
8190 12
622314 16
11699688 20
64909845 2L
113955380 28
1
97565
12882688
59007 3120

1° 0588174080
73707678050
26°3303738880
391106339008

MALLOWS AND SLOANE

TABLE

Extremal Weight Enumerators

n=16

285
212818
233970
525504

n=6l

1

2976
454956
18275616
233419584
1041971008
170671901

n=24
o 1
L 753
g 2576
n=48
0 1
8 17296
12 535095
16 3995376
20 7681680
n=T2
0 1
12 249849
16 131067 Gk
20 462962955
2L 4397342400
28 16602715899
32 2*5756721120
n=88
1 0
32164 16
6992832 20
535731625 ok
16623384448 28
22°5426781470 32
140°5590745152 36
416°380313179 Lo
596° 8212445440 kb

12
16
20
2L

16
20

28

32
36

Table continued
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TABLE (continued)

n=96

i 0
321706 20
369844880 24
1° 864283939520 28
42°20699330215 32
4552866656416 36
2429 2689565680 4O
6572*7011639520 L4
91L44' 7663224080 L8
n=112

1 0
355740 20
95307030 24
1°0847290303 28
58*2017237802 135
1662*7131952432 4
21938 0334493320 0
166257°6783018430 Ll
695846° 0336232405 48
1633110 86474136456 52
2168210°19397880004 56
n=128

1 0

13228320 2k

294097 0496

320411086388 32
180742021808640 36
55252* 3816524960 Lo

949111*5264030720 L

9411607* 2808107840 48
54982777*3219608576 52
192059473°5166941760 56

405198299°5220321280
£19357685°1944293670

n=10k

1

1138150

206232780
1°59096938064
567725836990
991°5185041320
8835°57097889305
41354°3821457520
103637 8383344140
140604°4530294756

n=120

1

33733755

5101289128
47°5644133425
1882*°4510638240
33745 0513031544
45305172364732800
3053159° 9026535880
116023¢67"°7311397120
25725776"6775517715
33520023°0030755776

n=136

1

3997890

1228344320
18%2985731775

1428 3914414016
61287°5802567105
1439765°4299809440
21536530°79123718990
1855049311°9250976000
974521284°7192721004
3160731597 6754469952
©382267580* 0631213615
8062541713" 9398579840

197

24
28

32

Lo
i
48
52

60

0

ok
28
32
36
Lo
Ll
L8
52
56
60
o
68

Table continued
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TABLE (continued)

n=Jhk 1
481008528

90184804281
95429725087 84
559456467 836112
1895022°5255363376
38188857°3363657355
468600680* 3807237232
3564874587 3701148864
1*7047372906°6542803516
5%1759224213°6399518331
10°0538632205" 9285093728
12'5378917521"271313328%

1

45453440
145387022365
278" 4234733600
28580° 96351475240
1729496°5003180800
53642773 83435638400
1460056742"65€42892810
291303554630 4326430640
200380636349°3271558528
1239735481963 6041047650
505°7008276304"1180720000
1373°46464538224 9784512000
2496%3604326205" 194267 9040
3045°5177418359" 7643533643

n=160

n=176 1
1795555300

51082546 9440

8566" 9933312640

860476° 9428057600
53432271*3203704425
2105517330*2285337600
543778712060 05877638480
90°5941959566° 2783226880
1020°9334852912* 4662016350
7786*0399257528%6718579200
4LO558 4498446433 6108337600
145359°7013087919°5398912512
360391°5671092513° 1155424340
620474°6047546118° 0564838400
743475%1292567009°7822508800

0
28
32
36
Lo
Ly

n=152 1
153921850

39456539335
5439676963240
43091°3879333417¢0
1971495°6096233300
54298748 1413723850
922236272 9811216648
9845887A834"3053002345
6°7074030848°6254520870
29'4967451865%4707229975
84°4602552379°7234712400
158°4056485586" 6405013660
1352736455236 85984326448

1

5776211364
1251098739072
16606° 8570988089
1304707°4967014400
62904367"5628818392¢0
1908712210 2283097472
3'7209973263°3702336736
47%3329136607°*8573079232
3933°7367376940°1063697390
2256°36567675038° 3595333248
8602°+111073466°0892710580
22273°90680766872*9820388352
39350°9959008035 4173030112
47557 4740865723 276357 88890

n=168

n=18L 1
521332812

18* 8454 836384

3874"'7982400504
503015*2585975296
39629129"9765668216
1995739666" 3226585856
6*5654101729% 6827297297
143*5315990341°1816340480
2120%7034656204"030870655¢0
21391°1934330300" 16786444 80
14887973325941 144" 8475067080
720720°5518879136°5661706752
2442121*1445081548°7193234248
5819733"0447223791°5285331712
97 85260°3751511921*1340708140
11634846°8566948262° 3348705280

Table continued



SELF-DUAL CODES

TABLE (continued)
= 1 0 n=200 1
6" 9065734464 35 21005534550
1668°10036593936 Lo 6L6°7522952660
263818°1865286080 Lk 1252937°549847 1200
26011870°7412159120 LS 15287262° 0852751800
16506204127 8755716672 52 1206936450 5468120400
68891956345 8768198624 55 63061514767 0747950200
1925136702196 3529559744 &0 222'1591577969* 8502141280
3662°9234679278° 3196741815 4 5359°9985166299"6527 356550
47982*3029129154° 3388046400 & 89733°1217536072° 4436541800
437537°3270369432° 0252103840 72 1053886°6782935099°5361897825
2801442°7417808971°5889450656 75 3763102°7466336654° 8170765600
12682897°0918971772° 1455882224 Sp 5197894G9°1575731101* 3178267720
40824643°739295279373794806080 8L 221292819°64255035083°6000132400
93822240°3866579312°9097020640 88 679496375°8320473071%3462120200
154396045°6403677997 44650436032 g2  1510377799°7026804996°1942408800
182248321°4906983687°7698945680 06  2436591083°1314624778°4654076100
2857207329%5182769043° 0040227204
n = 256 10

81°5550677760 44

33706*7577283360 L8

9427197° 0695660800 52

1798287443 9644012032 56

23"3542954832° 3567173120 60

2238°5884204514°7954264620 Ab

150828 4455480530 3640645120 68

7389744°2146785696° 2342366720 T2

266206617°0725206080*6263057152 76

7119266411 4446504138°7096346272 30

14425361628826739768348°4469876480 Sk

215%2117330790"6063535407°4076846080 88

2666°1642294029%7641248565% 8537134080 92

2156694827587 82°5232703692°5022134080 96

144620*3933891460°9833983218% 9770909696 100

746630°7582377592°9521023097°5874856960 104

2977839%1982437159%5752588037 0387043840 108

9201125°7461996373°8123501375% 3162661440 112

22075361°7026193050°438557892845509721600 116

41195923°3273193846°8520953898° 6304444800 120

59870289*72337563354620771908% 3818931200 12k

67810255°5878568295°7328269340°8656117030 128

199

Note added in proof. ]J.-M. Goethals has communicated to us that (in Case 1) an
extremal self-dual code exists for # = 22 but does not exist for n = 26.

Recrrvep: August 2, 1972; Revisep: September 8, 1972
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