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Abstract. Given a set S of n points, a subset X of size k is called a k-set if there is 

a hyperplane FI that separates X from S - X. We prove that O(nx/k/log* k) is an 

upper bound for the number of k-sets in the plane, thus improving the previous 

bound of Erd6s, Lovhsz, Simmons, and Strauss by a factor of log* k. 

1. Introduction and Summary 

Let S = {xl . . . . .  xn} deno te  n poin ts  in 9~ d. A subset  X of  size k is called a k-set 

if there  is a hype rp lane  H that  separa tes  X from S - X. The  interest  centers on  

ed(k; n), the  max ima l  number  of  k-sets over  all conf igurat ions  S of  size n in 9t a. 

U p p e r  and  lower  bounds  for e2(k; n) were ob ta ined  by Lovfisz [12] for halving 

sets (n even, k = n/2), and  later ,  for general  k < n/2, by Erd6s  et al. [10]. A simple 

cons t ruc t ion  gives a set S with n log(k + 1) k-sets, while a count ing  a rgument  

shows tha t  e2(k; n) = O(nx/k ). These bounds  were rediscovered by Ede lsbrunner  

and  Welzl  [9]  but  have not  been improved.  The  papers  [1], [11], and  [14] conta in  

results re la ted  to the s tudy of  e2(k; n). 

R a i m u n d  Seidel (see [8]) ex tended the lower b o u n d  cons t ruc t ion  to d = 3 and  

showed tha t  e3(k; n) = f~(nk log(k + 1)). Clearly,  e3(k; n) = O(n3). The upper  bound  
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has been improved when k = o(n). Cole et al. [7] proved that e3(k; n) = O(n~k) 
and Chazelle and Preparata [3] proved that ea(k; n) = O(nkS). Clarkson [5], [6] 

has also obtained better bounds in restrictive cases using random sampling 

methods. For example, he showed that e3(k; n )=  O(nk2). An interesting recent 

result of B~rhny et al. [2] improved the upper bound on e3(n/2; n) to n 3-e, where 

e > 0 is some small constant. This, in turn, was improved by Chazelle et al. [4] 

to O(n8/3+~), for any 6 > 0. 

Finally, it is worth pointing out that k-sets have been applied in computer 

science, e.g., in the papers [3], [7], and [9] cited above. It is likely that further 

applications will be found. However, the real interest remains in understanding 

ea(k; n). Since the original Lovhsz result in 1971, several attempts have been made 

to reduce the upper bound for e2(k; n); these attempts have either failed or merely 

succeeded in devising new proofs. The dil~culty may partly explain why the 

question has been so tantalizing. 

This paper presents the first, modest improvement in the planar upper bound 

(see also [13]). Specifically we show that 

Theorem. e2(k; n) = O(nx//k/log * k). 

Without loss of generality, we assume that the points are in general position. 

As in [12], we study the dissection graph dk of S. The vertices of (~k are the points 

of S and the edges are the ordered pairs ~'~ corresponding to directed segments 

xy,  x, y ~ S, such that the directed line through x and y has k points in the open 

half-space to its fight. These are the k-segments. Note that t~,,_k_ 2 has the same 

edges as Gk but with opposite orientation. Obviously it is enough to bound I E(Gk)[. 

Given a configuration S with at least enx//k edges in its dissection graph, we 

derive a contradiction to the intersection lemma that was proved in [12]: 

Proposition 1 (Lov~sz). Given a directed line l which is not incident with any point 
of S, the number of k-segments that cross l from left to right is at most k + 1. 

The contradiction is achieved by first extracting a large subgraph (~' (at least 

elnx/~ edges) which is the union of disjoint, bipartite blocks of size Clv/k. 

(Throughout, e~ and C~ denote small and large constants, respectively, which are 

polynomials in e and l/e, respectively.) The key result is Lemma 2 in Section 3. 

Its proof  is based on a geometric fact and a careful combinatorial analysis of a 

single block in (~*. This enables us to find a lot of edges in the graph Gk±32 = 

Uk+~2 (~ for any j<< k. In Section 4 we apply this fact for a long sequence of i = k - i  ~ 

integers j l  <<Jz <<J3 << ""<< k tO obtain a natural number k' and a straight line l 

intersecting more than 3k' edges of (~k" This contradicts the intersection lemma 

and completes the proof. A straightforward evaluation of the constants e~, C~ 

reveals that the contradiction will occur whenever e > C~og* k. In fact our method 

can be extended to the case e > C/(log ky but the counting is more complicated. 

An interesting feature of our argument is the slightly stronger blend of geometry 

and combinatorics that we have been able to use. 
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2. Preproces s ing  

Let G~ be the dissection graph of S. In order to obtain a contradiction we suppose 

that, for some e > 0, IE((~k)f > en\fk. In this section we simplify the picture of (~k 

by extracting a large subgraph G~' with a very regular structure. 

We place a system L = {l 1 . . . . .  1,_ 1} of n -  1 parallel (say vertical) lines over 

the configuration in such a way that between each adjacent pair of lines there is 

exactly one point of S. Lines Ii and li+j are said to be at distance j. The length 
II~'~ tl of the edge xy e E(dk) is the number of lines in the system that intersect xy. 
By Proposition 1, 2(n - 1)(k + 1) is an upper bound on the number of intersections 

of edges in Gk and lines in L. This fact helps establish the following result. 

Lemma 1. There exist positive constants e~ and C~ depending on ~ only (i.e., 
independent of n, k, and S) such that there is a subgraph G~ c_ Gk which splits into 
disjoint blocks B1 u ;B2 ~ "" u Bm satisfying the following conditions: 

(1) lE(d*)[ = Z7'=1 IE(B,)I > ~ln\/~. 
(2) t V(/3,)t = LC~x/~_J~r every 1 < i < m; t V(/~l)l and 1 v(9,,)l _< LC,,,/kJ, and 

the vertices of each Bi are consective elements in the ordering of S determined 
by the x-coordinates of the points. 

(3) All edges of Bi are directed from the left to the right, and all of them intersect 
a specific vertical line l i ~ L  (1 _< i < m). 

(4) Every vertex of Bi is either isolated or incident to at least elx/~ edges of B i 
(1 _< i < m ) .  

Proof We can assume without loss of generality that the subgraph G~ ~ ak, 

formed by all edges of (~k going from left to right, has at least (e/2)nx/k edges. 

Proposition 1 implies that most edges in G~, are short, i.e., of length less that 5x/-k/e. 

This follows from 

_< (n - -  1)(k + 1). 

Deleting all edges of G~, whose length is at least (5/e)x/k, we obtain a subgraph 

(~ ~_ d~,, and 

nN//k. IE(d;)I -> 

Gk. The total number of For any Pie S let d-(pi) denote the outdegree of Pl in ' '  
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intersections between the edges of (~ and the lines of L is 

1 
> - - -  - ~--.--IE((;DI~ >__ 

-- 2n 
nk. (1) 

This fact implies that we may find a subsystem L' of L consisting of lines at a 

distance A = I l O ~ / s A  from each other, which intersect at least e3nx/k/320 edges 
-,, 

of Gk, as follows. Define the subsystems 

L, = {It, Ix+a,/,+2a . . . .  }, t = 1 . . . . .  A. (2) 

No edge of (~[ can intersect more than one line of L ,  On the other hand, we can 

fix a t so that the number of edges of t~ intersected by some element ofL  t is at least 

e2nk e3 
nN/[¢. 

32A - 320 

Let (7~' ~ (~ denote the graph consisting of these edges. Finally, let (~* be the 

graph obtained from (~' by sequentially removing all edges incident to at least 

one vertex whose indegree or outdegree (in t~') is smaller than ezx//k/640. Clearly, 

,~3 /~3 

IE(tT*)l > ]E((TZ')I - n 64--O x/~ -> 6-40 nx/~' 

(~* satisfies all the requirements of the temma with s 1 = sa/640, C1 = 10/e./3i de- 

notes the subgraph of (~* induced by those points which are between l~ + (i- ~)A- La/2j 

and lt+(i-1)a+ka/2A, and all edges of/3i cross lt+,-1)a- []  

The graph (7* is represented in Fig. 1. 

lj 

~lock/~l 

Fig. 1. 

b!o,.k B2 block B,n 

The graph t~*, a union of independent, nearly complete bipartite blocks. 
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3. Analysis of  the Blocks 

Let/~ be a nonempty block in (~', i.e.,/~ has at least one nonisolated vertex and 

satisfies Lemma 1. Therefore its vertex set splits into Q = {qt, q2 . . . .  } and 

R = {rl, r2 . . . .  }, at most Clx/k-element subsets of S which are separated from 

each other by a vertical line I. Any nonisolated vertex q~ is connected to at least 

~l~v/k elements of R. Let r~ ), r] ° . . . .  denote these elements in clockwise order. 

Similarly, q~), q]i) . . . .  e Q denotes the neighbors of r~ in clockwise order. 

Fix an integer j. The convex cone rl~_ ~)jq,..r"~,, with apex at q~ is called a wedge 

of size j and is denoted by W~ ), m = 1, 2 . . . . .  Similarly, we define wedges meeting 

at a point r~ e R by numbering the neighbors of r~ in Q, and dividing them into 

groups of size j. Figure 2 shows a typical block and helps understand the following 

statement. 

Lemma 2. There exists a constant e, 2 > 0 depending only on e I and Ca (and thus 

only on e) such that, for any j > O, 

(1) either at least eEx//k points q i~Q have the property that at least e2~/k/j  
wedges (of size j) meeting at qi contain at least j 2 elements orS in their interiors; 

(2) or the analogous statement holds for at least e 2 x f k  points r i ~ R. 

The proof is based on the following geometric observation. Consider all (the 

at least ~2k) edges in/~, and write them in order of decreasing slopes. Thus we have 

E(J~) -~- {el,  e2 . . . .  }, 

Claim 1. I f  two edges ~ -ST,r~i) and ~-z-~¢i) (or and q~)ri) are more than d apart in " l t -  g t I i l  h 

the ordering of  E(/~), then there are at least d points of  S (not necessarily in B) in 

the interior of  the cone .g ,~i.h ~o .i~h J. 

6) 
== rmj 

Q n 

Fig. 2. A typical block. 

W~)~ the mth 

f wedge of size j 
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Proof. Let S+(/) and S q~rt# °) denote the set of those elements of S that  are in the 

open half-plane to the right of 1 and S-3.r"~ respectively (l is the vertical line 

separating Q and R). The proof of Proposit ion 1 (see [12]) implies that  if ~ and 

~' are exactly d' apart  in the clockwise ordering of all edges of (~k that  cross I from 

left to right, then 

I[S+(/) c~ S(~)I - IS+(/) n S(~')It = d'. 

Thus, for every pair ea, eb • E(/~), b > a, 

IS+(/) n S(~,)I - IS+(/) n S(~b)l > b - a. 

Hence, if h > g + d, then 

IS+(/) c~ S(q--~(g°)l - IS+(/) c~ S(~r[°)l _> d + 1, 

which implies that  

IS+(/)  - > d + 1. [ ]  

Note that  the number of points of S in the angular region ~(~)- .(o is exactly the ~g f f i lh  

same as in its vertical angle (its reflection about  qi), because ..,O.r <i~_g and ~i~--~'ti)'h are 

k-segments. 

Now partition the edges in E(/~) into consecutive groups with 5j 2 edges in each 

group: 

E, = {es , -  1)j2+ ~ . . . . .  ~5u~}, i = 1, 2 . . . . .  (3) 

For  any edge 6, of/~, let q(6t) denote its initial point in Q, and let r(6,) denote its 

endpoint  in R. An edge 6 • E~ is called q-regular if 

I{~, • E,: q(6,) = q(e)} I < 3j, 

i.e., there are fewer than 3j edges in E~ whose starting point is q(~). Similarly, 6 is 

called r-regular if 

I{~, • E,: r(~,) = r(6)}l < 3j. 

An edge is called irregular if it is neither q-regular nor  r-regular. 

Claim 2. Every group Ei contains at least j 2 q-regular edges or at least j 2 r-regular 
edges. 

Proof. Let I denote the set of irregular edges in El and 

A = ~ [{gseEi: q(gs) = q(g)}] x ]{g, eEi :  r(~t) = r(g)}]. 
gEE, 



An Upper Bound on the Number of Planar K-Sets 

Clearly, 

which gives 

On the other hand, 

A = Z I{~eE,: q(Y~) = q}[ ~ I{~t~E,: r(~,) = r}l 
qEQ q'reE, 

<-(~[{e.s~E,:q(e.s)=q}l)(Ll{et~Ei ' .r(e , ) - -r} l  ), 

A _ IEil 2 = 25j 4. 

115 

A ~ 1II9j =. 

These inequalities combine to show that the number of irregular edges in E~ is at 

most 25j2/9 < 3j z. The result now follows because lEvi = 5j 2. [] 

If there is a q-regular edge contained within a wedge of size j, then we can infer 

that many elements of S are in this, or nearby wedges. 

Claim 3. Let W~ ) = r~2_,)jqir(im~ be a wedge of size j with apex q,6Q, and suppose 
that there is a q-regular edge ~-~i) in W~ ~. Then at least one of the seven consecutive 
wedges W~ )_ 3, W~ ~- 2 . . . . .  W~)+ 3 has at least jz elements of S in its interior. (A 
similar statement is valid for wedges with apex at points of R, and containing an 
r-regular edge.) 

Proof Suppose that q-~i) belongs to the group E s = {Ysts_~)~2+l . . . . .  es~j~}. If 
neither ~i-~,,-"r-~'t° 1)j nor ~,a.-'~-r(°.,,1 is contained in E~, then they are more than 5j 2 apart 

in the clockwise order of all edges of/~, and Claim 1 implies that W~ ) has at least 

5j 2 points of S in its interior. In the opposite case, let [p, v] be the maximal interval 

of integers such that ~") .  ~ E~ for every x e [/~, v]. Then v - #  < 3 by the q- "a~ - x J  

regularity of ~ff~.r")_,. On the other hand, by the maximality of [p, v], ~,---~")tu_ nj and 

~ir~)+~j are at least 5j 2 apart in E(/~). Hence, q,--~ l~-~J and ~r~j} are at least 

5j2/4 > j2 apart for some x e [#, v + 1] and, again, Claim 1 implies that the wedge 

W~ ) has at least j2 elements of S in its interior. []  

Proof of Lemma 2. Claim 2 implies that at least half of the groups Ei ~ E(/~) 

contain at least j2 (say) q-regular edges. Thus, the number of q-regular edges in B 

is at least 

2 

IE(~)I >_ JOl~,,~ > f f  k. (4) 
10 I 0  - 10  
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If condition (1) of Lemma 2 were false for some/32 > 0, fewer than /~2 N/~ elements 

q~ e Q would have at least e2 x /~/ j  wedges W~ ) with at least j2 elements of S in 

their interiors. Claim 3 then implies that there are fewer than 82 x/k elements q~ ~ Q 

with more than 752v/-k/j wedges W~ ) that contain at least one q-regular edge. 

Hence, the number of q-regular edges in/1 is at most 

/32x/klRI + IQt 7/3zxfk j .  < 8/32C,k, 
J 

contradicting (4) if 52 < 52/(80C1).  [] 

Now we point out an interesting consequence of Lemma 2. Suppose it is 

condition (1) of Lemma 2 that holds. Consider a wedge W~ ~ = rt,,,'") luq~r~ with 

at least j 2 elements of S in its interior. Rotate l*, the line from qi to -t~) clockwise / (m- 1)j, 

about qz to the position ~,a/0.,u Let Pl, Pz, . . . ,  pj: denote the first jz  elements of S 

hit by l*, and note that every point Pt is either in W~ ) or in its vertical angle ff'~). 

Also, the number of points of S to the right of the line qiPt differs from k by at 

most t. More precisely, for every 1 _< t < j2, 

IS(q,p,) - kl <_ t if p,~ W~ ~, 

IS(p,q,) - kl <_ t if p,~ ff~). 

(5) 

This means that we have identified j2 edges incident to qi in the graph 

k + j  2 

U 
s=k-j2 

We call Wg ~ u ff't~) a double-wedoe sitting at qi. For the case when condition (2) 

holds in Lemma 2, we define double-wedges sitting at r i in the analogous way. 

We apply the same procedure to each point Pi for which the double-wedge 

sitting at Pi contains at least j2 elements of S, each time obtaining j2 new edges of 

(~k_+j2. The graph formed by all these edges is called (~,±j:. By Lemma 2, each 

nonempty block of (~* has at least (52 x/-k)(/32 x /k / j )  = 5~ k/j double-wedges contain- 

ing at least j2 points of S, and the number of nonempty blocks is clearly at least 

IE(dt)l G - 

~l 
Therefore Gk±~: has at least 

(see Lemma 1). 

edges. 

1251 n 

j cI 
(6) 
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We claim that t~, ±j2 contains a fixed positive proportion of all edges of G k +j:. 

Claim 4. {E(d~±j~)l < 5 n j ~ .  

The argument is similar to that used in (1); another proof is given in [14]. 

Proof Recall that L is a system of n - 1 vertical lines that separate the points 

of S, we estimate the total number of intersections between the edges of Gk±j: and 

lines in L. Applying Proposition 1 to Gk-j2 . . . . .  (~k+j~, 

k+j  2 k + j  2 

tlx'~[[= ~ ~ t]~yylt < 2  2 ( n - 1 ) ( s +  1)<5nkj  2. 
~ e E(dk 5:;2) s = k - j  2 X-yeE(ds) S=k--j 2 

Note that there is a factor of 2 here because we must count both left-right and 

right-left edges in (~,. On the other hand, denoting the outdegree of x in Gk±~ by 

d-(x), 

II~'~lr ~ 2 (d  2(x))2 > ( 2 x ~ s d - ( x ) ) 2  - [E(~k+J2)[2- [ ]  

~ ~cCk±~) x~ s - 4n 4n 

Remark. If we could improvefl  t o j  2+~ (with some 6 > 0) in Lemma 2, then by 

the above procedure we could find at least ete2nfl +n,v/rk/C 2 edges of Gk+j~. This 

would contradict Claim 4 and complete the proof of our theorem. 

4. The Structure of Gk±j2 

In this section we modify the construction described at the end of the last section 

and extract a large subgraph G~'±~2_ (7~,±~2 _~ (~k±~2, which is much easier to 

handle. The arguments are very similar to those used in the preprocessing of t~k. 

As before, L = {l 1, 12 . . . . .  I,-1} is a system of n -  1 vertical lines separating the 

points of S. 

In (6) it was shown that IE(t~,±j~)l > (~t~/C2)njv/~. Proposition 1 implies that 

the total length of edges in Gk±j2 is at most 

k+j2 k+j 2 

2 • 11 ~'~tl < 2  ~ ( n - 1 ) ( s + l ) < S n k j  2. 
s = ~ - j  2 ~'~/~(d,) s=k-fl 

Therefore 

- ~  ~ E(Gk±j~). [1~-~1[ > ~,e~J <-" (20C2/(e,e2))jx/~ 

~1 ~2 

- 4C~ njx/'~" 
(7) 
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Also, 

~E(Gk±~=). I1~11 < 4-~2 J',~ < 4C~ (8) 

Letting Gkej2 be the graph consisting of those edges xy e E(Gk±j~ ) with 

ele 2 20C 2 

(6), (7), and (8) imply 

As in (2), let L' = {l A, 12A, laa . . . .  } with A = L(12C2/(e,ez))3jx/~_J. No line of L' 

can intersect more than ((20C2/(ele2))jx/k)2 edges "" " "  of Gk+j:, so if Gk±j: denotes the 

graph formed by those edges of G~±j~ which intersect no line in L', 

", . . . . .  f20C 2 " /7_~2 ~,e~ nix/k" 
IE(Gk±jgl >-IE(dg±~:)l- I,-,L e~-JVKJ -> 

Finally, deleting (in sequence) all edges of ~" Gk±j2 that are incident to points of 

degree less than (e~e2/8C2)jx/-k, we obtain the graph d~'±j2. Its properties are 

summarized in the following statement, analogous to Lemma I. 

Lemma 3. There are constants ea, C3 > 0 depending only on el, e2, CI (and hence 
only on e) such that there is a subgraph G~ + jz c_ d'k + j2 which splits into disjoint blocks 
B* w B* u "" w B* which satisfy the following conditions: 

(1) IE(d~'±j2)l = ZT'=llE(BF)I- ~3njx//-k. 
(2) IV(/~*)l = LC3jx/~Afor every 1 <_ i < m, IV(B*)l _< Lc3jx/-kA, and the ver- 

tices of every B~' are consecutive elements in the ordering of S determined by 
the x-coordinates of the points. 

(3) eajx/~ < [l~'~[[ < C3j~/k for every x---} e E(G*±~2). 

(4) Every vertex of  B* is either isolated or incident to at least eajx/~ edges of 
B * , l  < i < m .  

Given a graph G = (V, E) and a subset X _ V, let G - X denote the graph 

obtained by removing all edges incident to at least one element of X. The role of 

the q's and the r's is clearly symmetric (see Lemma 2). Therefore, to avoid 

repetition, from this point on we use qi to denote any nonisolated vertex of G*, 

whether a qi or an ri. 
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Lemma  4. There exists a constant e, 4 > 0 depending only on el, e2, %, C1, C a (and 

hence only on e) such that, for any subset X ~_ S of size at most ea n/(2C3), we can 

find at least e4n nonisolated points qi in G~ satisfying the following property: 

(P j) The number of double-wedges W~ ) u 1 ~  ) sittin!? at qi that contain at least 

e4j 2 edges ~* Of Gk+ F -- X incident to qi is at least e4x/~/j. 

Proof By Lemma  3(2), 

IE(Gk+_~ - X)I _> IE(dL+j~)I - I X I C 3 j ~  > 

According to the definition of G~,_+~.. following (6), each edge is assigned to a point  

qi and to a double-wedge W~ ~ w ff'~) whose apex is at % If the lemma were false, 

then if we added up the number  of edges of E(G~'_+j~ - X) assigned to each of  the 

points q~ that satisfy proper ty  (P j), we would get a sum which is at most  

e,~C~x/-£/j)j2= e4Cxnjx/-k. On the other hand, the number  of edges of 

E(G*+_j~ - X) assigned to points not having property (P~) does not exceed 

• J J 

Setting e4 = 'g3/(6C1), we obtain 

IE(d~'+j~ - X)l < e4Clnjx/~ + n j2 + e4jz < j -2 nix/k, 

the desired contradiction. [] 

If G = (V, E) is a graph whose vertices are a subset of the integers, a point x E V 

is said to cut the edge yz ~ E, if x is contained in the open interval (y, z). It is easy 

to prove the following simple fact, needed in the next section. 

Lemma 5. For every ? ~ (0, 1), there exists a ~ = 6(~) > 0 with the following 

property. Given any graph G on the vertex set V = { 1, 2, . . . ,  K} with minimum degree 
at least ]:K, and given any subset V' ~_ V, [V'[ >_ 7K, we can always find an interval 

I ~_ V such that [I c~ V'[ >_ ~K and every element of I cuts at least ~K 2 edges of G 

(,~ _ ~,~/35). 

Proof. For  simplicity, assume that  i V'[ = vK. For  a fixed b, let ii < i2 "< " ' "  < :  i t -  1 

denote  those points of  V that  cut fewer than bK 2 edges of G. Set io = 1, i, = K, 

and let v~ (and v)) denote  the number  of elements of V (resp. V') in the dosed  

interval I~ = [i~_ 1, i~], 1 _< j < t. Clearly, ~ v~ _< K + t, ~ v) _< [ V'I + t. An edge 

of G is called short  if both  its endpoints belong to the same I i, and long otherwise. 
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Double counting L, the total length of edges of G incident to at least one element 

of V', we obtain 

½1wl 
y2K2 73K 3 

4 8 
_< L = L s h o r  t q- Lio~g, 

where 

t 

L,.o. _< Z 6 #  
j = t  

and 

Llong ~-- 

t -1  

(number of edges cut by ijXv j + vj+ 1 - I) 
j = l  

< 6K2(2[ V'I + t) < 3~K 3. 

Assume now that [(ij_ 1, ij)t-~ V' t < 6K for all j. Then 

Lshor , <_ (6K + 2) ~ vy _< (6K + 2)K 2, 

and choosing 6 = y3/35 we get a contradiction. Thus I(i i_ 1, ij) c~ V' I > 6K for some 

j, which completes the proof. [] 

5. Stabbing Many Edges by a Line 

o ~ k + J  2 l o  5j2k edges of  By Proposition 1, every line intersects at most ,-/~s=k_j2to "~ 1) < 

Gk±j2. NOW we show how to find an integer j and a straight line that violate this 

condition, a contradiction that will complete the proof of our theorem. Let Sj ~_ S 
denote the set of all nonisolated vertices of t~*±j2, and write S<_j = UI= 1 St. 

Lemma 6. Suppose that a point q i s  So has property (Pj) with X = S s j  - S~h for  
some j > h. Let r~ ), r~ i) . . . .  denote the neighbors of  qi in Cr*. Let  A = A(j ,  h, qi) 
denote the total number of  intersections between the lines qir~ ° and the edges 
"~ '  ~ E(Gk±h2 ) which 3atisfy 

- -  - "  _ c j,?i + C h,/i. e 3 J x / ~ -  Cahv/~  <-Ilq,Pll, llq,P II < (9) 

Then 

14 ( 
A > \lOCah,/  
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Proof Consider all double-wedges W~)w W~ ~ of size j sitting at qi which 

contain at least e4j z edges of G*±i2 - X incident with q~. The other endpoints of 

these edges are called red points. Since qi has property (P j), there are at least e]jx/~ 

red points, each being at distance at least e3j~f/~ and at m o s t  C3j ~ from ql .  

Because every red point belongs to some S o (9 < h), there is a g < h such that 

d~'+g~ has at least ~]jx/k/(h + 1) >_>_ e]jv/k/(2h) red points among its nonisolated 

vertices. Let /3" , /3"  . . . .  denote the blocks of Gk±g-~, ~* each with [_C3gx//k] vertices 

(see Lemma3). At most 2C3jx/-f:/t V(B,*)I < C3j blocks/~* may contain red points. 

Writing R(B*) for the number of red points in/3" we have 

d 
R(/3*)>_ - -  v ( / 3 . ) t 4 c 3  

>_ R(Gk±~Z ) -  ~/3": R(/3*) < 4C3 4C a h 

~-- _ _  C3 j 4. _ __ 
2h 4C 3 h 4h ' 

so that 

d > , J  
¢/3": R(/3*) _> 4--C3 - 4C3 h 2" 

Now fix a block/3" with at least (e]/4C3)(Jk/h) red points b 1, bE, b3 . . . . .  b~, 

s > (eE/4Ca)(xfk/h), listed in clockwise ordering of the rays from qv We 

apply Lemma 5 to the graph G obtained from /~* by omitting its isolated 

vertices and regarding its edges as undirected. We view G from qi and, in 

applying Lemma 5, we let V' = {bl, b2 . . . . .  b~}, e3gx/~ < IV[ = K < C3gx//k, 7 = 

min(e3/C3, e2/(4C 2 h2)) = e2/(4C2 a h 2) (see Lemma 3). We conclude that there are 

integers u and v such that v - u >_ y3K/35, and every half-line ~ in the angular 

region b, qib ~ intersects at least y3K2/35 edges of/3" _ G*±g2 g Gk±h2. 
It follows from the definitions that every double-wedge W~ ) w l ~  ) of size j 

contains at most j2 red elements bw of/~**. This means that for at least y3K/(40j2) 
consecutive integers m, the rays ~-~ti)ni ,~i are in the angular region b, qib~, and so the 

number of lines ~-~.r(O that intersect at least yaK2/35 edges of B* exceeds ),3K/(45j). 
Applying the same argument to all the blocks/~* having at least (e~4cax.,,/k/h) red 

points (there are at least (ez/4C3)(j/h 2) of them), we obtain 

( e~ j: \ /y3 K 2\ /y3 K )  

/ o 8 \14 
¢ "3 4 | k3/2 [] 
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Proof of  the Theorem. 
sets of integers as follows: 

J .  = {h.M, h . M  2 . . . . .  h.Mhl'~N}, 

where h 1 = 1 and. for every u > 1, h. = hu_lM h~N. 
The function 

is increasing in j ,  so there is an integer u _< M such that 

n ~3 
f (h ,+ 1) - f (h , )  <_ -M <. ~ n. 

This implies that 

J. Pach, W. Steiger, and E. Szemer6di 

Put M = I-2CJ~3-1, N = I-(10Cd(e3~4))15-] ,  and define M 

l ~ u ~ M ,  

IS<_j - S<h~l <- - n, V jEJ , .  
3 

By Lemma 4, for every j e J . ,  at least e4n points qi ~ S o -  V((~*) have property 

(Pj) with X = S < j -  S<h~. This, in turn, implies that there is a point, say q~e So, 

satisfying property (P j) for every j belonging to some subset J', ~ J .  of size at least 

e4lJ.I = e4hlu 6N. 
We apply Lemma 6 to the point qi (with h = h., j e J',) and observe that the 

total number of intersections between the lines qirl i} and the edges of Gk+_h ~ is at 

least 

2 3/2 > j ,  [ ~3~4 ~ ka/2 > lOClh.k  • (10) 
A(j, h, q,) _ u \ l O C 3 h . f  - 

j~J~ 

(Note that the condition in (9) guarantees that no intersection is counted more 

than once.) 

By Lemma 3, q~ has at most Crv/k neighbors r~ ° in ~ .  One of them gives a 

line, q~r~ °, with more than the average number of intersections. According to (10) 

this line intersects at least lOC~h~k3/2/(C1v/k)>_ lOh~k edges of G~+~. This 

contradicts the first sentence of this section, completing the proof. A straightfor- 

ward evaluation of the constants e~, C~, M, N, h, shows that our arguments always 

lead to contradiction, provied that e > C/log* k. [] 
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