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Abstract. For all n > d there exist n points in the Euclidean space E d such that not 
all points are in a hyperplane and all mutual distances are integral. It is proved that 
the minimum diameter of such integral point sets has an upper bound of 2 cl°gnl°gl°gn. 

1. Introduction 

Sets of n points in the Euclidean space E d, n o t  all in a hyperplane, do exist for all 
n > d such that all mutual distances are integral. Proofs are published in [10] and 
[12] for plane concyclie sets, and in [3] and [4] for sets in higher dimensions, in 
addition in [4] no three points are allowed to be collinear. 

First upper bounds for the minimum diameter k(d, n) of such integral sets of n 
points in E d are given in [3] where the diameter means the largest distance of two 
points of the set. These bounds are of order 2" for any fixed dimension. 

In this note we construct concyclic integral point sets which improve the upper 
bound of k(2, n) to 2 cl°gnl°gl°g", that is n ¢l°gl°gn. Then these constructions are used 
to find corresponding results for d > 3. Some exact values are presented for small 
numbers of points. 

2. Construction of Plane Integral Point Sets 

We obtain a concyclic integral point set by appropriate rotations of an equilateral 
triangle around its center. 

= ~ - 3  rn Theorem 1. On a circle of diameter ~Rx/~ there exist n 3z(R) I-L=l(vj + 1) 
points with pairwise integral distances if R--[-I~'=aP~' for any m distinct prime 
numbers pj - 1 (rood 3). 
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P r o o f  We consider the Euclidean quadratic number field K(p)  with p = 

( -  1 + x / ~ ) / 2 .  In K(p)  the rational primes p = t (mod 3) have a unique prime 

factorization p =tnth where ~ = a + bp and (5 = a + b ( -  1 - x f ~ ) / 2  = a - 
b - bp are conjugate primes of K ( p )  with rational integers a and b. For  any element 
ot = a + bp  of K ( p )  its norm is ~t~ = lctl 2 = a 2 - ab + b 2 (see Chapter 12 of [6], 
or [7]). 

For each of the z(R) divisors of R, 

and with 

f i P T '  11 * - *  0 < u j < v ~ ,  = (Dj ( D j ,  __ __ 

j = !  j = l  

~13h = COj COj , 
j = l  

q3h-2 = P2qah, 

r f 3 h -  1 = P q 3 s ,  

1 _< h _< z(R), 

we consider the vertices ~s, 1 _< s _< 3~(R), of z(R) equilateral triangles with their 

centers in the origin and with circumradius ~Rv/3, where 

k = 0 ,  1,2, 1 < h < r ( R ) .  

All vertices ~ are pairwise distinct since the prime factorization in K(p)  is unique. 
For 

r/s = Pk'qah = Ks + YsP, 0 <_ k s <_ 2, 1 <_ s <_ 3z(R), 

and with rational integers xs, y~ we conclude 

_ x s y  ~ + y2 f i  I?/s[ 2 = ?/sOs = Xs2 = (Dj2V' (Dj-2v~ 
j = l  

= fi  # o , = . 2  
j = !  

This implies that all points is are concyclic with radius (R/3)xf3. 
We use 

R 2 a 2 i x / ~ ( % y  s 1 2 
= - -  ~ Y s  + - -  ~ Y s )  

with i = x / ~  to determine the distance of any two points ~s and {t, 1 _< s, 
t < 3~(R). We obtain 

R21~, - ~l  2 - ~1~/2 - rt212 

_-1~ ~tysa"2 _ y2) + ix/~(~(y2 _ y2) + x ty ,  - xsys)[ 2 

= (y2 _ y2)2 + (y2 _ y2)(x ,y  ' _ xsys) + (xty ,  + xsys) 2 

= (y2 _ y2XR2 _ x 2 _ (R 2 _ x2)) + ( x t Y t -  xsY~) 2 

= (x , y ,  - xsy~) 2 
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which implies 

Since 

1 
1¢ , -  ~,J = ~ tx, y ~ -  x,y,I. 

rlsf h = (x, + y~pXx, + ytP) 

= X s X t  - -  X s Y t  + Y~Yt + P(xtYs - -  X s y t ) ,  

all distances let - ~,[ are integers if r/~f/t and thus x ty  ~ - x , y  t is divisible by R. We 
obtain 

j = l  

= O k , -  kt I~ 
j = l  

= p k ,  - k, I~I 
j = l  

(.Oj (,Oj (Dj 
j = t  

2 v ;  + uj - w j  - 2v~  - uj + w j  
~Oj ~Oj 

3 r3 --J --J 

= R(A + Bp), 

where qj = min(uj, w j), and A and B are rational integers since the exponents of 
the last product are nonnegative. Therefore R divides r/sf h, and the proof of 
Theorem I is complete. [ ]  

3. An Upper Bound for k(2, n) 

We use Theorem 1 to get the following upper bound for the minimum diameter 
k(2, n). 

Theorem 2. 

k(2, n) < 2 cl°g"l°gl°g", c = constant. 

Proof  We choose the first m prime numbers pj = 1 (mod 3) and vj = 1 for 
1 < j < m to get, from Theorem 1, 

k/2, . t  < and n = 3" 2 "  
j = l  

We use the well-known results from number theory (see, for example, Chapters 1 
and 22 of [6]) that 

I~I elm Pj < I-I q J, qj = jth prime number, qj < czj log j, 
j = l  j = l  
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and 

I-I q < c~, 
q ~ x  

q is a prime number, 

with constants c t, c 2, c a. We get 

k(2, n) < {x/~ I'I q < 2c~ 'c2"l°'c'm'' 
q ~ ctc2m log(cjm) 

Together with m < c ,  log n and constants c, c a, c5 it follows that 

k(2, n) < c~ ~l°~"l°gl°g" = 2 ~l°s"l°gl°8". []  

4. Higher Dimensions 

The construction used for Theorem 1 also implies an upper bound k(d, n) in 
general. 

Theorem 3. 

k(d, n) < 2 c~°gnl°~l°gn, c = constant. 

Proof. We choose, corresponding to Theorem 1, n - d + 2 points with pairwise 

integral distances on a circle of radius Rx/~. The remaining d - 2 points are chosen 
as follows: We consider a regular (d - 2)-simplex of side length R in that subspace 
orthogonal to the plane of the circle so that one of its vertices is the center point 
of the circle. Then all other d - 2 vertices of this (d - 2)-simplex have distance 2R 

to all points of the circle. The diameter of these n points is less than 2Rx/~, and 
Theorem 2 completes the proof. [] 

For  d >__ 3 we know other constructions of integral point sets with smaller 
diameters, for example, if several two-dimensional circular point sets of Theorem 
1 are combined, however, no construction is known to us which implies a smaller 
order of magnitude. 

5. Exact Values for Small Point Sets in the Plane 

No reasonable lower bounds are known in general. For  the plane the following 
exact values of k(2, n) are determined with the aid of a computer: 

k(2, n) = 1, 4, 7, 8, 17, 21, 29 for n = 3, 4 . . . . .  9; 
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Fig. 1 

see Fig. 1 for examples, where the example for n = 7 follows from that for n = 8 
by deletion of one of the two points at distance 21. 

The construction in the proof of Theorem 1 always gives concyclic integral 
point sets. In general, we have determined by computer, for n _< 9, the smallest 
integral point sets without any three being collinear; see Fig. 2 for those which 
are not in Fig. 1 (see also [11]). An example for n = 8 follows from that for n = 9 
by deletion of one point. 

For  n > 9 upper bounds follow from constructions by Theorem 1. Some upper 
bounds, for example for k(2, 12) and k(2, 24), are already given in [1]. 

If no three points are collinear and, moreover, no four concyclic, then the 
question for integral point sets is a so-called Erd6s problem (see also Section D20 
of [2]). For n _> 7 even the existence of such special integral point sets is unknown. 
The smallest diameters for n = 4, 5, and 6 are 8, 73, and 174 (see [3], [4], and [9]). 

Another modified problem is proposed in [8]: to find integral point sets with 
the minimum sum of all distances. 

For  d > 3 nearly no examples of minimum integral point sets are known. Some 
first results can be found in [5], 
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Fig. 2 
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