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Abstract 
 
 
Niobium diselenide 2H-NbSe2 is a van der Waals bonded layered structure, which 

undergoes a charge density wave transition. We have investigated the charge density 

wave transition in NbSe2 using grazing incidence X-ray diffraction. The evolution of a 

satellite reflection associated with the charge density wave has been observed above 

and below the critical angle of total external reflection in order to carry out a direct 

comparison between the surface and bulk behaviour. We successfully isolated the 

surface charge density wave structure on a high quality single crystal. The central 

finding of this thesis is that the behaviour of the surface charge density wave satellite 

differs from that in the bulk: At the surface, the charge density wave transition occurs 

at a higher temperature than in the bulk; also, the transition appears to be continuous. 

It is likely that we observe the unusual case defined as a “surface transition” and not 

the usual case of an “ordinary transition”. 

The critical exponents for the surface sensitive and the bulk geometry have been 

determined from the X-ray diffraction data. The exponents are consistent with the 

occurrence  of a continuous phase transition at the surface and in the case of the bulk a 

second order or very near second order phase transition in the  bulk. 

A novel experimental method, grazing incidence inelastic X-ray scattering, has been 

demonstrated. A first successful experiment on 2H-NbSe2 where surface phonons are 

measured is reported. 





 

Zusammenfassung 
 
 
Niob-Diselenid 2H-NbSe2 ist ein van-der-Waals gebundener Schichtkristall mit einem 

Ladungsdichtewellen-Phasenübergang. In Rahmen dieser Arbeit wurde dieser 

Phasenübergang mittels Röntgenbeugung unter streifendem Einfall untersucht. Um 

direkt das Verhalten im Volumen und an der Oberfläche vergleichen zu können,  

wurde die temperaturabhängige Intensität eines Satellitenreflexes der 

Ladungsdichtewellen-Phase ober- und unterhalb des kritischen Winkels für externe 

Totalreflexion der Röntgenstrahlung gemessen. Die Ladungsdichtewellen-Struktur 

konnte erfolgreich bei einem Einkristall hoher Qualität isoliert werden. Das wichtigste 

Ergebnis dieser Arbeit ist der gefundene Unterschied des Ladungsdichtewellen-

Übergangs im Volumen und an der Oberfläche: An der Oberfläche tritt der 

Phasenübergang bei einer höheren Temperatur als im Volumen auf; außerdem ist der 

Übergang offenbar kontinuierlich. Es ist sehr wahrscheinlich, daß der seltene Fall 

eines sogenannten „Oberflächen-Übergangs“ vorliegt und nicht der übliche Fall eines 

„gewöhnlichen Übergangs“. 

Aus den Röntgenstreudaten wurden weiter kritische Exponenten für den 

Phasenübergang bestimmt. Die Exponenten sind in Übereinstimmung mit einem 

kontinuierlichen Phasenübergang an der Oberfläche und einem Übergang 2. Ordnung 

oder nahe 2. Ordnung im Volumen. 

Schließlich wird in dieser Arbeit eine neuartige experimentelle Methode, inelastische 

Röntgenstreuung unter streifendem Einfall, vorgestellt. In einem ersten erfolgreichen 

Experiment an NbSe2 wurden Oberflächen-Phononen gemessen. 
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1 Introduction 
 
 
There is considerable interest in low-dimensional materials in solid state physics. The 
reason for this is that reduced dimensionality has an influence on the electronic 
properties of a solid. In addition to designed systems such as heterostructures  of 
binary and ternary III/V- semiconductors, natural layered crystals play an important 
role. Examples of such layered materials are graphite as well as the high temperature 
superconductors and the group of transition metal dichalcogenides. 
 
The transition metal dichalcogenide family ranges from semiconductors through 
semimetals to metals. They exhibit fascinating properties due to their van der Waals 
bonded layered structure; particularly they display a quasi two-dimensional 
behaviour. Many of the metallic layered compounds exhibit charge density wave 
(CDW) instabilities1,2,3. The conduction electrons play a central role in these changes 
of the electronic properties which show similarity with a Peierls transition. In recent 
years there has been intensive activity in the area of low-dimensional systems due to 
their special electronic properties and the possibility of intercalating other atoms into 
the layers. In particular there is great interest in this family of materials in the field of 
photoemission and other spectroscopic methods as they have such an interesting 
electronic structure4,5,6 and since simply by cleaving a clean surface may be obtained. 
The geometric structure is equally of  great interest: scanning tunnelling microscopy, 
other microscopy techniques and also neutron and X-ray scattering methods are used 
to gain an insight into the properties of these materials. Indeed, the topic is the theme 
of an interdisciplinary experimental and theoretical DFG “Forschergruppe” at Kiel 
university investigating the structural and electronic properties of layered compounds 
using a range of techniques. The grazing incidence X-ray diffraction study (GID) of 
2H-NbSe2 at the charge density wave transition presented in this thesis has been 
carried out within the framework of this “Forschergruppe”. 
 
The physics of phase transitions is an extremely interesting area, especially for 
layered crystals where one might expect low dimensionality to play a dominant role in 
the critical behaviour at the phase transition. X-ray elastic diffraction provides 
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information on the structure of materials. By monitoring the diffraction from a sample 
while varying temperature it is possible to investigate the temperature dependence of 
a material structure and relate this to the phase transition physics. Many bulk X-ray 
and neutron scattering studies of phase transitions have been carried out on layered 
materials, hence there is a depth of knowledge available in this area (see for example 
Refs. 1, 3, 7, 8, 78, 95). 
 
The role of a surface in continuous phase transitions has been described in detail by 
theoreticians such as S. Dietrich and H. Wagner9, H. W. Diehl10, K. Binder11 and 
others. Recently much theoretical work has been devoted to the behaviour at the 
surface very close to the transition temperature such as the studies of D. P. Landau 
and K. Binder12 and A. Milchev et al.13. Comparatively little experimental work has 
been done on the role of the surface. Using GID, i.e. maintaining an incidence angle 
below that of the angle of total external reflection, it is possible to restrict the 
penetration depth of the X-ray beam into the sample to ~30 Å (e.g. Ref. 14). Depth-
sensitive measurements are possible by carefully varying the angle of incidence of the 
incoming X-ray beam. Zhu et al.8 carried out such a GID experiment on the CDW 
transition at the charge density wave material K0.3MoO3 (blue bronze) surface. 
However, they did not observe modified behaviour at the surface and postulated that 

this was due to the existence of weak coupling perpendicular to the ( 120 ) surface. In 
many other systems surface effects have been observed. Burandt et al.15 found a 
modified surface behaviour at the NH4Br  surface. In 1997 Reichert et al. reported 
surface-induced anisotropy in Cu3Au16 and more recently determined the long-range 
order for the same system also by GID.17 In 2003, again using grazing incidence 
diffraction, they observed that the short range order in Cu3Au was modified with 
respect to the bulk behaviour.18 
 
For a charge density wave system, in order to understand the dynamical behaviour at 
the surface, it is also important to consider lattice vibrations and the role of phonon-
phonon interactions and that of phonon-electron interactions. A novel X-ray scattering 
method to probe the surface phonons is presented in this thesis. 
 
In particular, this study is focused on the transition metal dichalcogenide 2H-NbSe2, a 
layered structure with a hexagonal symmetry, space group P63/mmc, with lattice 
constants a = 3.443 Å and c = 12.547 Å.19 Previous studies have shown that NbSe2 
undergoes a second order phase transition, within experimental accuracy, to a charge 
density wave structure1,3. The presence of a CDW below 33.3 K, with a hexagonal 
superstructure, was reported by Moncton et al.  in 1975 using neutron scattering.1 The 
crystal lattice modification that occurs is fundamental to the transition, as the 
facilitating motion of the ions in the form of an accompanying phonon mode reduces 
the Coulomb energy of the CDW. This modification in association with the CDW is 
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evidence of strong electron-phonon coupling. Due to a linear coupling between the 
lattice and the charge density wave, a lattice distortion develops, the amplitude of 
which is proportional to the order parameter of the transition1. Moncton et al. showed 
the CDW to be incommensurate down to T = 0 K. A superconducting transition 
occurs at T = 7.2 K20. 
The properties of the layered crystal niobium diselenide are presented in detail in 
chapter 2. The theory of phase transitions and their classifications are discussed in 
chapter 3. Particular attention is devoted to the occurrence of a surface phase 
transition in this ½-∞ system. In this work the method of grazing incidence diffraction 
is employed to investigate the nature of the CDW phase transition at the surface of the 
material and to compare this behaviour to that of the bulk. We measure and 
characterise the CDW satellite peaks at the phase transition in order to carry out a 
direct comparison between the surface and bulk behaviour. Diffraction techniques are 
introduced in chapter 4 and the detailed description of the experiments carried out at 
Kiel and at the HASYLAB and ESRF synchrotron sources is presented in chapter 5. 
The experimental data are presented in chapter 6 along with the data analysis. The 
relevance of these results is also discussed. A recently preformed novel experiment 
where inelastic X-ray scattering was carried out at the surface of NbSe2 is outlined 
and the preliminary results are presented in chapter 7. In the concluding chapter the 
impact of the work is considered and future prospects in this area are put forward. 
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2 Structure and properties of layered crystals 
 

2.1  NbSe2 – a layered crystal 

 
The TX2 dichalcogenides have been largely studied for about 40 years. These layered 
crystals can be synthesised to form highly anisotropic compounds. While inside each 
layer strong ionic and covalent bonding predominates, weak van der Waals forces act 
between adjacent layers. The layered transition metal dichalcogenides exhibit 
fascinating properties due to their van der Waals bonded layered structure: 
superconducting behaviour, nonlinear and anisotropic electrical properties, gigantic 
dielectric constants, charge density wave (CDW) instabilities and a wealth of 
dynamical behaviour. NbSe2 is a member of this group of materials, with T = Nb and 
X = Se. The coordination around T is either trigonal prismatic or octahedral.  

 

Figure 2-1 NbSe2 has a layered structure consisting of Se-Nb-Se layers bound only by van der 
Waals forces. 

The layers themselves are highly correlated, i.e. very well ordered, but perpendicular 
to the layers the structure is less well bound. As a result of this layer-like structure 
NbSe2 displays almost two-dimensional behaviour, for example exhibiting a charge 
density wave transition.1,2,3 The structure arises from the stacking of hexagonal 

Nb 
Se 

Se 

van der Waals cc//22  
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packed planes (not close packed) as shown in Figure 2-1 with van der Waals forces 
between the layers. The hexagonal structure has lattice constants a = 3.443 Å, 
c = 12.547 Å as measured by Meerschaut et al.19 at room temperature for a powder 
sample that displayed perfect stoichiometry. The calculated density is 6.467 g·cm-3 
The single crystals investigated in this work are predominantly of the 2H-polytype 
and have the space group P63/mmc. Figure 2-2 shows the 2H-stacking. Though 2H is 
the most common several stacking polytypes exist. There are many discussions of the 
nature and relevance of polytypes in the literature such as discussed in Refs. 19, 21, 
22, 23. 
 
 
 

        > 33 K Normal metal 
        < 33 K Incommensurate CDW 
        < 6 K Superconducting 

Table 2-1 The important temperatures for NbSe2 are shown above. 

 
 
 

 

Figure 2-2 The structure of the 2H-NbSe2 polytype shown on the left hand side in 3 dimensions 
and on the right hand side in plane view (after Wilson23). 

There are three known phases of NbSe2 (Table 2-1). At temperatures greater than 
approximately 33 K it is a metal. Below 33 K an incommensurate CDW phase forms 
and below 6 K superconducting behaviour is observed in addition to the CDW 
instability. These phase transitions in NbSe2 can clearly be seen in the resistivity 
measurement shown in Figure 2-3 where a dip in the resistivity occurs as the system 
undergoes the charge density wave transition, followed by a drop to immeasurably 
low resistivity at the superconducting transition. 
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Figure 2-3 Resistivity measurements made by Oulo University show the transition temperatures 
in 2H-NbSe2. Measurements courtesy of Ref. 24.  

 

2.2 Charge density waves 

 
In the mid 1970’s quasi-one-dimensional metals were discovered which underwent  
unusual transitions. Materials such as NbSe3 and “blue bronze” K0.3MoO3 were found 
 

 
 

Figure 2-4 At room temperature there is a uniform distribution of the electron density. As the 
material is cooled the ions develop a static periodic distortion known as a Peierls distortion. In 
association with this distortion a Fermi gap opens up (after Thorne25). 

 

Ions uniformly placed 

Uniform electron density 

Electron density modulated  
(charge density wave) 

periodic distortion 

T < Tc 

T > Tc 
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to undergo a charge density wave transition at low temperatures. Comprehensive 
reviews are given by Thorne25 and Grunner26 among others.  
In a one-dimensional metal with a partly filled band, the lattice will never be stable at 
sufficiently low temperatures because the presence of the periodic potential would 
break the Fermi surface distribution, i.e. open a gap, resulting in a Peierls distortion. 
At room temperature there is a uniform distribution of the ion lattice. As the material 
is cooled below the critical temperature the ions form a periodic distortion (Figure 
2-4). 
 
The Peierls instability27 in a 1D electron system is induced by strong electron-phonon 
interaction, which can develop due to the characteristic topology of the Fermi surface 
with a perfect nesting: For a single one-dimensional chain of atoms the Fermi-
“surface” consists of two points k = +kF and k = -kF (Figure 2-5). For a three-
dimensional, periodic distribution of non-interacting chains the intersection of the 
energy band with the Fermi energy lies on two parallel planes which are perpendicular 
to the chain direction and can be shifted onto each other by the translation |k| = 2kF. 
The overlap of parts of the Fermi surface as a result of a translation is called nesting. 
 
 

 

Figure 2-5 The Fermi energy behaviour for a Peierls instability: A one-dimensional electron 
system can lower its total energy by a lattice distortion. A half-filled band in a one-dimensional 
metal (a) at room temperature displays a uniform electron density (b). On cooling an energy gap 
opens at the new zone boundary (c) due to the periodic lattice distortion (i.e. the charge density 
wave) (d). 

The Fermi surface and the nesting for electron systems of various dimensions are 
illustrated in Figure 2-6: For the one-dimensional case the overlap, i.e. the nesting, 
with respect to the translation |k| =2kF is perfect, while for a 2-D system the overlap 
reduces to a line of the cylindrical Fermi surface and for a 3-D system to a single 
point on the Fermi sphere.  
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Figure 2-6 Fermi surface and nesting of ideal isotropic electron systems of various dimensions.  
In three dimensions the overlap is simply a point on the cylindrical Fermi surface, in two 
dimensions the overlap becomes a line on the cylindrical Fermi surface and only in the one-
dimensional case perfect nesting occurs with respect to the translation |k| = 2kF.   

 

2.3 Previous NbSe2 studies 

 
In NbSe2 a structural phase transition accompanied by a CDW distortion occurs at 
approximately 33  K1,3. The crystal lattice modification associated with the charge 
density wave transition is fundamental to the transition, as the facilitating motion of 
the ions and an accompanying phonon mode reduce the large Coulomb energy of the 
CDW. Due to a linear coupling between the lattice and the charge density wave, a 
lattice distortion develops, which is proportional to the order parameter of the 
transition. 
Though the origin of these instabilities is not fully understood, they are thought to 
result from Fermi surface nesting. Surface sensitive angle-resolved photoemission 
experiments suggested that Fermi nesting plays an important role in the charge 
density wave formation.4,5,6 A charge-density wave vector of q =  0.69  ±  0.06 Å−1 
has been determined by Straub also using angle-resolved photoemission data on the 
Fermi surface and conduction band dispersion28. The structure remains 
incommensurate even through a superconducting transition which occurs at T ≈ 6 K, 
reported to be a first order vortex transition3,5. The superconductivity in 2H-NbSe2 has 
been shown to be Fermi sheet-dependent4,5. In a separate study Mallet has measured 
the local density of states in the CDW phase and revealed that the electronic structure 
close to the Fermi level and of the Fermi surface itself is very complex29. Other 
techniques such as NMR studies30 have shown that the local commensurability of the 
CDW should correspond to an orthorhombic symmetry. 
In 1970 Overhauser31 predicted that satellite reflections should be observable with 
neutron diffraction due to the atomic displacements associated with the CDW 
instability as observed later by Moncton et al.1. The charge density wave super-
structure can also be observed in real space by STM32 as shown in figure Figure 2-7. 
Other STM studies of charge-density waves are reported by Sacks and Van Bakel33,34. 
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Figure 2-7 STM image of NbSe2 collected below the charge density wave transition temperature 
(33 K). In the left hand picture the hexagonal superstructure due to the charge density wave is 
clearly visible superimposed on the hexagonal structure of the lattice  In the blown up picture on 
the right the superstructure of the charge density wave at 3a is seen, where the yellow arrow 
represents the regular lattice and the black arrow the superstructure resulting from the charge 
density wave (after Davis32). 

 
The CDW phase transition of bulk NbSe2 has been investigated by both neutron and 
X-ray diffraction1,2,3 by monitoring the temperature dependence of the charge density 
satellite reflection intensity. This is possible as the charge density wave reflection 
intensity is proportional to the square of the order parameter. The presence of a CDW 
below 33.3 K with a hexagonal superstructure was reported by Moncton et al. in 1975 
using neutron scattering.1,2. Moncton, Axe and DiSalvo carried out neutron studies of 
2H-NbSe2 and 2H-TaSe2. They showed the CDW satellite reflection to be 
incommensurate on formation in both compounds with a wavevector qo = (1 - δ)a*/3 
where a* = 4π/√3a. For NbSe2, although the peak moves towards the commensurate 
position of 2/3, it does not lock in over the temperature range from 32 to 10 K. In the 
case of 2H-TaSe2, a first order lock-in transition was observed at 90 K.  
Since the charge density wave formation in layered materials is related to the 
anisotropy of the layers it is expected that anisotropy in the long-range forces will be 
observed. This is very nicely illustrated by this example from 2H-TaSe2 measured by 
Moncton and co-workers1 (Figure 2-8). The correlation length perpendicular to the 
plane is only one third of that in the plane. This demonstrates a degree of two-
dimensionality in TaSe2. This can be related to the associated coupling constants (J┴, 
J║) so that J┴ = ⅓J║. In NbSe2 one would expect a similar behaviour. 
In addition, Moncton et al. observed  strong Kohn anomalies in the case of both. For 
the two systems they observed Σ1 phonon-like displacements and although they did 
not measure mode softening directly in NbSe2 – it was measured for TaSe2 – on this 

aCDW  ~ 3 a ~  10 Å 10 Å 
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ground they predicted a second order phase transition for both systems. The 
superlattice reflection intensity is shown in Figure 2-9 to fall continuously to zero.  

 

Figure 2-8 The critical scattering at the superlattice reflection in 2H-TaSe2 is shown in both the 

q║ and the q┴ direction at 123 K. The width of the q║ measured reflection is ⅓ of that of the q┴ 
measured reflection showing anisotropic correlation lengths (from Moncton2). 

 
 

  

Figure 2-9 The normalised intensity of the charge density (5/300) superlattice reflection versus 
temperature. The intensity falls smoothly to zero (after Moncton1). This is consistent with a 
second order phase transition. 

 
In a later neutron scattering experiment (1992) Ayache and co-workers7 investigated 
the softening of the longitudinal Σ1 phonon mode at the charge density wave satellite 
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reflection in 2H-NbSe2. They observed two modes at room temperature, ω1 and ω2 

(Figure 2-10). The ω1 optical mode remained constant as temperature was reduced. 
The uncertainty in the measurements is clearly seen in the figure where a band at 
approximately 75 meV was observed. Within the accuracy of the measurements no 
temperature dependence of the mode was observed. For the ω2 acoustic mode found 
to be at about 25 meV at room temperature softening is observed from about 100 K 
and it appears to be complete at approximately 32 K within the experimental 
accuracy, indicating that NbSe2 undergoes a second order transition at 32 K. 

 

Figure 2-10 The temperature dependence of the longitudinal Σ1 phonon. Complete mode 
softening is observed in the ω2 branch as Tc is approached. This is indicative of a second order 
transition at Tc = 32 K. Figure from Ref. 7. 

The incommensurate nature of charge density waves is discussed in the frame of 
Landau theory by McMillan35 who found the lowest energy state near the lock-in 
transition to be a distorted plane wave. He also concluded that, at constant lattice 
parameter, the onset transition for a single charge density wave is continuous. 
In summary, the neutron studies of Moncton1,2 and Ayache7 both predict that the 
charge density wave transition is a second order phase transition. However, as a small 
component first order behaviour is difficult to determine experimentally it can not be 
completely ruled out. 
 

 ω2 
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3 Theory of phase transitions 

3.1 Introduction to phase transitions 

 
Many of the fundamental concepts from the theory of phase transitions are common 
place. We are all familiar with the fact that matter occurs in different phases such as 
solid, liquid and gas. It is possible to change from one form to another by changing 
thermodynamic variables such as temperature, pressure or volume. For example, if the 
temperature is raised a block of ice becomes water and when heated further water 
turns into steam. There are many interesting examples of phase changes to be found 
all around us; everyday ones such as freezing water and more exotic ones such as 
NbSe2 which changes from being conducting to superconducting at temperatures 
lower than 7 K or liquid helium which, when cooled below 2.2 K, becomes a 
superfluid. 
The coexistence of phases is also no surprise to us; from first order phase transitions 
we know that at 0°C a beaker can contain water and ice at the same time. The matter 
in the beaker exists in two different states simultaneously. 
We now consider the case where the beaker of water at room temperature is heated to 
100° C. At low temperature there are perhaps a few very small bubbles of gas in the 
water which can be described as density fluctuations. As the water is heated one finds 
more and more gas bubbles occurring, i.e. greater density fluctuations. Close to the 
boiling temperature, the transition point, there is a large number of bubbles of 
different sizes. Above the boiling temperature more and more of the water becomes 
gas. The occurrence of such fluctuations, density or otherwise, close to the critical 
point of a second order transition is generally described by the term ‘critical 
fluctuations’. These fluctuations may occur on many different length scales. Consider 
small bubbles of gas with a radius as low as a few microns to bubbles the size of the 
beaker close to the boiling point. Critical phenomena may be observed on a large 
range of length scales, ranging from 10-10 m in effects as described in quantum field 
theory to macroscopic turbulence occurring on the scale of microns to kilometres. 
Renormalisation group theory provides an algorithm for relating critical effects over a 
large range of length scales.  
In theory one can at first consider such effects for infinite systems. In reality of course 
each system has a finite size and has surfaces or interfaces to be taken account of. As 
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one would expect the surface provides a disruption to the system. For example at a 
crystal surface some bonds are missing which can modify the local structure and 
lattice constants at the surface36. It is therefore useful to devolve the theory to consider 
such effects. 
In the study of different states of matter a phase diagram is often used to illustrate the 
transition of matter from one state to another. For example, a phase diagram for water 
can be described as a two-dimensional presentation showing the different phases of 
water with dependence on temperature and pressure, as in the above example. A third 
variable such as density or volume or more variables may be required to describe a 
complete system accurately.  
In order to achieve a deeper understanding of phase transitions a theory that can 
qualitatively and quantitatively describe and predict critical behaviour is required. The 
charge density wave phase transition in NbSe2 is the central topic of this thesis. In 
order to understand this effect a brief review and classification of phase transitions is 
given in this chapter. Both phenomenological and microscopic theories will be 
discussed. In particular, the effect of truncating the volume by a surface will be 
considered. 
 

3.2 Thermodynamics of phase transitions 

 
The first law of thermodynamics, conservation of energy, describes the differential dU 
 
  WQdU δδ −≡      ( 3-1)  

where U is the internal energy of the system (see e. g. Finn37) and  

  PdVW =δ  
is the quantity of work (where δ denotes an inexact differential) done by the system 
with pressure P and by volume change dV. 
For an infinitesimal reversible process we can write for the change in heat 
 
  TdSQ =δ       (3-2) 

 
with temperature T and entropy S. 38,39 
In order to give a thermodynamic description of phase transitions it is helpful to 
define thermodynamic relations that are analogous to the above. This was initially 
carried out for magnetic systems41,42. We will replace the state variables P, V by a 
field H, and m as the change caused by this field, respectively. Following the notation 
of Stanley41 we can substitute 
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HP

mV

→
−→

      ( 3-3) 

 
The first law of thermodynamics can now be written  
 
  HdmTdS dU += .     (3-4) 

 

For an isolated system in an external field H at a given temperature T the state 
function or thermodynamic potential is the Gibbs free energy  
 
  mH U-TS G(T,H)  G −== .   (3-5) 

 
In the initial formulation for magnetic systems m represented the magnetisation. More 
generally, the concept of an order parameter can be thought of as follows. Through 
the selection of an appropriate measure representing the order of the system, it is 
possible to describe a phase transition mathematically by quantifying the degree of 
order during a phase transition. By monitoring the degree of ordering as the 
temperature approaches the critical point, we can describe the mechanics of the phase 
transition. For a two-phase thermodynamic system where the high temperature phase 
has a lower degree of ordering than the low temperature phase, the thermodynamic 
order parameter m derived from the Maxwell relations and Equation (3-5) can be 
expressed as  
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This is valid for a system that has m(T) maximum at T = 0 and m(T) = 0 at T above a 
certain critical temperature. The isothermal susceptibility or response to the external 
field is defined as 
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In the case where the acting field H is constant the entropy may be expressed as 
follows 
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and therefore the specific heat is given by 
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3.3 Classes of phase transitions 

 
Historically, phase transitions are often divided into two classes; first order and 
second order. In the case of first order phase transitions the order parameter (Equation 
3-6) displays a discontinuous behaviour at the transition point. This results in a 
discontinuity in the susceptibility and in the specific heat. There are many examples 
of first order transitions: a solid melting into a liquid, or some superconducting phase 
transitions such as the one found in NbSe2

5. 
Second order phase transitions are continuous in the sense that the state of the body 
changes continuously. There is no latent heat associated with a second order 
transition, however the specific heat and susceptibility are discontinuous at a second- 
order phase transition point. The 2H-NbSe2 charge density wave transition discussed 
in this thesis is considered to be a second order transition within the measured 
experimental accuracy1,7. Other classic continuous phase transitions include the 
paramagnetic to ferromagnetic phase transition in iron and the transition of liquid He 
to a superfluid state.  
The general aim of any theory is to help understanding of a phenomenon. Following 
on from the Nernst equations (based on the third law of thermodynamics) Landau 
provided a macroscopic theory to describe the nature of second order phase 
transitions. This model was later refined by Ising who introduced a simple lattice 
model. 
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3.4 Landau theory 

 
In 1937 Landau provided a good treatment of phase transitions describing the 
thermodynamic potential near the critical point (this is described in detail in Ref. 40). 
As Landau theory does not account properly for critical fluctuations it fails in the 
immediate region of the critical point. Landau uses the assumption that it is possible 
to expand the thermodynamic potential in a power series about the critical point. The 
symmetric nature of the function can be seen in Figure 3-1. We know that the 
expansion about the critical temperature cannot be valid up to arbitrary orders and 
may have singularities. There are, however, grounds to suppose that its singularity is 
of higher order than the terms we consider below40. 
In Landau theory it is assumed that the Gibbs free energy can be expanded in a power 
series about T=T0 depending on the order parameter m where m(T0)=0: 
 

  ( ) ( ) ( ) ( ) ( )
6420

642

, mTcmTbmTaTGmTG +++= .  (3-10) 

 
In the case of a second order phase transition, terms with odd powers of m are usually 
missing in order to fulfil symmetry requirements of the crystal on a microscopic 
level42,42. Therefore only the even exponents are kept in the expansion of the free 
energy41

. 

 

 

Figure 3-1: Landau theory describes the Gibbs free energy for a second order phase transition. 
The free energy has one minimum when T >Tc and two minima when T < Tc. 40 

 

 
If we consider a phase transition at a transition temperature Tc we can write 
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where a´ is a positive constant below Tc. For a second order transition b is positive 
and constant and the last term of Equation (3-10) may be neglected . 
The variation problem can be solved by minimising the Gibbs free energy with 
respect to the order parameter m.  
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It is then possible to write Equation (3-12) in the form 
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Since a´ and b are positive for T > Tc the only real root is m = 0 (Figure 3-1). We 
define the dimensionless reduced temperature τ   
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For T < Tc the minimum of the Landau free energy in zero applied field is at 
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where β = ½  when τ ≤ 0. The order parameter has a power law behaviour and will go 
continuously to zero in the case of a second order transition as outlined in Equation 
(3-15). (See Figure 3-2) 
The critical behaviour of the order parameter susceptibility χ may be similarly 
determined for small position independent fields considering Equation (3-7) 
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giving γ = 1. For the specific heat specific heat CH considering Equation 3-9, it can be 
shown 
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predicting α = 0. The correlation length ξ  is a measure of the range of the coherent 

oscillations in the system: 
 

  ( ) νττξ −
~ .      (3-18) 

 

ν = ½ and ξ  diverges at T = Tc in a second order transition41,42. The critical diffuse 

scattering intensity is proportional to the susceptibility. The correlation length ξ  may 

be related to the pair correlation function ),( rrg ′rr  through a Fourier transformation.43 

For a three-dimensional system described by Landau theory (Ornstein-Zernicke41) it 
may be written as follows: 
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where the exponent η is a correction known as the Fisher exponent.  The term κ that 
appears in the exponential term is the inverse correlation length and it follows the 
following law: 
 

  
ντκκ ⋅= ±

0 .      (3-20) 

 
The correlation length is defined as ξ =κ-1. As the critical temperature is approached it 
grows rapidly and is divergent at Tc (Figure 3-2). The critical diffuse scattering 
intensity is proportional to the susceptibility that can be determined from the Fourier 
transform of  the pair correlation function: 
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Figure 3-2: Temperature dependent behaviour of susceptibility and order parameter for a 
continuous transition close to Tc.  

Close to Tc the exponential term in Equation 3-19 is equal to one and the pair 
correlation function follows a power law. It is therefore possible to write down the 
relationship between the susceptibility and the correlation length as  
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For three-dimensional systems, the Fisher exponent η is very small (η ≈ 0.03), 
therefore, a Lorentz profile is observed in many experiments. 

The limitation of the Landau theory is due to the fact that it does not consider critical 
fluctuations. Therefore, the description fails at temperatures in the immediate vicinity of the 
critical temperature. This failure means that the exponents predicted do not agree well with 
experimental findings. Nonetheless the theory provides a good framework to understand the 
phenomena occurring at temperatures close to the phase transition temperature particularly for 
complicated systems. The predicted values of critical exponents by Landau theory are the same 
as those of other classical theories such as mean field theory, Van der Waals theory and the 
Ornstein–Zernike theory.41 Values for the critical exponents as predicted by Landau theory are 
given in  

Table 3-1.  

 

3.5 Universality 

 
For many second order phase transition systems the critical behaviour may be divided 
into equivalence classes. Where all members of an equivalence class have the same 
critical properties we say that universality is displayed. The thesis of quantitative 
universality states that all systems in the same universality class show the same 
critical behaviour in the sense that the critical exponents and all other characteristic 

β 

-γ 
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universal variables have identical numerical values. This concept is a very useful way 
of grouping systems with similar attributes.41,42,44 
The quantities used to classify a phase transition are (1) the dimensionality d, (2) the 
order parameter dimensionality n, i.e. the number of components required to describe 
the order parameter and (3) the range of interaction. Water for example is a 3-D 
system with a single component order parameter m. An example of a system where n 
is greater than 1 is the ferromagnetic transition in iron. One must then consider both 
magnitude and direction of the order parameter. For a spin-½ system with only two 
possible spin values the number of components reduces to 1 and can be described by 
the Ising model. For some alloys n can be as high as 4. There are different models for 
various values of n: Ising n = 1, XY n = 2, Heisenberg n = 3, Spherical n = ∞. 
For systems of the same class identical exponents are found. These critical exponents 
are related by scaling relations 
 
  22 =++ γβα ,     (3-23) 

 
  να d=−2 .      (3-24) 
 
Many material properties depend upon microscopic details (lattice structure, type and 
range of interactions). This is also true for non-universal critical parameters such as 
the critical temperature or pressure. The critical exponents, however, are not material 
specific, but universal. They have the same numerical values for very different 
systems. Within a universality class non-universal quantities can be described by use 
of a scaling factor. Some examples of three-dimensional systems belonging to the 
same universal class are: the brass order-disorder transition, the liquid-gas transition 
at the critical point in CO2 and the binary liquid wetting transition in hexane-
nitrobenzene. 

3.6 Mean Field theory 

The mean field theory deals with problems involving many interacting particles. Interactions 
between many particles make the calculation of the partition function (nearly) insolvable. In this 
case fluctuations are neglected. The idea of mean field theory is to substitute the forces acting on 
a given particle by an effective external field. The exponents are the same as those given by the 
Landau theory. See  

Table 3-1 for a comparison of exponents from the different theories.  
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model d n α β γ ν η 

Landau 

Mean field } 

 
0 0.5 1.0 0.5 0 

Ising 2 1 ‘log’ 0.125 1.75 1.0 0.25 

Ising 3 1 0.11 0.325 1.241 0.63 0.031 

XY 3 2 -0.007 0.346 1.316 0.669 0.033 

Heisenberg 3 3 -0.015 0.365 1.386 0.705 0.033 

spherical 3 ∞ -1 0.5 2 1 0 

 

Table 3-1 presents a compilation of the values predicted for the exponents α, β, γ, ν, and η for the 
mean field approximation, the Ising models and other common theories. Values from Refs. 
10,11,43 and references therein. 

 

3.7 Ising Model 

 
In addition to phenomenological theories it is also possible to consider microscopic 
interactions and thereby include the lattice dimensionality in the description. 
We write down the model Hamiltonian for the generalised Heisenberg model41, a 
classical spin system 
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In the case where Si

(n) are n-dimensional unit vectors and –J the energy of a nearest 
neighbour pair 〈ij〉 of parallel spins localised on the sites i and j of the lattice. n is the 
order parameter dimensional unit and for the single component case it is 1, causing 
Equation (3-23) to simplify to the simple spin-half Ising model. 
 
The Ising model provides a simple though by no means trivial model applicable to 
systems with two possible states of order (e.g. spin value J = +½ or -½) as in a 
ferromagnetic transition, or the analogous lattice-gas model for fluid systems41 such 
as the CO2 liquid-gas transition. The Ising model can also be applied to superfluid, 
binary alloy and magnetic transitions. In its simplest form the Ising model assumes a 
cubic lattice arrangement where the interaction of each atom with the nearest 
neighbour can be considered (Figure 3-3). Coupling is introduced via nearest 
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neighbour interactions. Consider a pair of parallel spins with energy -J and a pair of 
anti-parallel spins with energy J. The Hamiltonian is 
 

  ∑−=
ji

jiij SSJH
,

     (3-26) 

 
where Jij is the pair energy of the (ij) nearest neighbours. The Ising model can be 
generalised to describe the case for interactions further than nearest interactions and 
also for other lattices. 
 

 

Figure 3-3: The 3-D Ising spin model can be considered as a cubic lattice where each element sits 
at a lattice point. J is the exchange interaction or nearest neighbour interaction between atoms 
that are a distance a apart. All the nearest neighbour interactions J are considered to be same. 
The spin elements and their associated direction are illustrated by the arrows. 

 
The Ising model has no phase transition in one dimension and Tc is the absolute zero. 
If we now extend the lattice to two dimensions and beyond with Tc > 0, exponents 
may be calculated. Let us consider the case for the 3-D Ising model. Consider the 
system energy as the sum over all pairs of neighbours. If Jij is positive, then having 
neighbours in the same state (Si = Sj ) decreases the total energy of the system. In 
particular, if all the coupling constants are positive, the system energy is minimised 
for the configuration in which all vertices are in the same state (either all +1 or all -1). 
If 0 < T < Tc the interatomic distance a is much smaller than the correlation length, a 
< ξ  where ξ  is still much smaller than the system size L. Above Tc disorder takes 

J 
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over and the order parameter is 0. Close to the transition temperature the correlation 
length tends towards infinity in an infinitely large system, and is limited only by the 
size of the system in a contained system. 
 

Critical exponents may be obtained from the Ising model. These values for exponents α, β, γ, ν, 
and η are presented in  

Table 3-1. There are other microscopic theories to describe critical behaviour allowing for 
situations more complicated than a simple spin ½ case. There are extensions of the Ising model 
describing systems where the dimensionality of the order parameter n is greater than 1 such as 
XY, Heisenberg and Spherical models. It can be shown that the assumptions of nearest neighbour 
interactions and isotropic symmetry do not significantly affect the critical point predictions41. 
The reader is referred to the given references for a detailed discussion41,42. For each model it is 
possible to predict values for the exponents as discussed before. The reported values for the 
different theories are also presented in  

Table 3-1. There is a difference between the Ising model exponent values and the 
Landau ones – the phenomenological theories are not good at describing critical 
behaviour very close to the critical point as they neglect critical scattering.  

 

3.8 Critical phenomena at surfaces 

 
Continuing on in the frame of the previous discussion we now consider the effect of a 
surface or interface on a system in the case where no surface field is applied. This has 
been discussed by Binder11, Diehl10,44, Dietrich and Wagner9 and others. By relating 
the phenomenological Landau theory to microscopic mean field theories one can 
classify the behaviour close to a free surface. The Hamiltonian for the semi-infinite 
three-dimensional Ising model with modified surface coupling is 
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To understand surface behaviour in a material one must consider the lack of atomic 
neighbours at the surface and the effect on local interactions with certain bonds 
missing. The order parameter has a position dependence on the scale of the correlation 
length. This means that in the region close to the surface we can consider the case 
where the degree of order is different than one would await for an infinite crystal. 
The order parameter m requires a correction in the region close to the surface in the 
½-∞ case. In the situation close to Tc where the correlation length ξ is close to the 
sample size Z every ´spin` knows it is in a finite system and therefore experiences 
finite size effects (Z = Na where N is the number of layers and a is the distance 
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between atoms). It is the case Z >> ξ as is normally found in an experiment we now 
discuss further. 
 

 

Figure 3-4 The effect of the presence of a surface on the order parameter m in a system with a 
short range correlation length. (After Diehl44) 

Considering Figure 3-4 one can see that the order parameter m(z) in the middle of our 
cube becomes m(∞) = m∞, while at the surface there is 
 

  1
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where β1 is an exponent describing the surface order parameter. The order parameter 
at the surface m1 and the other surface parameters show anomalous behaviour close to 
Tc which can be described by a power law with separate critical exponents. The order 
parameter density m(z) at the surface z = 0 follows a different power law than m(∞). 

Let us consider the temperature dependence for 0 < z < ∞ . It is clear that m(z) always 
displays anomalous behaviour as T → Tc. To observe the temperature dependence of 
m1 the distance z must be much smaller than ξ. It is important to note that the value of 
m(z) is different for z << ξ than for z >> ξ. 
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Figure 3-5 This figure shows the modification to the Ising model due to the presence of a surface 
or interface. The cross section of a d-dimensional Ising film of N1 layers is shown schematically. 
Each vertical line represents a (d-1)-dimensional layer, with coordinate ρr . Each layer has an 
index n from 0 to N1 or z from 0 to N1 a. An arbitrary point is denoted by the vector ),( zr ′′= ρrr  
For N1 → ∞  the system is a half-infinite system with a free surface at z = 0. In the bulk the 
nearest neighbour interactions are all the same (J). However in the surface plane the interactions 
between the spins are J1, and to the adjacent plane is J┴ (after Ref. 11). 

 
For the case for m(z) where a << z << ξ a power dependence is displayed  
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where β1 the exponent describing the surface order parameter and β is the exponent 
describing the bulk order parameter. In the case of the bulk there is a single universal 
classification for a wide range of systems however at the surface more classes are 
required than in the bulk. 
In order to take a closer look at the surface we use the 3-D Ising description of a 
simple cubic half-infinite (½-∞) system as shown schematically in Figure 3-5. In such 
a system all nearest neighbour interactions can be described by the coupling constant 
J. Here as in section 3.7 we consider J as the coupling constant in the bulk and we 
introduce J1 as a modified coupling constant at the surface. In the case of the 3-D 
Ising bulk each atom had 6 nearest neighbours so   
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On the surface there are only 5 nearest neighbours, in addition we have now a 
modified coupling constant J1 at the surface and J┴  = J: 
 

  JJEs +=∆ 14  ,     (3-31) 

 
therefore we can state the following relations:  
 

  bs EEJJ ∆<∆⇒≤1  ,     (3-32) 

 

  bs EEJJ ∆>∆⇒>>1  .    (3-33) 

 
If the second case were to occur then more surface energy would be required and then 
there is a transition temperature Tcs that is greater than Tc. Exploring the ratio of the 
two coupling constants x = J1/J, which is called enhancement, it is possible to develop 
a picture of the temperature dependence of the surface transition temperature with 
respect to bulk one as shown graphically in Figure 3-6. In order to describe such a half 
infinite system there are four classes of transitions: ordinary, surface, extraordinary 
and special.  
The critical behaviour at surfaces is principally determined by the interaction of two 
characteristic lengths, the bulk correlation length ξb and the extrapolation length λ. 
The extrapolation length - a linear projection of the order parameter - characterizes the 
order parameter profile due to the fact that m(z) varies linearly with z near Tc as shown 
graphically in Figure 3-7. If one extrapolates the m(z) variation it vanishes at z = λ 
(thus the term extrapolation length). When one considers that the extrapolation must 
not be constrained to 0 < λ < ∞ there is the possibility of different classes of 
transitions occurring in the half- infinite description. 
In the case where 0 < 1/λ < ∞ an ‘ordinary transition’ occurs and the bulk and the 
surface order simultaneously at Tc = Tcb = Tcs. This occurs when the enhancement J1/J 
is < 1.5. The transition is bulk driven and the degree of order is less at the surface than 
in the bulk. The order parameter falls off exponentially as the surface is approached 
over the range ξb. 
The ‘surface transition’ describes the unusual case where the surface orders first 
while the bulk remains disordered, Tcs > Tcb. Here critical behaviour is observed in the 
surface layer but it is not extending infinitely into the bulk. In the region Tc < T < Tcs  
the bulk correlation length is finite and the order parameter falls off exponentially as 
one penetrates into the bulk. The extrapolation length is negative. In this region 
 

8
1
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Figure 3-6 The figure shows the phase transitions that can occur at the surface of a semi-infinite 
system. In the case of nearest neighbour interactions the inverse extrapolation length λ-1 is 
proportional to the enhancement J1/J of exchange interactions in the surface layer. 11 

 
On lowering the temperature further an ‘extraordinary transition’ occurs. Here the 
bulk orders in the presence of an already ordered surface (Tcb = Tc). The critical 
behaviour or cross-over of the order parameter in this region45 is then 
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reg

m1  is a background term due to the fact that surface ordering is already present, cm1  

is the value of m1 at Tcb and a and b are constants. From this expression the following 
scaling law can be derived: 
 

  αβ −= 21 .      (3-37) 

Tc 

(Arbitrary units) 
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Figure 3-7 Landau or mean field approximation give rise to the order parameter profiles shown 
for the ordinary (a), special (b), surface (c) and extraordinary (d) transitions. The inverse 
extrapolation length discussed in the text is shown with a dashed line after Refs. 10,11. 

 
A ‘special transition’ or ‘surface bulk’ transition occurs in the case where the 
extrapolation length is infinite. In this case the bulk and surface order simultaneously. 
The critical exponents are surface driven. In this case the surface and bulk exponents 
are equal. 
The ordinary, surface, extraordinary and special transitions are continuous. The order 
parameter profiles as obtained by Lubensky and Rubin46 are shown in Figure 3-7. 
It is generally considered that as one goes from a bulk transition to a surface transition 
that one degree of dimensional freedom is lost. For example in the case of a three- 
dimensional bulk transition the associated surface transition is considered to be two- 
dimensional.  
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For three-dimensional systems as we cross T = Tc the bulk order parameter m∞ can be 
determined independently of J1/J. In the volume there is universality of the 3-D Ising 
model due to the short range interaction which results in characteristic critical 
behaviour. The surface order parameter m1, however, displays a behaviour that is 
strongly dependent on the value of J1/J. So while a single universal class exists to 
describe volume transitions, on the surface there are different classes. The critical 
behaviour of the specific heat C1, the order parameter m1, the order parameter 
susceptibility χ1 at the surface can be described by the critical exponents α1, β1, γ1 

respectively similar to those in the bulk: 
 

  ( ) 111

111 ,,
γβα τχττ −− ∝−∝∝ mC     (3-38) 

 
where the reduced temperature τ as defined in Equation (3-14). 
 
Many authors have calculated values for the surface exponents. Table 3-2 presents a 
summary of these findings. 

Universality class β1 
Ordinary           Mean Field 1 
Special              Mean Field 0.5 
Extraordinary    Mean Field 1 
Surface              Mean Field 0.5 
Ordinary            Ising - 3D 0.8 
Special              Ising - 3D 0.25 
Extraordinary    Ising - 3D 0.175 
Surface -            Ising - 3D 0.125 

Table 3-2 A summary of the predicted values for the surface exponent β1 is presented here 
according to Refs. 15,11,10,45,43,47. 

 
Relate theory to experiment 
 
Due to a linear coupling between the lattice and the charge density wave, the change 
of lattice distortion, which develops in NbSe2, can be measured via the intensity of the 
superlattice reflection. This is then proportional to the square of the order parameter 

m.1 Therefore we can study the nature of the phase transition by following the 
temperature-dependent behaviour of the CDW satellite scattering intensity, which can 
be expressed as  
 

  βτ 2
oII = ,      (3-39) 
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where we need to take 2β as we measure intensity and not amplitude. This can be 
expressed as 
 

  ||log2log
0

τβ=
I

I      (3-40) 

 
which can be determined experimentally. Other variables such as the diffuse intensity, 
the full width half maximum of the diffuse component and their dependence on 
reduced temperature can also be related to the exponents described in this chapter. In 
addition the susceptibility can be described by measuring the diffuse scattering 

intensity as seen in Equation 3-21, where we saw that ( )τχ ,qI diff

r∝ .  
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4  Theory of X-ray diffraction 

4.1 X-ray diffraction 

 
When X-rays impinge on a periodic array of atoms they are scattered by the electrons 
and strong reflections may be observed in certain discrete directions. This behaviour 
is the result of constructive interference of the radiation scattered by the scattering 
centres and is described by the Bragg law. In the following discussion the Bragg law 
is discussed and methods for using it to determine the crystal structure and orientation 
are presented. By measuring the angles of the reflections one can determine the 
lengths describing the periodic arrangement of the scatterers if the wavelength of the 
radiation is known. Similarly a crystal of known structure can be used as a spectrum 
analyser or as a monochromator. 
The determination of unknown crystal structures by indexing intense reflections is just 
one application of X-ray diffraction. Diffraction can also be used to determine 
stress/strain in materials, to monitor defects, to determine material composition and to 
study phase transitions. These are just a few examples. Structure determination is 
carried out not only for pure crystalline materials such as diamond48 for example, but 
also for non-crystalline materials such as polymers and composite materials such as 
wood and fibres. Many chemists and biologists use X-ray diffraction as a tool in their 
work. John Walker shared the 1997 Nobel Prize for his structure determination work 
on the F1-ATPase structure, a protein which plays a key role in cellular energy 
production49. Recently Takada et al. 50 determined the structure of a new cobalt oxide 
low-temperature superconductor (Tc = 5 K) using X-ray diffraction. In some cases the 
crystal structure undergoes a phase transition when the temperature is changed or 
pressure is applied. In this case the structure change can be monitored by X-ray 
diffraction as a function of the applied field. In this way the order parameter for the 
phase transition may be determined as discussed in chapter 3. As seen in this thesis, 
the intensity of reflections associated with the superstructure due to the charge density 
wave modulation1,3,51 may be measured in order to determine the order parameter and 
thermodynamic potentials. Similarly surface reconstructions resulting in 
superstructures52,53 can also be observed by X-ray diffraction. 
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4.2 Bragg diffraction 

 
In 1915 Sir William Henry Bragg and his son Sir William Bragg jointly received the 
Nobel prize in physics for developing Braggs’s law and for their work in the field of 
X-ray diffraction as a tool for crystal analysis. The Bragg law describes the way in 
which X-rays are scattered from a periodic array of scatterers as shown in Figure 2-1. 
For monochromatic X-rays the reflected X-rays from successive planes will 
constructively interfere if the total difference of the optical path length is an integer 
number of wavelengths. For an incident beam and diffracted beam of angle θ with 
respect to planes of spacing d 

  
λθ nd =sin2       (4-1) 

 
where n is a positive integer and λ the wavelength of the radiation.  
An X-ray photon falling on an atom may be absorbed or scattered. We consider the 
scattering process in terms of classical theory, i.e. pose the question what is observed 
when X-rays scattered by an atom are viewed at a detector a large distance R0 from 
the sample. In the dipole approximation, the amplitude of a wave Ae that comes from 
a single scattering electron at r

r
e as a function of the amplitude of the incoming wave 

A0 may be described using the Thompson formula 57 
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where e is the charge of the electron, m is electron mass, c is the speed of light. ik
r

 is 
the incoming wavevector, fk

r
 the outgoing wavevector and the vector er

r  is the 
distance to the electron from the crystal origin 0, as shown in Figure 4-1 and defined 
below. We assume an elastic scattering process. The kinematical approximation is 
valid as, even with the large number of electrons in the crystal, the total scattering 
cross section is small since the constant e2/mc2 is very small. This allows us to take 
the scattered amplitude as the sum of the independent contributions from each 
individual electron.  



34 
 
 

 

 

 

Figure 4-1 The real space vectors discussed in the text are defined in (a). The point 0 is defined as 
the origin of the crystal, A is the origin of the nth cell, B is the jth atom of the nth cell and C is an 
electron belonging to the jth atom of the nth cell. In (b) the reciprocal space vectors are defined. 
k
r

i is the incident and k
r

f the exit wave vector (see Equation 4-4).  

 

4.3 Scattering from atoms and three-dimensional crystals 

 

The momentum transfer q
r  is the difference between the incoming wave vector k

r

i in 

the direction of the beam and the outgoing wave vector k
r

f. This is shown 
schematically in Figure 4-1b and can be written 
 

  if kkq
rrr −= .      (4-3) 

 
Since we assume that the scattering is elastic  
 

λ
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where λ is the wavelength of the incoming X-rays, we can rewrite the Bragg law 
described in Equation (4-1) 
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showing that it is possible to relate the momentum transfer q

r  to the scattering angle 

2θ in an experiment. Equation 4-2 can be expressed as  
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This equation allows us to calculate the scattering intensities of individual atoms.  
 
Now we consider the scattering amplitude of the radiation at the detector due to 
scattering by a single atom67. It is obtained by performing a volume integral of 
equation 4.5 over the electron density )'(rrρ  of the atom of volume d3r´ given by 
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where the atomic form factor 
 

  rdrqirqf ′′⋅′= ∫ 3)exp()()( rrrr ρ     (4-9) 

 
is the Fourier transform of the electron density for a single atom. Since in almost all 
cases atoms or ions are considered to be spherical, the atomic form factor then is 
independent of direction, and so )(qf  is written purely as a function of magnitude of 

the momentum transfer.  
We have described the scattering first for an electron and then for a single atom. Now 
we consider the case of a unit cell of a crystal consisting of a periodic array of atoms. 

Separate form factors )(qfi  are assigned to each atomic site as the material may 

consist of different chemical elements. For a unit cell containing of Nc atoms  
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where )(qF

r , the structure factor, is the sum over all the atoms in one unit cell  
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The structure factor is q

r -dependent as one must consider the relative positions of the 

atoms in the unit cell. It can alternatively be expressed as  
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where r

r  is defined as in Figure 4-1 and )(rrρ  is the sum of the contributions from all 

the atoms in the unit cell. 
Finally, to consider the entire crystal we sum up the contributions from each unit cell. 
To calculate the scattering intensity for a block shaped crystal with the three crystal 

axes defined by unit cell vectors 1a
r , 2a

r , 3a
r , we sum over all unit cells so 
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where Nj, j=1 to 3, is the number of unit cells along the axis ja
r . If we now consider 

N1 as the total number of atoms along 1a
r , N2 the total number of atoms along 2a

r
 etc., 

a geometric series can be summed up easily 
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This complex quantity represents a simplified version of the scattering amplitude for a 
one-dimensional crystal containing N atoms. In a diffraction experiment the intensity  

)(qI
r  is measured: 
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also known as the N-slit equation from optics. We can now express Equation 4-13 in 
the following form  
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The Equation (4-16) has maxima at the point hklG
r

, where hklG
r

 can satisfy the three 

Laue equations  
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Bragg reflections are observed at the intensity maxima where h, k, l are the integers 
known as the Miller indices. It is now possible to define a reciprocal lattice where the 
reciprocal lattice vector hklG

r
 can be defined as a linear combination of the reciprocal 

lattice vectors jb
r

. In order to relate these with the lattice in real space we can 
introduce the concept of lattice planes h, k, l. 
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where 
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The vectors 1b
r

, 2b
r

, 3b
r

 are the basis of the reciprocal lattice and 1b
r

 is orthogonal to the 
lattice vectors 2a

r
 and  3a

r , 2b
r

 to 1a
r  and 3a

r , and  3b
r

 to 1a
r  and 2a

r
 that span the unit 

cell. Now we can state that the intensity measured is of the form 
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Considering equation 4.4 we can now also state  
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Using this formula we can relate the angle of diffraction or scattering angle φhkl to the 
scattering vector modulus q hkl. From Equation 4-15 the half width of the Bragg 

reflections can be determined along all three crystal axes. This gives us information 
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about the number of coherently scattering unit cells Nj and thereby the size of 
crystallites in the crystal ξcrystal = Njaj. A good approximation for the FWHM54,55 is  
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often expressed in the following form 
 

  crystalfwhm ξσ /1~2
1      (4-23) 

 
This approximation holds well when the illuminated area is large compared to the 
crystal domain size. 
 
From the Bragg law description given in Equation 4-5 we can relate the spacing 

between scattering planes dhkl to the modulus of the reciprocal lattice vector hklG
r

. 

NbSe2 has a hexagonal symmetry which means that a1 = a2 ≠ a3 and the angles 
between the basis vectors are α = β = 90°, γ = 120°. In this case the lattice spacing is 
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4.4 Surface X-ray diffraction 

 
The effect of introducing a surface to our system can be developed from Equation 4-
17. Consider first the topmost layer. If we take a

r
3 to be along the surface normal, we 

set N3 = 1 for this single layer, and the observed diffraction is then independent of 

a
r

3· hklG
r

, the component of momentum transfer perpendicular to the surface. In 3-D 

reciprocal space for a purely two-dimensional layer we would have rods of intensity 
sharp in the two directions parallel to the surface and a diffuse streak in the 
perpendicular direction with the bulk.  For the half-infinite case we now consider both 
the surface layer and the bulk contribution. In this case we observe Bragg reflections 
superimposed on the 2-D Bragg rods56,57. 
If we define the wavevector 
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these intensity streaks occur perpendicular to the surface and are known as crystal 
truncation rods (CTR’s) since they result from the crystal being truncated58,60. This 
intensity profile can be derived by considering the N-slit function described in 
Equation (4-15). For large values of N the numerator is a rapidly varying positive 
function and so sin2(N q

r · ar 3/2) can be approximated by its average value of ½ giving 
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This equation, though it is not valid very close to Bragg reflections, illustrates a non- 
zero intensity along the surface normal. The intensity distribution along a crystal 
truncation rod can thus be expressed as 
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In the case of small ∆ q
r  and from the third Laue condition it can therefore be shown 

that 
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showing that the intensity of a Bragg reflection at the surface has a 1/|∆ q

r
|2 

dependence. The intensity of the truncation rod is modified due to the presence of 
layers on the surface or surface roughness (see below).59 
 
There is a second approach in which the CTR is represented as a product of the step 
function with an infinite lattice. The electron density of a sample with a perfectly flat 
surface in the (x, y) plane at z = 0 can be written as 
 
  )()()(ˆ zrr Θ= rr ρρ ,     (4-29) 

 
where the function Θ(z) is the Heavyside step function and ρ( r

r ) is the electron 
density for an infinitely extended crystal. It is known from the kinematic 
approximation that the Fourier transform of the electron density is the scattering 
amplitude. Therefore,  
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where * denotes a convolution and A(q) is the scattering amplitude as described in 
Equation 4-16. For the intensity of a Bragg reflection in the z direction a 1/| q

r
z|

2 

behaviour as derived as above in Equation 4-28. 
In order to describe the effect of a rough surface we expand on this approach: the 
effect of roughening can considered as an effective broadening of the step function. A 
simple model proposed by Robinson60 assumes an exponential distribution of heights 
where β is a parameter 0 < β <1 where β = 0 is perfectly flat and β = 1 is infinitely 
rough. Layer 0 is considered to be fully occupied; layer 1 has a fraction β filled, layer 
2 has a fraction β2 filled and so on. The intensity behaviour of Equation (4-25) then 
becomes 
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In order to relate β to other roughness models the surface roughness can be expressed 
as a root-mean-square deviation of the surface contour from a flat surface, σrms as 
derived in61: 
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4.5 Reflectivity 

 
Reflectivity is discussed elsewhere in great detail. Dynamical considerations are very 
important in this case, a good overview of the theory is presented in Tolan62 and 
Foster63 and in Ref. 64. Here we confine ourselves to a brief summary of the key 
findings. As stated in the International Tables for Crystallography65, the refractive 
index )(rn

r  for X-rays may be expressed as 
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where )(rrδ  and )(rrβ  are the dispersion and absorption terms, respectively: 
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and 
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Figure 4-2 Reflection scattering geometry. A plane electromagnetic wave with wave vector k
r

i 

impinges on a surface at glancing angle αi. The wave breaks up into a reflected wave k
r

f and a 
transmitted wave  k

r
t.  

 
 

)(rrµ  in Equation 4-40 is the linear absorption coefficient, fj is the atomic form factor 
as described in Equation 4.8 and )´(Ef j  and )(´´ Eif j  represent dispersion and 
absorption corrections in the form )()´( ´´0 EifEfff jjjj ++= . The values of 0

jf  are q- 
dependent but this may be neglected in the region of grazing angles of incidence and 
exit making it possible to simplify the equation for the refractive index in the case of a 
homogenous medium far away from absorption edges and Zf j ≈0 : 
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The fact that the index of refraction n < 1 for X-rays (Equation 4-33) means that total 
external reflection occurs when the angle of incidence of an incoming X-ray beam is 
below the critical angle for total external reflection. It is given by 
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Here eρ  is the mean electron density, er =e2/mc2, and wavelength λ as defined above. 

The specularly scattered intensity (see Figure 4-3 for experimental geometry) can be 
analysed using the Parratt algorithm66 which is based on a recursive application of the 
Fresnel law at the interfaces. One can calculate  the profile of the electron density in 
the z-direction and therefore the density profile of layers perpendicular to the sample 
normal.  
 
 

4.6 Grazing incidence diffraction  

 
If grazing angles of incidence and exit are chosen, as shown schematically in Figure 
4-3, it is possible to keep the momentum transfer almost parallel to the surface and 
thus we can investigate the in-plane structure. If these angles are kept below or in the 
region of the angle of total external reflection we can also limit the penetration depth 
of the X-rays in the sample and obtain structural information on the first few atomic 
layers. Since for X-rays the refractive index n < 1, Bragg scattering occurs under total 
external diffraction conditions if the angle of incidence of the incoming X-ray beam is 
held beneath the critical angle αc (Equation 4-37)  as discussed by Dosch14, Dietrich67 
and many others36, 56,57,68,70,. This technique is particularly useful for probing surface 
critical and wetting phenomena.  
The transmission coefficient of the dielectric boundary for a transparent medium has 
been calculated by Born and Wolf69  
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where n is the refractive index and αi is the angle of incidence. For large angles of 

incidence αi >> αc the transmission coefficient tends to 1. When αi < αc the 
transmitted wave does not propagate but the field strength at the surface is still 
described as above and the diffracted intensity from the atoms in the surface layer is 
proportional to T. The signal is, therefore, enhanced by a factor of 4 when the 

incidence ray impinges at exactly the critical angle αc. The diffracted beam 
experiences refraction in exactly the same way, so that in the absence of absorption a 

second factor of 4 may be obtained when the angle of exit from the surface αf is equal 

to αi. This can be seen in Figure 4-4. 
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The observed scattering originates from a scattering depth 
 

  
)(2 fi ll +

=Λ
π

λ
      (4-39) 

with 

  ( ) ( )[ ] 2
1

2
1

2
1 22

,
2

,
2

, 22sinsin22






 +−+−= − βδααδ fififil . (4-40) 

 

If absorption is ignored Snells law predicts that Λ can also be expressed in terms of k 

where k
r

i,z= k
r

nsin(αi) and n is the refractive index as above70 
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Figure 4-3 The grazing incidence geometry of the X-ray beam impinging on the surface at an 
angle αi. After diffraction through an angle of 2θ the X-rays exit the surface at an angle αf . The 
momentum transfer q

r
 is composed of an in-plane component q

r
║ and a q

r
z component normal 

to the surface and provides information on the in-plane structure of a sample. 

 

2θ 

αi 

αf 

θ 

ik
r fk

r

Plane of  
incidence 

z
r

Bragg  
planes 

hklG
r

zq
r



44 
 
 

 

This means that for αi << αc Λ is equal to (2kαc)-1
 which is only material-dependent 

and not wavelength-dependent (see Equation 4-37). For NbSe2 (2kαc)-1 is 24 Å, while 

for gold it is 12 Å. The behaviour of Λ with changing αi is shown in Figure 2-1. 
 
The intensity for any kinematic scattering intensity (IGID) observed close to the total 
external reflection condition is  
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the product of the squares of the incident and transmitted beam transmission functions 

and the surface diffraction intensity. The dependence of |Ti|2 on αi/αc is seen in Figure 

4-4, the enhancement in the region of αc is evident. In practice it is preferable to 
measure away from the critical angle so that the intensity is not so sensitive to slight 
changes of angle in the incoming beam or sample vibration. Generally for surface X-
ray diffraction the advantage of measuring close to or below the critical angle is lower 
background simply because less of the bulk is penetrated. In grazing incidence 
measurements the incidence angle is often deliberately varied in order to achieve a 
depth profile of the sample. 

 
 

Figure 4-4 (a) Fresnel transmission 
2

iT  as a function of αi/αc for a transparent medium and for 
Fe3Al and Pb14. (b) On the left side the scattering depth Λ is shown as a function of αf/αc for 
various values αi/αc = 0.64, 0.89, 1.0 and 1.13. The solid curve marked with asterisks shows the 
penetration depth of the specular beam as a function of αi/αc on a logarithmic scale (after 14). 
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5 Experimental set-up  

5.1 Introduction 

 
The essential experimental components for the study of the charge density wave phase 
transition in a single crystal of 2H-NbSe2 are presented in this chapter. The sample 
preparation is outlined, the sample environment and the instruments used for the X-
ray diffraction measurements are described. The experiments discussed in this thesis 
were carried out in Kiel on the two rotating anode sources as described in the thesis of 
Seeck55 and in particular at a number of different beamlines at the HASYLAB and 
ESRF synchrotroton radiation sources. The principal technique employed was grazing 
incidence diffraction as discussed in the previous chapter. Standard X-ray diffraction, 
X-ray reflectivity and surface X-ray diffraction were also carried out at the XMaS 
beamline at ESRF. 
 

5.2 Sample preparation 

 
The single crystal 2H-NbSe2 sample, prepared by Bell Labs, had dimensions of 8 x 4 
x 3 mm3. The samples were prepared by iodine vapour transport using a narrow 
ampoule with a long two stage annealing process71. This process results in high-
quality, thick crystals with a low mosaic width, FWHM (0.0025 ± 0.0003) Å-1 for the 
200 reflection, which is ideal for grazing incidence diffraction. 
For these experiments the samples were cleaved prior to measurements using librarian 
Scotch tape. Initially the more conservative approach of using a cleaving bar glued to 
the sample surface was employed but the results were unsatisfactory. It was difficult 
to achieve the removal of a complete layer and often the sample cleaved in the middle 
or even close to the base. A single cleave rarely produced an acceptable surface. The 
success was much greater using book Scotch tape. The stiff, foil like nature and gentle 
adhesion properties of the tape proved to be ideal for removing the top layers of the 
layered sample in an effective manner. There are often many cleaves required, on 
average about fifteen attempts, to achieve an intact surface layer. Using this technique 
a clean, optically flat, shiny surface was obtained. 
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For most experiments the samples were cleaved at the beamline, then immediately 
mounted on the cryostat and cooled in the cryostat for the measurements. A pressure 
of 10 -7 mbar was maintained in the cryostat throughout the measurements. 
 

5.3 Cryogenic temperatures 

 
The CDW phase transition in NbSe2 occurs at about 33 K. In order to investigate the 
behaviour at the phase transition, a temperature range of 15 to 60 K was required. 
Therefore, a closed cycle He cryostat was used for the measurements. The low-
temperature operation of a closed cycle cryostat is achieved by using high-pressure 
helium gas to produce cooling down to 10 K. A helium compressor provides high 
pressure gas to the cryo-cooler through a flexible gas line. The expansion of the gas at 
different stages gives rise to the refrigeration. Low-pressure gas is then returned 
through another gas line where it is recycled through the compressor. This can be 
continuously repeated, leading to a closed loop, and maintained as needed to achieve 
the required temperature. 
 

 
 

Figure 5-1 A schematic diagram of the Kiel Leybold RGD 1245 cryostat used on the BW2 
beamline at HASYLAB. 

 
A number of different cryostats were used depending on which beamline was used. At 
HASYLAB, a Leybold RGD 1245 coldhead and a RW5 compressor were used in 
conjunction with a pair of class A Pt100 temperature sensors as outlined 
schematically in Figure 2-1. One was placed at the sample holder and the second close 
to the heater on the cold finger. Temperature regulation was carried out by a 
Lakeshore 330 temperature controller, using the Pt100 temperature sensor at the 
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sample holder as reference (sensitive over the range 20 to 300 K). The sample was 
mounted on a copper block fastened on top of the cryostat cold finger. In order to 
improve thermal contact, an indium foil was placed between the copper holder and the 
copper coldhead. The sample mount and the cold finger were covered by a beryllium 
dome allowing UHV pressures of 10-7 mbar to be reached while simultaneously 
allowing X-ray transmission to the sample. A secondary vacuum was provided by a 
copper can with capton windows (also X-ray transmissive). The whole housing 
weighing about 30 kg in total was attached to the diffractometer via a mounting plate 
consisting of four 20 mm support poles and a base plate. The sample environment had 
to be supported with a counter weight throughout the experiment in order to maintain 
stability in the sample position and to allow the diffractometer to move with sufficient 
accuracy. 

 

Figure 5-2 Close up of the Leybold RGD 1245 Cryostat at BW2, HASYLAB. 

 
For all ESRF experiments an ARS DE202G closed cycle cryostat was used for 
refrigeration and calibrated silicon diodes for temperature readout in the range 1 to 
350 K. The temperature controller used on both beamlines was the Lakeshore model 
340 (temperature stability ±0.01 K). This cryostat was much smaller and lighter 
(approximately 10 kg) and so could be mounted directly on the diffractometer without 
the need for a counter weight. 
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Figure 5-3 Schematic diagram  of the ARS DE202G closed cycle cryostat. 

 

5.4 Laboratory X-ray sources 

 
In the course of this work X-ray radiation was used. The characterisation 
measurements on the early samples were carried on the rotating anodes at Kiel. In the 
case of a rotating anode X-ray tube electrons are emitted providing a broad continuous  
background spectrum of radiation known as bremsstrahlung caused by the sudden 
deceleration of the electrons as they impact the anode. This radiation extends 
spectrally out to long wavelengths with decreasing intensity and down to a minimum 
wavelength corresponding to the wavelength of a photon that carries away all the 
kinetic energy of an electron incident on the anode. Superimposed on the 
bremsstrahlung continuum is an almost monochromatic set of X-ray lines that reflect 
the atomic structure of the atoms of the anode. This characteristic radiation is 
produced when a high-energy electron impacts the anode and knocks out an inner 
shell electron from an anode atom. An X-ray photon is emitted when the vacancy thus 
created is filled by means of a downward transition made by an electron in one of the 
higher energy shells. Due to spin-orbit interaction a splitting can occur. A copper 
anode was used in Kiel and there the important emission lines are Kα (λ = 1.541 Å, 
used for the experiments) and Kβ (λ = 1.392 Å). 
 

5.5 Synchrotron radiation 

 
In the case of a synchrotron highly intense collimated X-rays are produced over a 
wide spectral range from far extreme infra-red to hard X-rays. The beginning is 



Experimental set-up  49 
 
 
similar to a lab source. Electrons are produced from a thermionic emitter. They are 
then accelerated up to an energy of approximately 1 MeV as they are fed into a 
booster ring. In the booster ring the acceleration continues until all the electrons have 
an energy of several hundred MeV. Then they are injected into a larger ring called a 
storage ring. Here they are accelerated up to 6 GeV. At this stage the electrons are 
travelling at relativistic speeds and so they give off synchrotron radiation in the 
tangential direction. This X-ray radiation is extremely collimated and has a high 
intensity, i. e. high brilliance. The intensity of the radiation can be increased by using 
an insertion device such as a wiggler or an undulator. The X-ray beam is then 
transported to an end station via a series of optical elements. As the beam is 
polychromatic, often a monochromator is used to select a single wavelength for the 
experiment. There are many reviews of synchrotron radiation techniques. A general 
introduction to synchrotron radiation is given by Margaritondo72 and Duke73. 
 

5.6 XMaS 

 
The XMaS beamline is a bending magnet beamline and provides X-rays in the energy 
range 3 to 15 keV. The optical layout is shown schematically in Figure 5-4.74 The first 
optical component is a double-crystal silicon (111) monochromator. The first crystal 
is water cooled and absorbs most of the incident synchrotron radiation power. It is 
followed by an uncooled toroidal mirror that focuses the beam to a small spot onto the 
sample surface. The mirror surface has been coated with a thin layer of Rhodium to 
enhance reflectivity. The beam is focused at the sample position; the diffractometer is 
located 50 m from the source. 

 

Figure 5-4 A schematic figure of the XMaS beamline, ESRF, showing the principle optical 
components. 
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The 11 axis diffractometer at BM28 provides the option of using a horizontal or 
vertical four circle scattering geometry. The vertical geometry was used for these 
reflectivity and diffraction measurements. The experiment was carried out at 10 keV 
in order to maximize intensity. The cyber star scintillation single element detector was 
used for data collection. The sample was cleaved as described in section 5.2 and 
directly mounted on the cryostat. 
Extended reflectivities were collected at 10 and 40 K in order to characterise the 
surface roughness and to see if there was a surface layer present. 00l truncation rod 
scans were performed to approximately 006 at 10 K and 40 K in order to investigate 
the temperature dependence in the out of plane direction. 
 

Primary slits

Plane pre-mirror

Sagittal focusing monochromator
Si<111>

Horizontal focusing

Toridal mirror
Vertical focusing

secondary slits

 

Figure 5-5 Schematic layout of the wiggler beamline optics at BW2, HASYLAB. 

 

5.7 BW2 

 
The first GID experiments were performed at the BW2 beamline75, HASYLAB, 
DESY. The BW2 beamline is designed to provide a high intensity monochromatic 
beam in the energy range 2.5 to 25 keV. The principal optical elements consist of a 
plane pre-mirror and a (+/-) double crystal fixed-exit Si (111) monochromator76. A 
sagittally bent second monochromator crystal and a tangentially bent mirror in the 
monochromatic beam provide focusing (Figure 5-5). A photon flux of 4 x 1012 s–1 
total is available at the sample (9 keV, 70 mA ring current). 
We used the Risø four-circle diffractometer for these grazing incidence diffraction 
(GID) measurements. The experiment was carried out at an energy of 9.5 keV in order 
to maximise intensity. The sample was cleaved in air and then mounted under a Be 
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dome, on the cold finger of a closed-cycle Helium cryostat (minimum temperature 25 
K, see 5.3). The cryostat was mounted directly on the BW2 diffractometer (Figure 
5-6). The incident beam was defined by slits of dimensions 0.5 x 1 mm2 (horizontal x 
vertical) giving an illuminated sample area of about 2 mm2. For the scattered beam 1 
mm horizontal slits with a position sensitive detector collecting over a vertical range 
of 20 mm were used. This resulted in a q-space resolution of 0.005 Å-1 in the vertical 
diffraction plane (Figure 5-7). 

 

Figure 5-6 Kiel cryostat mounted on the 6 circle diffractometer at BW2 in HASYLAB. The X-ray 
beam entering from the right, is diffracted by the sample in the vertical plane into the detector. 
The capton window on the outer vacuum chamber of the cryostat can be seen. The detector is 
housed at the end of an evacuated tube in order to minimise air scattering while optimising 
resolution. The cryostat is fastened to the diffractometer via a mounting plate and is supported 
via a counter weight. The supports are seen above the cryostat. 

 
Even though we were illuminating a sizeable area of the sample, the characteristic 
transmission curve from a single terrace could be observed at the position sensitive 
detector throughout this experiment. The depth resolution was therefore not limited by 
the sample but the cost was a loss of total intensity. The position sensitive detector 
signal integrated over αf was taken as the peak intensity for our study. 

Detector 

Cryostat 
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Figure 5-7 The grazing incidence geometry at BW2. Note that the angle of incidence αi can be set 
by rotating the whole diffractometer independently of sample alignment. 

 
The out of plane sample surface quality was first confirmed with a reflectivity scan by 
placing 1 mm horizontal slits in front of the detector and varying the angle of 
incidence and the detector in a theta / two theta scan. Following this, in the 
temperature range 25 to 45 K GID Bragg scans were then performed at the CDW 
satellite reflection q(5/3 0 0) = 3.513 Å-1 and at a reference reflection q(2 0 0) = 4.215 

Å-1 (see Figure 5-8). The detector signal was integrated over αf. The experiments were 
performed at 8 keV initially and later at 9.5 keV in order to maximise flux at BW2. 
At 9.5 keV the critical angle of total external reflection for NbSe2 is 0.225°. Below 
this, we are in a surface sensitive geometry and at angles greater than the critical angle 
have a bulk sensitive geometry67,56,57,70. The CDW satellite reflection and a reference 
reflection were measured at a low incidence angle (αi = 0.17°, penetration depth ~ 24 
Å) and then at an increased incidence angle (αi  = 0.4°, penetration depth ~ 1,500 Å), 

PSD 

slit slit 

absorber 
wheel 

primary beam monitor 
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to increase bulk sensitivity. Temperature steps of 0.1 K were required in the region of 
the phase transition. Due to the low intensity of the satellite reflection, the signal-to-
noise ratio was just 3.5 to 1 even at 25 K, therefore counting times were very long 
especially close to the transition temperature where a single Bragg scan at the 5/300 
position required 2 hours. Over the temperature range we monitored the order 
parameter (a function of satellite peak intensity) and the satellite diffuse scattering 
intensity. 
 

 

Figure 5-8 A reciprocal space picture for the hexagonal structure of NbSe2 is shown above. The 
yellow dots represent the Bragg reflections resulting from the NbSe2 structure and the blue dots 
are due to the charge density wave superlattice Bragg reflection. Data were collected at the 200 
Bragg reflection and at the nearby 5/300 superlattice reflection. 

 
 

5.8 ID1 

 
The ID1 beamline at ESRF provides X-rays in the energy range 2.1 keV to 35 keV 
provided by the combination of a 42 mm undulator with 38 periods and a 70mm 
wiggler77. The calculated flux available at the sample is 4.4 x 1013 photons /s at 8 keV. 
For this experiment, in order to maximize intensity and minimize penetration depth, 
an energy of 10.37 keV was chosen. 
 

5/300 

000 200 

Reciprocal space 
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Figure 5-9 Schematic layout of the ID1 beamline optics layout (courtesy of T. Metzger). 

 
The ID1 optics (Figure 5-9) consist of a double-crystal monochromator located in 
between two mirrors providing a fixed-exit monochromatic beam. The X-ray fan is 
vertically reflected by a liquid nitrogen cooled Si-premirror which provides a beam 
almost parallel to match the vertical divergence to the acceptance angle of the first flat 
Si monochromator (also liquid nitrogen cooled). The full horizontal divergence of the 
source is accepted by the second Si crystal which provides sagittal focusing. A fixed 
beam-stop located after the monochromator vessel intercepts the white beam and the 
bremsstrahlung radiation. Finally meridional focusing is achieved via a second Si-
mirror which also provides harmonic rejection. 
The four-circle diffractometer at ID1 was used for these grazing incidence 
experiments in order to achieve the high flux and low divergence we required.  
The cryostat was mounted on a Huber tower on the beamline diffractometer. The 
configuration is shown in Figure 5-10. The single crystal 2H-NbSe2 sample was 
mounted, under a Be dome, on the cold finger of a closed cycle ARS DE202G He 
cryostat (minimum temperature 18.5 K). Data were collected at 9.5 keV in order to 
maintain a low penetration depth and thus surface sensitivity for our experiment. 
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Figure 5-10 Schematic diagram of the ID1 Huber tower with the cryostat mounted. 

 
Grazing incidence diffraction was carried out at the 200 Bragg peak and the 5/300 
satellite (appearing below 33 K) over the temperature range 18.5 to 60 K to study 
temperature-dependent behaviour in the region of the phase transition. Over the 
temperature range we monitored the order parameter of the charge density wave 
satellite reflection (a function of peak intensity), and the degree of diffuse scattering. 
Temperature steps of varying sizes were chosen. They were as small as 0.1 K in the 
region of the transition. Bragg scans were made along the qz direction on both the 
Bragg and the satellite peak at angles below the critical angle to achieve surface 
sensitivity and then above to obtain bulk reference measurements over the entire 
temperature range.  
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6 Experiments and analysis 

6.1 Introduction 

 
The principal techniques of X-ray diffraction employed in the realm of this thesis 
were presented in the previous chapter. In this chapter the experiments and results of 
grazing incidence X-ray diffraction (GID) investigations on NbSe2 are presented. In 
these experiments we employ GID techniques in order to compare charge density 
ordering at the surface and in the bulk over the temperature range of 18.5 K to 60 K. 
The intensity of a superlattice reflection is proportional to the square of the order 
parameter I ~ |F|2 ~ |m2|. Therefore, from an investigation of the temperature 
dependence of the charge density wave satellite reflection one can also determine the 
order parameter for both the surface and the bulk.  
In section 6.2 a summary of samples measured is presented and the difficulties in 
growing a layered crystal suitable for grazing incidence diffraction is discussed. Then 
in section 6.3 the characterisation of the sample grown by Oglesby et al.71 is 
presented. In sections 6.4 a first experiment carried at BW2 is reported. In 6.5 an in 

situ UHV experiment is discussed. Results from grazing incidence measurements on 
beamline BW2 at HASYLAB are shown  in  6.6 and compared with the data collected 
at the ESRF on beamline ID1 (6.7). All results are discussed in section 6.8 and 
summarized in 6.9. 
The data collected during these experiments are shown. The analysis procedure is 
outlined, the results are presented and an interpretation is offered. 

6.2 Samples 

 
The ideal sample for X-ray diffraction measurements with NbSe2 is a perfect single 
crystal of a single polytype with an optically flat surface. In reality there are only a 
few materials, such as silicon, which display properties close to ideal. Sample quality 
becomes an even greater issue once one begins to investigate systems other than 
metals or classical semiconductors. For layered crystals growing single crystals is a 
major challenge. The growth of high quality single crystals of transition metal 
dichalcogenide layered crystals has been a limiting factor in this area of research since 
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the 1970’s1,2. Even today NbSe3, also a layered crystal, can only be grown as tiny 
whiskers 20 x 40 x 600 µm3 as described in Ref. 78. 
As previously discussed in chapter 5, the mosaicity of samples must be low if a good 
depth resolution is to be achieved in GID. The full width half maximum (FWHM) of a 
sample obtained from a rocking scan is a good measure of the mosaicity of a crystal; a 
high quality crystal will have low FWHM tending towards a delta function for a 
perfect crystal. Layered crystals are rarely high quality single crystals and have a 
broad mosaic width which can be of the order of degrees. In the first year of this 
project many samples were tested and found to have a mosaicity outside the 
acceptable range. One would require a FWHM of the rocking curve of less than 0.05° 
in order to preserve depth sensitivity. In a sample with a broad rocking curve the 
depth resolution is washed out as the critical angle of total external reflection for 
NbSe2 is just 0.29° (at 10 keV).  
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Figure 6-1 NbSe2 samples grown in university of Bayreuth (red) and in Kiel (black) were 
measured on the laboratory X-ray source in Kiel. Extended reflectivities were measured for both 
samples (a). The reflectivity in the region up to q = 1.5 Å-1 including the 002 reflection is shown 
for the upper sample (b). The oscillations at are due to a layer of about 34 Å. A more detailed 
discussion is carried out in the text below. 

In Figure 6-1 diffraction diagrams of samples grown at University of Bayreuth in the 
group of Prof. Van Smaalen and of samples grown at the University Kiel by the group 
of Prof. Skibowski measured in the course of this thesis are shown. Samples from 
University of Konstanz in Prof. Meerchaut’s group were also measured. The typical 

structure for 2H-NbSe2 can be observed with Bragg reflections occurring at q ≈ 1, 2, 
3, 4 Å-1. In Figure 6-1b a close-up of the reflectivity in the region up to q = 1.5 Å-1 is 
shown.  
Rocking curves were also measured for many samples to investigate the crystal 
quality. Figure 6-2 shows data measured on the laboratory X-ray sources in W. 
Press’s working group in Kiel. These rocking curves from NbSe2 illustrate the 
difficulty in growing samples of sufficient quality for X-ray diffraction studies. The 
 
 

a b 
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Figure 6-2 Typical rocking curves measured for initial NbSe2 samples on the Kiel X-ray 
diffractometer. The width of the rocking curve can be related to the mosaic spread for the 
sample. The presence of multiple peaks in the rocking scan shows that the crystal is facetted (a, 
Bayreuth sample). In (b) sample skib2 (Kiel) with a lower mosaic spread is shown, the FWHM is 
0.025°. However, as one sees the intensity falls off rapidly for the higher order reflections. 

samples measured had full widths over the range 0.05° to as big as 0.5°. Initially the 
size of these samples was also far from ideal, ranging from thin whisker of samples to 
a volume of 1 x 1 x 1 mm3 or samples with a larger surface area, such as 10 x 10 mm2 

but a thickness of less than 100 µm. 
All samples, though grown in different laboratories, were produced using Iodine 
transport methods as described in 5.2. A significant improvement in sample quality is 
observed in the rocking curve shown in Figure 6-4. This was measured on a sample 
grown by C. Oglesby71 which has an excellent quality. The growth method differed 
from the others in that the annealing time was extremely long, 6 weeks in total. 
Variation of the stacking structure of successive NbSe2 layers along the hexagonal c 

axis can lead to a large variety of crystal structures or polytypes. Therefore, one must 
also consider the polytype components of a crystal. For X-ray diffraction studies one 
would ideally have a single polytype present, i.e. just the 2H form in this case. For the 
2H-polytype one expects to observe Bragg peaks only 00l with l = 2, 4, 6, 8. The 
presence of additional peaks at non-integer values of qz indicates that the crystal is not 
purely single crystalline but contains some domains of other forms. For grazing 
incidence measurements there is the additional requirement that the surface is flat, 
optically displaying no protrusions or bending, and with a low atomic roughness.  
 

6.3 Sample characterisation 

 
The 2H-NbSe2 sample grown by Oglesby71 is discussed here. It was found to be an 
ideal crystal for this study, 2 mm thick, 4 mm wide and 8 mm long. This sample was 
significantly bigger than all previous ones. The sample was initially almost perfectly 
flat though later after cleaving many times a slight bend observed at over the last 
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millimetre at one end of the crystal. The side faces of the crystal were also crystal 
facets. Indeed, in a previous experiment on the same sample, Du et al. measured 
diffraction not only from the top but also from the side of the sample3. The 
experiments presented in this chapter were carried out on this high-quality sample. 
 

 

Figure 6-3 The extended reflectivity or 00l truncation rod scan from l = 0 to approximately 7. 
Data were collected on the XMaS beamline at the ESRF. 

A reflectivity of the Oglesby sample as measured on the XMaS beamline at the ESRF, 
at 10 keV is shown in Figure 6-3. A standard θ-2θ reflection geometry was used as 
outlined in chapter 5. The high surface quality of this sample is clear from the almost 
seven orders of magnitude of intensity observed in the reflectivity. The high degree of 
crystallinity can be quantitatively measured in the rocking curves which for this 

sample have a FWHM of only 0.005° or 2.5⋅10-4 Å-1  (Figure 6-4) and is an order of 
magnitude improvement on our previous best value of 0.05° for a sample with a good 
reflectivity. This is remarkable for a layered crystal. If one compares the extended 
Bragg scan of sample Skib1 (Figure 6-1) with that of the Oglesby sample shown in 
Figure 6-5 one can see that the relative intensity of the 2H-peak to other reflections is 
greatly increased. This is indicative of a sample with a high contribution from a single 
polytype. There are many discussions of the nature and relevance of polytypes in the 
literature such as Refs. 19,21.  
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Figure 6-4 Rocking curve of NbSe2 measured on ID1. The FWHM is 0.005°. 

 

Figure 6-5 Reflectivity of the Oglesby sample measured on the XMaS beamline at the ESRF. The 
roughness estimated from the data is less than 3 Å. The coloured lines indicate the calculated 
reflectivities: red 0 Å, green 1 Å, blue 2 Å, purple 3 Å, cyan 4 Å. 

Bragg peaks present at q ≈ 1, 2, and 3 Å-1 are due to the NbSe2 002, 004 and 006 
reflections. The occurrence of the 00l reflections at integer positions in q is purely 
coincidental and is due to the fact that the c-axis of 2H-NbSe2 is approximately 4π 
(c = 12.547 Å)19. The presence of intensity spikes at 0.5 and at 0.7 Å-1 and later in the 
00l scan are due to a small contribution of some other polytypes in the mainly 2H-
sample. The relative intensity of the ‘other’ polytypes is quite small. The presence of 
an additional oscillation with dips at q = 0.07967 Å-1 and q = 0.2742 Å-1 gives a 
period ∆q = 0.1946 Å-1 and shows that there is a layer of about 32 Å present probably 
at the surface of the crystal. This is likely to be surface layer relaxation over the top 
layers of NbSe2. The roughness of the sample has been estimated to be less than 3 Å 
(Figure 6-6). In order to investigate a temperature dependence on the surface 
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relaxation, data were collected at 12 K and 40 K. No temperature dependence was 
observed in the truncation rod scans. Therefore, we can say that the surface relaxation 
is not temperature dependent. In summary, the Oglesby sample is a high quality 2H-
NbSe2 sample with a low roughness and it has a surface layer of about 32 Å thickness. 
 

6.4 Data from BW2 

 
The initial GID measurement at BW2 on the Oglesby grown NbSe2 sample was 
carried out as described in chapter 5. The sample was acetone degreased but not 
cleaved for this experiment. It was mounted on the Kiel cryostat on the 6 circle 
diffractometer at BW2. The beam size was set to 0.5 x 1 mm2 (horizontal x vertical) 
and the post sample slits 1 mm vertical. As a position sensitive detector was used the 
signal was integrated over αf. Even in this exploratory experiment the sample showed 
some very interesting results. For this experiment an energy of 8 keV was chosen to 

maximise surface sensitivity. The 5/300 satellite reflection intensity was measured. As 
the amplitude is proportional to the CDW lattice distortion it can be considered to be 
an indicator of the order parameter for the sample. The raw data collected at two 
separate incidence angles is shown in Figure 2-1. The charge density wave satellite 
reflection and a reference reflection (200) were measured at a surface sensitive 
incidence angle and then at a bulk sensitive incidence angle at each temperature step. 
The critical angle of total external reflection for NbSe2 is 0.34° at 8 keV. The surface 
sensitive data were collected first at an incidence angle below the critical angle of 
total external reflection (αi = 0.2°) resulting in a penetration depth of about 23 Å. The 
incidence angle was then increased beyond the critical angle of total external 
reflection to increase bulk sensitivity (αi = 0.45°, penetration depth ~ 1,000 Å). A 

difference in the line shape of the 5/300 satellite reflection on the surface and in the 
bulk was observed. Strong temperature dependence was also seen. There was enough 
information in the data to decide that the sample was worth further investigation.  
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Figure 6-7 Preliminary measurements on NbSe2 on BW2. A difference in the line shape is 
observed between the two geometries. The surface sensitive measurements taken at αi = 0.2° are 
shown in (a) and the bulk sensitive data (αi = 0.45°) in (b). At low temperature the bulk peaks is 
broader than the surface peaks. Note at 32 K and higher temperatures a stray bulk reflection was 
measured instead of the 5/300 satellite reflection. 

 

This data series shown above, in Figure 6-7, exhibits a different behaviour in the case 
of the bulk and the surface. The line shape for the bulk is broader than that for the 
surface. This figure also illustrates one common danger in measuring temperature 
dependant effects. As the intensity of the satellite reflection dies off with temperature 
the sample was unfortunately aligned onto a nearby bulk reflection. This problem was 
avoided in later experiments by only aligning the satellite peak while there was a 
reasonable amount of intensity and by avoiding movement in θ of larger than ∆θ = 
0.01° during alignment. This method is effective as the peak width is broad in 
comparison with position movements. This experiment raised many interesting 
questions such as why does the surface appear to be more ordered than the bulk. It 
was clear there was a need for an additional experiment.  

 

6.5 Ultra high vacuum preparation 

 
Although no sign of an oxide is observed in the region of the Bragg peaks and other 
experiments have shown the surface of NbSe2 to be unaffected by air in STM 
measurements79 we wanted to confirm this experimentally on our sample. In order to 
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be certain that there was no surface contamination, an in-vacuum experiment was 
attempted using the transportable baby chamber of R. Johnson80. The samples were 
cleaved in-vacuum in the Flipper chamber and then transferred under high vacuum  to 
the baby chamber where the sample was mounted on the end of the cold finger of a 
liquid helium Displex cryostat. The baby chamber was then transported to BW2 under 
vacuum using a portable power supply and mounted on the diffractometer. On the in- 
vacuum cleaved sample it was possible to observe the satellite peak but due to the 
degree of debris on the sample surface it was impossible to maintain a depth 
sensitivity and we did not obtain a surface sensitivity in these measurements. Using 
in- vacuum cleaving techniques we were not successful in getting a cleave of 
sufficient quality for grazing incidence diffraction. We could not achieve a removal of 
an entire surface layer resulting in the flat surface required in the time scale of a 
beamtime. This result is not surprising when one considers that in order to obtain a 
“good” cleave  in air the sample is often cleaved as many as twenty times before an 
optically flat surface is achieved. It would be very interesting to repeat this 
experiment if there was an alternative cleaving method or if one had a large number of 
samples. In this case one would require an in-vacuum camera in order to inspect the 
sample before transferring to the diffractometer. 
In the following experiments the sample was cleaved in air, then directly mounted on 
the cryostat and pumped down to a pressure of 10-7 mbar. 
 

6.6 Data from BW2: Further GID measurements 

 
Having seen that the surface/bulk behaviour was different for NbSe2 in section 6.4 a 
more thorough experiment was planned. As the signal measured previously was so 
low the two experiments discussed here were carried out at 9.5 keV to maximise the 
intensity available at the BW2 wiggler beamline. The sample was cleaved in air using 
the Scotch tape method outlined in chapter 5 and then mounted, under a Be dome, on 
the cold finger of the Kiel closed-cycle Helium cryostat (minimum temperature 25 K). 
The cryostat was mounted on the BW2 diffractometer. The incident beam was defined 
by slits of 0.5 x 1 mm2 (horizontal x vertical) and for the scattered beam 1 mm 
vertical slits with a position sensitive detector collecting over a horizontal range of 50 
mm integrating over αf (the exit angle from the sample). The integrated signal of the 
position sensitive detector signal was taken as the peak intensity. Even though we 
were illuminating a sizeable area of the sample (about 0.5 mm2), the characteristic 
transmission curve from a single terrace was observed at the position sensitive 
detector throughout this experiment. The illuminated sample area was 2 mm2. 
The sample surface quality was first confirmed with a ‘reflectivity’ scan taken in the 
GID geometry with detector slits 1 x 1 mm2 shown in Figure 6-8 (our set-up was 
optimised for GID and not for reflectivity). In the temperature range from 25 to 45 K 
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GID Bragg scans and rocking curve scans were then performed at the CDW satellite 

reflection q(5/300) = 3.513 Å-1 and at a reference reflection q(200) = 4.215 Å-1. 

 

Figure 6-8 This `reflectivity´ of cleaved NbSe2 sample was collected on BW2, HASYLAB with the 
sample aligned in the grazing incidence geometry. Though this set-up is not optimised for 
reflectivity the critical angle of total external reflection αc can be determined (αc =0.29°). 

The CDW and a reference reflection were measured at a surface sensitive incidence 
angle, the first series with αi = 0.14° (penetration depth ~ 24 Å), and then at an 
increased incidence angle αi = 0.4° (penetration depth ~ 1,500 Å), to increase bulk 
sensitivity. The second series was taken with αi = 0.17° (penetration depth ~ 26 Å) to 
gain intensity in the surface component. Temperature steps 1 K or 2 K were made 
below the phase transition. Steps of 0.1 K were required in the region of the transition 
and larger step sizes of 5 K or 10 K were taken above the critical temperature. Due to 
the low intensity of the satellite reflection, the signal-to-noise ratio was just 3.5 to 1 
even at 25 K. Therefore counting times were very long especially close to the 

transition temperature where a single 5/300 Bragg scan required 2.5 hours. Over the 

temperature range we monitored the order parameter (proportional to the square root 
of the satellite peak intensity) and the satellite diffuse scattering intensity. The 
temperature dependent evolution of the satellite peak at the surface and in the bulk for 
two separate temperature scans with different angles of incidence is shown in  
Figure 6-9 and Figure 6-10. 
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Figure 6-9 The two plots show the temperature dependent behaviour of the 5/300 satellite peak 
Bragg scans in the surface sensitive geometry αi= 0.14° (left) and in the bulk sensitive geometry 
αi= 0.4° (right) for temperature series 1. The bulk CDW component vanishes at 33.4 K. The 
Bragg surface component is still observed at higher temperature. The data were collected at 
BW2, HASYLAB. 

 

The difference in the peak shapes is striking. We observe a significant change in peak shape 
between the surface and the bulk data. There is very little diffuse scattering under the satellite 
Bragg component in the surface data and a broad diffuse background is observed in the bulk. 
This can be clearly seen in Figure 6-10. The diffuse scattering in the bulk remains visible up to 60 
K ( 

Figure 6-9). In the surface the diffuse component is very low. This contrast between 
the surface and bulk data is very surprising and is evidence of a greater degree of 
order on the surface than in the bulk. In Figure 6-11, the bulk and surface scan at 28 K 
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are shown: there is a stronger, more intense diffuse component present in the bulk 
than in the surface scan.  

 

 

Figure 6-10: Bragg scans measured at BW2 are shown for incidence angles 0.17° and 0.4° at the 
5/300 satellite reflection for the temperature range 25 K to 45 K for temperature series 2. The 
contrast between the peak line shapes is stark with a broad diffuse component present in bulk 
even at temperatures above Tc. In the bulk the phase transition occurs at Tcb = 33.5 K and at the 
surface at Tcs = 34.9 K. The temperature difference between the bulk transition and that at the 
surface is ∆T = (1.4 ± 0.4) K. 

There could be a number of reasons for this. One could be that in the bulk sensitive 
geometry thermal diffuse scattering is observed. It could also be that the surface has 
inherently better short range order and so the component is not broad as in the case of 
the bulk. We can also consider it as evidence that the transition is more continuous at 
the surface than in the bulk as the diffuse intensity is more pronounced in the region 
very close to Tcb. 
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Figure 6-11 Bragg scans through the 5/300 satellite at 25 K and 32.8 K show a far greater diffuse 
component in the bulk (left) than in the surface (right) for temperature series 1. The figure shows 
the Bragg and diffuse component for bulk and surface. Data measured at BW2, HASYLAB. 

The data were analysed using a least-squared fit algorithm. At each temperature the 
Bragg and diffuse component of the satellite peaks were fitted (see Figure 6-11) and 
also the 200 reference Bragg reflection, The 200 intensities were used to normalise 
the satellite intensities and the 200 position was used as a reference position for the 
satellite position. All the peaks were fitted with a Lorentzian line shape. For the 
satellite peak the integrated intensities and positions of both Bragg and diffuse 
components were varied, as was the FWHM of the diffuse component. The FWHM of 
the Bragg component was fixed to a constant throughout the fitting in order to reduce 
the number of free parameters. This value chosen was the mean value of the FWHM 
over the temperature series which was the same within the calculated error [surface 
FWHM = (0.1 ± .03)°, bulk FWHM = (0.09 ± 0.03)°]. 
The temperature dependence of the intensities of the Bragg component for 
temperature series 1 is shown below in Figure 6-12. The bulk intensity disappears 
before the surface intensity. From a linear extrapolation of the data points close to Tc 

the transmission temperature was estimated for both the surface and the bulk giving 
Tcb = (33.4 ± 0.5) K, Tcs = (35 ± 0.5) K. This is a very interesting result as ∆T  = (1.6 ± 
0.5) K with the surface critical temperature above that of the bulk. 
 

Surface Bulk 2255  KK  

3322..88  KK  BBrraagggg  
ddiiffffuussee  

3322..88  KK  

2255  KK  



Experiments and analysis  69 
 
 

 

Figure 6-12 By plotting the intensity of the 5/300 satellite peak for temperature series 1 (as 
determined when the data is fitted with two Lorentzian components) against temperature, the 
phase transition critical temperature for the bulk and surface geometry, respectively may be 
estimated to be: Tcb = (33.4 ± 0.5) K, Tcs = (35 ± 0.5) K, ∆T = (1.6 ± 0.5) K. Data collected at BW2, 
HASYLAB. The intensity error bars are approximately ± 0.5 intensity units for all data points 
collected (blue diamonds bulk, red dots surface). 

 

Figure 6-13 Temperature dependence of the integrated intensity of the 5/300 satellite reflection 
measured on BW2 (for temperature series 2), normalised to the integrated intensity of the 200 
Bragg reflection. The bulk and surface transition temperatures, respectively, are Tcb = 33.5 K and  
Tcs =34.9 K (blue diamonds bulk, red dots surface). 

 

Figure 6-13 shows the temperature dependence of the 5/300 satellite reflection 
normalised intensity for the surface and bulk (temperature series 2). For both cases the 
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intensities, which are proportional to the square of the amplitude of the modulation, 
appear to go continuously to zero as expected at a second order phase transition and 
previously observed by others1,7.Though these experiments found no evidence of a 
discontinuity it can not be completely ruled out due to limited resolution and intensity. 
An increased surface transition temperature with respect to the bulk is clearly 
observed. The transition temperature for the surface and for the bulk was obtained by 
plotting the integrated intensities on a linear intensity scale. The bulk transition 
temperature Tcb was found to be (33.5 ± 0.2) K and the surface transition temperature 
Tcs = (34.9 ± 0.4) K. This is an extremely interesting result. Tcs  = Tcb + (1.4 ± 0.6) K 
is a strong indication that this is not an ordinary transition as is generally expected for 
second order transitions (discussed in chapter 3 section 2). One must consider the 
possibility that we have observed a ‘surface transition’ i.e. a higher transition 
temperature at the surface than in the bulk in NbSe2, described by a 2D behaviour at 
the surface. This situation is predicted by phase transition theory for surfaces9,10,11 as 
discussed in chapter 3 but to the best of our knowledge has not be confirmed 
experimentally for a second order system. There is some evidence of a slope change 
for the surface in the vicinity of Tcb but the magnitude is comparable to our errors. 
This could be due to a cross-over effect close to the critical temperature as predicted 
in the theory44,9,46  and observed experimentally15. The cross-over effect occurs 
because of the change in the surface coupling constant as discussed in chapter 3 
(Equation 3-34). It is not possible to confirm the effect with these data due to fact that 
a small slope change is expected and the experimental error is large close to Tc.  
 
By plotting the intensity against the reduced temperature τ on a double logarithmic 
scale, where τb is the bulk reduced temperature calculated using the bulk transition 
temperature, the exponents for the bulk transition and the extraordinary transition (at 
the surface) are obtained (Figure 6-14 a). We see that both the surface and bulk data 
follow a power law. From these slopes we can obtain the values for the order 

parameter exponents β1,e andβb for the surface and bulk, respectively. In the case of 

the bulk we obtain an exponent βb of 0.31 ± 0.1. The value we obtain for the surface is 

β1,e = 0.24 ± 0.2. 
The exponent for the ‘surface transition’ can also be determined by plotting the data 
from the temperature range Tcb < T < Tcs. In this case τs is the surface reduced 
temperature determined from the surface transition temperature (Figure 6-14 b). An 

exponent β1,s of 0.5 ± 0.3 is obtained for the ‘surface transition’. Due to the large 
errors these exponents will not be interpreted further at this point. 
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(a) 

 

 

(b) 

Figure 6-14 Double logarithmic presentation of the integrated Bragg intensity of the 5/300 satellite 
reflections collected in temperature series 2, shown in Figure 6-10, with respect to the reduced 
temperature. The straight lines indicate the power law dependence for the bulk (open diamonds) 
and surface (closed circles). βb is 0.31 ± 0.1 and β1,e is 0.24 ± 0.2. (b) The surface intensity is 
plotted as a function of the surface reduced temperature τs giving a β1,s of 0.5 ± 0.3 (blue 
diamonds bulk, red dots surface). 
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Figure 6-15 shows the temperature dependence of the 5/300 satellite diffuse 
component intensity. It is noteworthy that here we are at the experimental limit and 
though there appears to be an increase in intensity in the region of the transition the 
errors are large enough to detract from further analysis. There is very little diffuse 
scattering under the satellite Bragg component in the surface data and a broad diffuse 
background is observed in the bulk. From Equation 4-23 the correlation length of the 
charge density wave is proportional to the inverse of the half width half maximum 
(0.5 σfwhm)  of the satellite reflection Bragg peak. From our data sets the correlation 
length ξ of the charge density wave long-range and short-range component well below 
Tc at 28 K was calculated for both the bulk and the surface condition. The calculations 
are shown in table in Table 6-1. The correlation length of the charge density wave 
oscillations is much shorter than that of the crystal structure as the FWHM of the 
charge density wave component is ~800 Å.  The average value for the correlation 
length as calculated from the 5/300 diffuse scattering component in the surface is twice 
that in the bulk. This is a very interesting result and is not usual, therefore we consider 
it to be related to the temperature shift of the critical point at the surface. This could 
be an indication that the surface is far more ordered than the bulk. Another possible 
explanation is that the transition is more continuous at the surface than in the bulk. In 
the case of an ideal second order phase transition81 the diffuse component is only 
observed in the temperature range very close to the Tc. 
 

 

Figure 6-15 Intensity of the diffuse scattering from the 5/300 satellite reflection (closed circles – 
surface, open diamonds - bulk) normalised to the 200 reflection integrated intensity. The lines are 
a guide to the eye (blue diamonds bulk, red dots surface). 
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Correlation length   ξ (Å) 

5/300 Bragg peak Moncton @10 K 114  

5/300 Bragg component 

@ 28 K     

Surface 785 ± 200 

 Bulk 825 ± 200 

5/300 diffuse component Surface 285 ± 85 

 Bulk 104 ± 30 

Table 6-1 The correlation length ξ of the charge density wave oscillation may be calculated from 
5/300 satellite reflection, values found in our experiments are compared to the value from 
Moncton2. 

 
We have observed the same unusual temperature behaviour in both these experiments 
indicating that the surface charge density wave transition occurs at a higher 
temperature on the surface than in the bulk. There are large errors in the region close 
to the transition temperature, which make an accurate description of the diffuse 
scattering behaviour difficult. Therefore, it was necessary to carry out a further 
experiment at a third generation synchrotron where a high brilliance is available, i.e. 
increased flux and lower divergence. This brilliance allows scanning over a wider 
temperature range and in particular with smaller temperature steps in the region of the 
transition where the intensity is lowest. However, we can say that the central finding 
of the BW2 measurement is that for 2H-NbSe2 there is a temperature difference 
between the CDW transition temperature in the sample bulk and at the surface. Tcs is 
grater than Tcb where ∆T = (1.4 ± 0.6) K. 
 

6.7 ID1 

 
A final decisive experiment was carried out on ID1 at the ESRF. An energy of 10.37 
keV was chosen in order to profit from the fact that the beamline optics were 
optimised for use at this energy. The sample was cleaved in air and then mounted, 
under a Be dome, on the cold finger of the Leybold cryostat (minimum temperature 
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18.5 K). The cryostat was mounted on the ID1 diffractometer. The incident beam was 
defined by slits of 0.2 x 0.2 mm2 (horizontal x vertical) and for the scattered beam 0.5 
mm horizontal slits with a position sensitive detector collecting over a vertical range 
of 20 mm. The resulting illuminated spot size was approximately 1.5 mm2 for the 
range of incidence angles used in this experiment. The small beam size was chosen to 
ensure that the characteristic transmission curve from a single terrace was observed at 
the position sensitive detector throughout this experiment. In addition the focusing 
monochromator was set to its minimum bend in order to minimise divergence. The 
position sensitive detector signal integrated over αf was taken as the intensity. 
 

 

Figure 6-16 Transmission function of NbSe2 measured on ID1 as a function of αi. The FWHM is 
0.034° ± 0.001 °. The multi-channel analyser signal (αf-resolved scattered intensity) taken at αc is 
shown as an inset. It displays the typical profile for scattering from a single terrace.  

 
By varying the incidence angle an approximation to the transmission function was 
measured (Figure 6-16). The critical angle of total external reflection is observed to be 
at 0.26° which agrees with the calculated value as determined by other authors, see for 
example Ref. 36. The full width half maximum of the curve is 0.034°. Surface and 
bulk sensitive measuring geometries were chosen symmetrically about the critical 
angle. For the surface sensitive measurements an incidence angle of 0.16° was chosen 
resulting in a penetration depth of approximately 27 Å. This is a little larger than 
twice the c lattice constant (c = 12.547 Å)19. The bulk measurements were taken with 
an incidence angle of 0.36° resulting in a penetration depth of about 1400 Å. 

The temperature dependence of the 5/300 satellite and the 200 intensity, as reference, 
were measured in both surface and bulk sensitive geometry. The sample was first 

cooled to 18 K where the 5/300 intensity was 300 counts per second at the angle of 
total external reflection. The 200 intensity was 127,000 counts per second. The raw 
data are presented in Figure 6-17. Again a different line shape is observed for surface 
and bulk geometries. A broader and more intense diffuse component is clearly seen in 
the bulk data while for the surface it is difficult to distinguish the diffuse scattering 
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from the background at a first glance. Consequently, interpretation of the short range 
order at the surface is more difficult than that of the bulk. If the beam size at the 
sample position was increased above 0.2 x 0.2 mm2 contributions from other terraces 
were observed on the PSD. This meant that in order to maintain sensitivity to a single 
terrace one had to compromise greatly in the charge density wave satellite reflection 
intensity.  

 

Figure 6-17 The 5/300 satellite reflection Bragg scans as collected on ID1 (ESRF) display a 
noticeable temperature dependence. The data were collected at an incidence angle of 0.36° (bulk 
geometry) and 0.16° (surface geometry). The experimental data are shown as data points and the 
result obtained from the fitting procedure as continuous lines (blue bulk, red surface). 

surface bulk 
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Figure 6-18 The 5/300 satellite Bragg scans in the range closer to Tc. The data were collected at an 
incidence angle of 0.36° (bulk geometry) and 0.16° (surface geometry). The experimental data are 
shown as symbols and the result obtained from the fitting procedure as continuous lines. Data 
collected at ID1, ESRF (red surface, blue bulk). 

 

Fit 

 
In order to analyse the data they were fitted using the same least squares fitting 
routine as described in section 6.6. The results obtained when each data set was fitted 
at each temperature independently are presented in Figure 6-17 and Figure 6-18. This 
method has the advantage that no prior knowledge of the system is required.  

Initially data collected at each temperature were analysed independently. The 5/300 
satellite reflection was fitted with two components, a Bragg component and a diffuse 
component. The 200 reference Bragg reflection was fitted with a single component 
using the same procedure. The intensities and positions obtained were used to 
normalise the satellite reflection data in order to reduce the effect of intensity or 
positions changes in the primary beam. As before a Lorentzian line shape was found 
to be appropriate for all peaks fitted. The following fitting procedure was used: For 
the satellite peak the integrated intensities were varied. The position of both Bragg- 
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like and diffuse components were set to the same value and then varied together. The 
FWHM of the diffuse component was varied in addition. The mean value of the 
FWHM of the Bragg component in the temperature range excluding the 18.5 K data 
were fixed to a constant throughout the fitting in order to reduce the number of free 
parameters (surface and bulk FWHM = 0.05° ± 0.01°). Fixing the width of the Bragg- 
like component is appropriate as no large changes in the FWHM close to Tc are 
expected. This reduced the number of parameters in the fit and helps to ensure that 
intensity variations close to Tc are assigned to the correct component. For a 
continuous phase transition where the diffuse component is gaining intensity while 
simultaneously the Bragg component is loosing intensity such an assignment is 
nontrivial. Further away from Tc the diffuse component is broad and therefore even to 
the naked eye it is clear which intensity belongs to which component. However as Tc 
is approached the FWHM of the diffuse component is minimised making it more 
difficult to separate the diffuse component from the Bragg component.  
 

Determining the critical temperature 

 
The uncertainty in the Tc determination comes principally from the low intensity in 
the satellite Bragg reflection. There may be an offset in the temperature due to the fact 
that the diode though close to the sample is not situated on the sample surface 
(impossible in this geometry). In order to reduce possible errors in the temperature 
data were collected first in the surface geometry and then in the bulk geometry at each 
temperature step. This complicates the alignment but reduces possible temperature 
errors immensely. After each temperature increase the system was allowed to reach 
thermal equilibrium. For temperature steps of greater than 1 K an hour was required. 
For steps less than 0.5 K, half an hour was allowed. The thermal stabilisation of the 
sample was monitored via the satellite peak intensity which varies with temperature. 
Final alignment at each temperature was carried out only after thermal equilibrium 
was reached. The main source of error in temperature therefore comes from drift and 
oscillation due to the temperature control device. The oscillation was ± 0.01 K with 
the Lakeshore temperature controller. There was a drift of just 0.03 K observed over 
the three hours required to make a set of scans at a single temperature. This drift was 
accurately determined as the temperature was recorded at the same time each data 
point was taken. Therefore, the temperature error possible between an equivalent 
surface and bulk measurement for this measurement is 0.04 K. One other effect that 
could cause a small temperature gradient between the sample surface and bulk is 
warming due to the X-ray beam impinging on the sample. This of course would 
reduce the temperature gap between the surface and bulk. In any case low temperature 
studies show that surface warming effects due to thermal contribution of a third 
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generation synchrotron source X-ray beam are only significant at temperatures less 
than 1 K82. 

 

Figure 6-19 Temperature dependence of the integrated intensity of the 5/300 satellite reflection 
measured on ID1, normalised to the integrated intensity of the 200 Bragg reflection. Both the 
surface and bulk intensity go continuously to zero with increasing temperature (blue diamonds 
bulk, red dots surface) . 

 

The temperature dependence of the 5/300 satellite reflection integrated intensity 
(Iint ~ Ipeak since the FWHM is fixed), normalised to background, is shown in Figure 
6-19. The result is similar to that obtained on the beamline BW2 even with better 
intensity and lower background. In agreement with previous measurements and with 
the work of other groups, the transition appears to be continuous1,7 for both the bulk 
and surface geometry. It is, however, impossible to rule out a small first order 
component: it would be very difficult to see a discontinuity close to Tc experimentally 
due to the low intensity in the satellite reflection. When heating the bulk satellite 
intensity goes to zero at Tcb = (33.3 ± 0.1) K, while at the surface the Bragg 
component of the satellite is present until Tcs = (34.9 ± 0.3) K. Unfortunately, due to a 
power cut at the synchrotron, a day of beamtime was lost at the end of the run and it 
was not possible to continue collecting data in small temperature increments in the 
temperature range 33.4 K to 34.9 K. In order to determine Tcs, the T-axis intercept  of 
the slope taken from data points greater than 31 K is used. The power cut occurred 
after the 30 K series was completed. To conclude the measurement the sample was 
cooled again to 28 K, reference measurements were taken at 28 K and 30 K and then 
the series was continued. Therefore, the error in determining the Tcs temperature is 
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larger than that of the Tcb determination. We observe the surface Tc = (34.9 ± 0.3) K  
and hence ∆T = (1.6 ± 0.4) K above Tcb. 
The magnitude of the 1.6 K temperature increase for the surface transition above the 
bulk transition is certainly significant for this experiment. Other authors have carried 
out surface sensitive grazing incidence diffraction investigations on a variety of 
crystalline systems. However, in systems with second order transitions no temperature 
difference between the surface and the bulk has been observed in a single experiment 
in the absence of an external field (see discussion, 6.8). 
Assuming a continuous transition one would expect the data to follow a power law 
when intensity is plotted against the reduced temperature on a double logarithmic 

scale (Figure 6.10). We can obtain the values for the order parameter exponents 2β1,e 

and 2βb for the surface and bulk, respectively, from these slopes. We obtain βb = 0.18 
± 0.02 and  β1,e = 0.20 ± 0.04. The bulk exponent lies between the 2-D (0.125) and the 
3-D (0.325) Ising values predicted by calculations suggesting that NbSe2 exhibits 
quasi 2-D behaviour10,11.  
 

 

Figure 6-20 Double logarithmic presentation of the integrated Bragg intensity of the 5/300 satellite 
reflections, shown in Figure 6-19, plotted versus reduced temperature τ = (T - Tcb)/Tcb. The 
straight lines indicate the power law dependence for the bulk (open diamonds) and surface 
(closed circles). The bulk exponent is βb = 0.18 ± 0.02 and for the surface β1,e = 0.20 ± 0.04 (blue 
diamonds bulk, red dots surface). 

 
The consideration hereafter follows that described by Diehl10 and Landau and 
Binder12. The surface exponent β1 describes the ‘extraordinary transition’ in the 
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temperature range T < Tcb. As the sample is heated, the degree of ordering m1
reg at the 

surface does not go to zero at Tcb but instead a certain degree of surface order m1c is 
present at Tcb and a degree of order until Tcs. Therefore in order to describe the β1 
exponent in the range T < Tcb the power law description must be modified. We can 
determine it using Equation 3-34 as described in Refs. 12,13,44. Following this 

procedure we observe a linear dependence of c

reg
mmm 11 −=∆  on τ(1-α): 

 

)1(11 ατ
τ

−±++=
−

ba
mm c

reg

    (3-30) 

 
where β1 = 2 – α. This is shown in Figure 6-21 below where the constant b, the slope 
of the linear fit, and the intercept a can be used to determine the exponent β1 that 
describes the ‘extraordinary transition’.  We observe a linear behaviour of ∆m and this 
is evidence that the system undergoes an extraordinary transition following on from a 
‘surface transition’. Since we are so close to the ‘special transition’ condition further 
analysis does not provide additional information. 

 

 

Figure 6-21 It is possible to separate the surface exponent at the ‘extraordinary transition’ by 
subtracting the contribution of mc as discussed in the text at Tcb according to Refs. 12,13. For an 
‘extraordinary transition’ when the data is so described a linear dependence is predicted.  

 

Position of the 5/300 superlattice reflection 

 
The position of the satellite reflection displays a temperature dependence which is 
shown in Figure 6-22. In order to reduce the number of variables in the fit, the 

∆
m
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positions of the diffuse and Bragg component were coupled in the fit and then allowed 
to vary together. As both contributions are broad, and little relative change is expected 
this is a valid restriction.  

 

Figure 6-22 The temperature dependence of the 5/300 satellite reflection in q for the data collected 
on the beamline ID1 is plotted. The error in inverse position is 0.00002 Å-1 (blue diamonds bulk, 
red dots surface). 

The position of the CDW satellite structure was found to be incommensurate close to 
Tc and to move towards a commensurate position on cooling. Yet over the temperature 
range investigated in these experiment no lock-in transition was observed. This result 
is consistent with observations of other authors such as Du et al.3 and Moncton et al.1. 
A similar behaviour was observed for both the surface and the bulk charge density 
wave Bragg positions. 
 

Correlation length 

 
We learn more about the phase transition by looking at the temperature dependence of 
the FWHM of the 5/300 satellite reflection diffuse component. The correlation length 
of the critical fluctuations is directly related to the width of the diffuse scattering. In 
Figure 6-23 it is observed that the width of the diffuse scattering decreases as Tcb is 
approached and increases again afterwards. This is the predicted behaviour for a 
second order phase transition. The data shown is measured in the bulk sensitive 
geometry. In the surface sensitive geometry it was not possible to determine any 
temperature dependence effect due to the low intensity. 

q
 (

Å
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Figure 6-23 The κ or 1/ξ values of the diffuse component for the bulk data from 2H-NbSe2 as 
obtained from the ID1 data fits are shown in the above figure. A decrease in the width of the 
diffuse component is observed as Tc is approached. The bulk data exhibit a typical second order 
like behaviour with a maximum correlation length at Tcb (instrumental resolution not removed 
from the data). 

 
 

 

Figure 6-24 The diffuse component of the 5/300 satellite reflection intensity χ (q = qo) increases 
rapidly as Tcb is approached and decays afterwards in the bulk. This behaviour is consistent with 
the presence of a second order phase transition. For the surface sensitive data the error bars are 
of the order of the observed effect (blue diamonds bulk, red dots surface). 

 



Experiments and analysis  83 
 
 
Satellite diffuse intensity 

 
The diffuse component of the 5/300 satellite reflections intensity χ(q = q0) is shown in 
Figure 6-24 above, where q0 is the position of maximum intensity. For the bulk on 
approaching Tcb the intensity increases rapidly above 30 K with further heating. The 
bulk intensity reduces rapidly above the critical temperature but remains visible up to 
45 K. The intensity of the surface component is far smaller than that of the bulk as 
one would expect from the raw data and could not be resolved from background 
above Tcs. An increase in the intensity of the surface data is observed mirroring the 
bulk behaviour but this could easily be due to the resolution limit of the experiment; 
the experimental error is large.  
It is also important to note that in the fit there is a correlation between the background 
and the diffuse intensity so one must be cautious in interpreting the fit of the diffuse 
scattering for the surface data. 
Plotting the data shown in Figure 6-24 on a double logarithmic scale, it can be seen 
that the diffuse intensity also follows a power law behaviour (Figure 6-25). 
 

 

Figure 6-25 Double logarithmic presentation of the diffuse component of the 5/300 satellite 
reflection intensity χ(q = qo). It shows a different temperature dependence for the surface and the 
bulk (blue diamonds bulk, red dots surface) . 

 

6.8 Discussion 

 
In the following discussion the significance of the experimental results will be 
considered. The relevance of the observed (1.6 ± 0.4) K temperature difference 
between surface and bulk in the CDW phase transition of 2H-NbSe2 with respect to 
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other work is explored. The determined critical exponents are then discussed in the 

framework of the ½-∞ Ising model for isotropic systems. In addition we give 
consideration to how the coupling constants at the surface might change for an 
anisotropic system. 
 

Modified surface temperature 

 
It is certainly an unusual finding that we observe a higher transition temperature at the 
surface of 2H-NbSe2 than in the bulk. In view of this we have repeated the experiment 
several times to confirm our findings. Though surface temperature effects are 
predicted by many theoretical considerations of continuous systems, studies on other 
systems displaying continuous transitions have not reported a temperature difference 
between the surface and bulk transitions. 
The grazing incidence technique provides a depth resolved structural probe that plays 
a very powerful role in studying the physics of phase transitions at surfaces. There 
have been many interesting experiments in this area. In an experiment very close to 
ours in 1990, Zhu et al.8 performed a GID study of the charge density wave phase 
transition in K0.3MoO3 over the depth range 20 – 1000 Å. They found the CDW wave 
vector at the surface to be the same as that in the bulk. Transition temperature and 
temperature dependence of the order parameter were found to be depth independent in 
this material. They postulated that this was due to the weak coupling perpendicular to 

the ( 120 ) surface.  
Using surface X-ray scattering, in 1993, Burandt et al.15 observed near surface X-ray 
critical phenomena from a NH4Br( 011 ) surface with a penetration depth of 100 Å. A 
cross-over was observed in the power law behaviour of the order parameter close to 
Tc. The bulk and surface transition temperatures were identical providing evidence for 
an ordinary transition. 
By using surface sensitive helium atom diffraction, Marynowski et al. (1999)83 
investigated the antiferromagnetic transition on the NiO(100) surface and claim to 
have observed an extraordinary transition in a study of the surface order parameter. 
They were sensitive to a region of 5 – 10 Å from the surface, so only the surface 
effects could be investigated in this experiment. An order parameter β1= 0.175 
consistent with predictions for an extraordinary transition was determined. The bulk 
transition temperature could not be determined directly in this experiment. Therefore, 
it was determined externally by differential scanning calorimetry. Using this 
technique it is not possible to measure both surface and bulk behaviour at a single 
temperature in the same experiment and therefore it is not possible to verify the 
temperature difference.  
Krimmel et al.84 performed an X-ray scattering study of the continuous B2-A2 order-
disorder transition in semi-infinite FeCo(001). They observed that the surface- related 
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order parameter persists above the bulk critical temperature. This mesoscopically 
thick surface layer temperature dependence displays a behaviour similar to that of a 
magnet exposed to an external field. This experiment provided evidence for the 
presence of a surface field (h1) which couples to the surface susceptibility. They 
conclude that the surface layer is not induced by the enhancement of exchange 
interactions in the surface layer, but rather by surface segregation.  
 
In the case of first order phase transitions such temperature effects are more 
common. Schweika et al. (2002)85 carried out in situ reflectivity measurements of 
strain-induced wetting in a CuAu(001) single crystal. They observed an ordered layer 
near the (001) surface well above the bulk transition temperature. They concluded that 
the incomplete wetting was strain-induced. The order-disorder phase transition at the 
surface of Cu3Au(001) by evanescent X-ray scattering was studied by Dosch (1991)86. 
He observed a wetting transition driven by the first order bulk transition. Depth- 
resolved near-surface relaxation times (minutes) exhibit distinct depth dependence. In 
1998, Zhu et al.87 preformed a grazing incidence study of the order-disorder transition 
in Cu3Au(111). They observed a first order phase transition in the bulk at 665 K and 
enhanced surface ordering at a slightly higher temperature. In addition, they found 
strong diffuse scattering from short range order fluctuations in the bulk, but this effect 
was much weaker in the surface region. This result is similar to our observations of 
the short range order in NbSe2. In 2003, Reichert et al.18 reported a new type of short-
range order correlations at the (001) surface of Cu3Au proposing that this new surface 
effect was caused by a significant change in strain-induced interactions at the surface. 
Indeed, one would expect a modified behaviour at the surface to be the result of a 
structural or electronic behaviour, possibly a combination of both.  
As discussed above the surface temperature may be modified by a strain or relaxation. 
Another factor that could be of influence is the presence of defects at the surface. It 
has been shown that the critical temperature would be lowered in the presence of 
defects. 26,35,78 Therefore, as in our experiments the surface critical temperature is 
higher than that of the bulk, it is unlikely that the enhancement effect we observe is 
due to pinning of the CDW by defects. 
Considering all the above experiments with respect to our measurements, the 
temperature difference in Tcb and Tcs we observe is a significant result. In addition we 
have seen that the result is reproducible under a variety of experimental conditions. 
The sample was measured at HASYLAB and ESRF with different equipment. 
Therefore we can be certain of the temperature difference measured showing the 
surface Tcs at (1.6 ± 0.4) K above bulk Tcb. This can be understood in the framework 
of a surface transition arising from an increased coupling constant at the surface (see 
below). 
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Critical exponents 

 
In order to explain the behaviour of the surface coupling constants and the underlying 
physical processes involved in the 2H-NbSe2 CDW transition, we have determined 
the critical exponents for this system. We compare the experimentally determined 
exponents with those found using the Ising model. Why do we use the Ising model to 
describe a charge density wave system? In a general sense one could better use mean 
field theory of local density approximation to accurately describe the system. 
However, in order to obtain a simple model of the system, the Ising model provides a 
very useful tool. By considering just local interactions even in the case where it is not 
completely analogous to the spin ½ Ising theory, it is possible to develop a useful 
model that can be related to our experiment as it allows us to consider the local 
interactions in a simple manner.  
It is always very difficult to determine exponents accurately for a weakly scattering 
non-perfect system as the intensity in the satellite reflection is very weak and the 
errors in the region of Tc are consequently large. We have obtained a bulk exponent βb 
= 0.18 ± 0.02. This exponent is closer to the value expected for a two-dimensional 
Ising system (0.125) than that for a three-dimensional Ising system (0.325) which is 
consistent with photoemission experiments where a quasi two-dimensional behaviour 
was found4,5,6. In keeping with the photoemission experiments there must be 3-D 
interaction between the layers and this is likely to explain the slightly higher value for 
the bulk. It is important to note that the bulk value could also be a hint that there is a 
degree of discontinuity in the charge density phase transition. As Press and Hüller81 
have discussed for a first-order transition, exponents in the range 0.16 – 0.20 are often 
found in three-dimensional systems which exhibit a small discontinuity close to Tc. 
However, when we look at the behaviour of the correlation length in Figure 2-1 we 
see a behaviour consistent with a second order transition, i.e. the inverse correlation 
length reaches a minimum at Tc. Determining the surface exponents is more difficult 
as it was not easy to separate the diffuse scattering from the Bragg component in the 
satellite Bragg reflection. The behaviour of the exponent β1 is extracted here 
following the theory as described in9,10,11. The exponent for the extraordinary 
transition was obtained and found to be β1,e = 0.20 ± 0.04.  
It is very difficult to extract the exponent for the surface transition as one must use 
data only in the region Tcb < T < Tcs and here we are extremely intensity limited. 

However, from the BW2 data a value β1,s = 0.5 ± 0.3  was obtained. As the error here 
is very large this exponent is not very reliable and it does not provide a good 
agreement with the predicted value of ⅛ from the calculation of Yang47. Given that 
we observe a relaxation of the surface layers from the crystal truncation rod 
measurements, we propose that the temperature difference we observe results from 
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the dependency of the perpendicular component of the order parameter on the surface 
relaxation. The effect of this relaxation on the surface enhancement of the coupling 
constants is discussed in the following. 
 

Introduction of anisotropy 

 
If we consider that the increase in the critical temperature at the surface is due to the 
change in the coupling constant in the surface region it is possible to explain this 
within the framework of a simple Ising model. For the moment, we disregard details 
of layering and consider the Ising model. As discussed in detail in chapter 2 after 
Binder, Diehl, Wagner and Dietrich9,10,11 consider the Ising model of an infinite 3-D 
system with interactions changed in the surface plane. In such a system all nearest 
neighbour interactions (where the restriction is made to neglect second nearest 
neighbours and beyond) can be described by the coupling constant J. This simple 

situation is modified in a ½-∞ system, with neighbours in the ½-∞ limit above the 
surface missing. The interactions in the surface plane are J║ and the coupling between 

the surface plane and the adjacent plane is J⊥. 
In the following a short consideration of the Fermi surface in different dimensions as 
illustrated in Figure 6-26 is given. If one assumes 2-D Fermi nesting (see chapter 2) 

within NbSe2 layers4,5,6, these features would be independent of q⊥ and so provide a 

coupling constant J║ in the plane and no coupling in the q⊥ or qz direction. The 

interactions within the plane are J║ and the coupling between planes is J⊥. NbSe2 has 
a layered structure, therefore we first consider 2-D perfect Fermi nesting within each 
layer as a starting point. In this case the Fermi surface would be independent of qz and 
so provide a strong coupling constant only in the plane (J║). If there is an interaction 

J⊥ between the layers which is needed for the formation of a 3-D crystal, the Fermi 
nesting is reduced due to a modification of the parallel coupling constant which 
results in a weakening of the in-plane coupling constants -∆J (see Figure 6-26). In the 
bulk we obtain J║'= J║ - 2∆J allowing for 2 neighbouring layers. By relating this to 
Binder’s model and considering a half-infinite system, the coupling constant at the 
surface is altered so that J║s= J║ -∆J. In the case of TaSe2 the interaction between the 

layers is J⊥ ≅ ⅓ J║' as measured by Moncton et al.2. We expect a similar vertical 
coupling for NbSe2, hence it is possible to model a mechanism leading to the situation 
of a surface transition. 
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Figure 6-26 A k–space and real space representation of the Fermi surface and nesting of 2D and 
quasi-2D systems. The sketch above illustrates how the coupling constant is modified close to a 
surface in a quasi 2D crystal. 

 
 

6.9 Summary 

 
As can be seen from the above discussion, it is most probable that we have observed a 
‘surface transition’ at the surface of 2H-NbSe2 using GID. We observe that the 
surface orders at a temperature (1.6 ± 0.4) K higher than in the bulk. Critical 
exponents have been calculated for the surface and the bulk behaviour. The bulk 
appears to undergo a two-dimensional-like continuous transition. At the surface a 
second order phase transition was also observed displaying a different critical 
behaviour from that observed in the bulk. Considering the anisotropic nature of 2H-
NbSe2 we propose a modified Ising model which would account for the increased 
coupling constant at the surface. This provides a framework in which the limited 
interaction between layers may be considered to affect the surface coupling constants. 
This model is a step towards the understanding this system. The development of a full 
theoretical model is outside the scope of this thesis.   
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7 Grazing incidence Inelastic X-ray scattering 

7.1 X-ray diffraction 

 
In this chapter the first grazing incidence inelastic X-ray scattering experiment is 
reported. The experiment was carried out in November 2003. Due to its late nature 
this chapter is therefore briefer than the other chapters in this thesis. 
 
The technique of inelastic X-ray scattering (IXS) was first shown to work in the late 
1980’s.88,89 It is complementary to the long established inelastic neutron scattering 
(INS) techniques. Inelastic X-ray scattering has been proven to be particularly useful 
for cases where samples themselves are too small or the sample environment is 
unsuitable for neutron work. High pressure research is such an example.90 IXS can 
also overcome kinematic limitations of INS when studying disordered systems at low 
momentum transfers or with a high speed of sound91. As we show in this experiment 
IXS also provides the possibility for depth-resolved measurements. 
The study of phonon excitations in condensed matter, which have energies in the meV 

region, requires a relative energy resolution  of at least ∆E/E ≈10-7 for X-rays.  This is 
 

 

Figure 7-1 Schematic layout of the ID28 inelastic X-ray scattering beamline at the ESRF. For our 
experiment the incoming X-ray beam was deflected by a mirror in order to achieve grazing 

incidence geometry (after Ref. 92). 

Deflecting 
mirror 
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very demanding and requires a special set-up. The high energy resolution is obtained 
using a backscattering monochromator and analyser crystals also in backscattering 
condition. Typically, high-order hhh reflections of a Si(111) monochromator are used. 
We carried out a surface sensitive inelastic scattering experiment on beamline ID28, 
ESRF (Figure 7-1).  
As presented in chapter 2, 2H-NbSe2 is a quasi-two-dimensional material and displays 
a Peierls distortion resulting in a charge density wave phase transition at 33.3 K. This 
transition has been the subject of previous neutron and X-ray studies and is observed 
to be of second order within experimental accuracy1,7. Using inelastic neutron 
scattering, Moncton et al.1 measured the room temperature bulk phonon dispersion 

curve for NbSe2. They observed a phonon softening of the Σ1 mode at the charge 
density wave satellite position in Q-space. Ayache et al. have observed a complete 
mode softening at the CDW phase transition in the bulk7. Calculations of the 
dispersion curve of 2H-NbSe2 are found in Wakabayashi et al.93 who modelled the 
two dimensional Kohn anomaly in NbSe2 and Motizuki et al.94 who reported a 
theoretical study of 2H-TaSe2 and 2H- NbSe2 lattice dynamics and phonon anomalies 
(see Figure 7-4). 
Previously bulk inelastic X-ray scattering has been used to study both lattice phonon 
branches as well as a Kohn anomaly in CDW-systems like K0.3MoO3 and NbSe3

78,95. 
For NbSe2 the surface behaviour is of interest as elastic grazing incidence X-ray 
diffraction measurements at ESRF and HASYLAB51 have shown that the surface of 
2H-NbSe2 exhibits a modified behaviour with respect to the bulk (see also chapter 6). 
We have observed that the transition on the surface occurs about 1.6 K above that of 
the bulk. The data are consistent with the occurrence of a ‘surface’ transition9,10,11,46. 
In addition, Brillouin light scattering measurements have indicated the presence of a 
possible surface phonon96. In order to dismantle the dynamics of the phase transition 
at the surface a direct method of investigating the phonon behaviour is required. 
Electron energy loss spectroscopy and Helium atom scattering spectroscopy are 
purely surface sensitive techniques to measure phonons.97 Inelastic X-ray scattering 
carried out at grazing incidence provided a unique opportunity to investigate the mode 
softening at the surface of 2H-NbSe2 and relate it directly to that of the bulk of the 
same sample. 
Considering distorted-wave Born approximation (DWBA) calculations of penetration 
depth and absorption effects, a factor of 5 is lost in moving from a classical bulk 
geometry to GID geometry98. We allowed for additional losses due to sample 
mosaicity and instrumental effects in the estimates. Thus based on test measurements 
on ID2899 and our previous experience on other beamlines, we expected a count rate 
of the order of 0.25 Hz. With an experimental background rate of typically 10-2 Hz at 
ID28, this new experiment was considered to be feasible with careful surface 
alignment. 
 



Grazing incidence Inelastic X-ray scattering  93 
 
 
7.2 Experimental method 

 
These first grazing incidence geometry phonon measurements were performed on the 
inelastic scattering beamline ID28 at the ESRF. A total flux of 6x1010 ph/s (at 200 
mA) is available with an instrumental energy resolution of 5.5 meV with a beam size 
of 60 µm x 120 µm. This resolution is provided by the Si 888 backscattering reflection 
at a photon energy of 15.816 keV. Ideally for the investigation of  phonons one would 
choose a higher resolution. In this case in order to prove the principle we relaxed the 
resolution in order to maximise the flux. The same single crystal 2H-NbSe2 sample 
that was measured using GID (chapters 4, 5), 1 mm thick and with a surface area of 4 
x 8 mm2, was mounted horizontally in a vacuum chamber. At 15.816 keV the critical 
angle of NbSe2 total external reflection is 0.18°. It was possible to achieve grazing 
incidence geometry, i.e. measure below the critical angle αc, by inserting a silicon 
mirror on ID28 before the sample to deflect the primary beam downwards. 

Using it in combination with the sample φ rotation, an incidence angle and exit angle 
of 0.18° providing a penetration depth of ~23 Å was achieved and hence surface 
sensitivity. The slits before the sample were closed to 60 µm vertically in order to 
reduce background. The surface alignment was complicated by the beamline design. 
As the only slits after the sample were the analyser slits, a combination of placing 
diodes in the beam path and varying the analyser slit openings was used in order to 
achieve a surface alignment. Following an open-slit reflectivity to determine the 
critical angle, the sample was oriented at αc - 0.027°. This small change of angle was 
chosen so that we remained below the critical angle, but still benefited from the 
enhancement in the transmission function close to αc as discussed in section 4.4. In 
this orientation the 200 surface reflection was aligned and constant-q scans on the 
longitudinal acoustic branch propagating along (h, 0, 0) were carried out at room 
temperature. h was varied over the range 1.95 to 1.6 scanning an energy range of ± 
30  meV for (1.95,0,0) and (1.9,0,0) and ± 40 meV for the rest of the data. The data 
were collected with the standard analyser opening of 20 x 60 mm2 (H x V) providing 
a q resolution of about ∆q = 0.0216 Å-1. The data are shown in Figure 7-2 (right). We 
also measured the bulk phonon spectra at room temperature for comparison in order to 
develop our understanding of the dynamics of this very interesting system (Figure 7-2 
left) and to be more sensitive to eventual changes. For the bulk data a thin layer of the 

sample (~ 12 µm) was cleaved onto Scotch tape and measured in transmission 
geometry. The transmission was 60% of the primary beam which is optimal for a 
transmission measurement. Due to the unstable nature of the Scotch tape as a 
substrate the sample rocking curve width was measured to be 0.1°. Steps from 
individual terraces about 1 mm apart were observed when the sample was translated 
in the beam. The sample was aligned within one of these broad terraces. 
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Figure 7-2: Bulk (left) and surface (right) IXS spectra of 2H-NbSe2, measured on ID28, ESRF. 
The plots show data collected along the longitudinal acoustical phonon branch in the range 
1.9,0,0 to 1.5,0,0 (bulk) and 1.95,0,0 to 1.6,0,0 (surface; from bottom to top). 

 
 



Grazing incidence Inelastic X-ray scattering  95 
 
 
7.3 Results 

 
We were successful in obtaining the first grazing incidence inelastic X-ray scattering 
data. In this experiment we showed that it is possible to measure surface phonons with 
X-rays. The data have been fitted using a damped harmonic oscillator to describe the 
energy resolution profile. The fit of the spectrum taken at h=1.67 is shown in Figure 
7-3. 

We have observed the Σ1 modes ω1 and ω2 as reported by Moncton et al.2 and in 
addition optical bands at higher energy as predicted in the theoretical calculations of  
Motizuki et al.94 (see Figure 7-4). We have obtained the surface and the bulk 
dispersion curve of 2H-NbSe2 by using grazing incidence inelastic X-ray scattering 
for the first time (Figure 7-5).  
This data shows that inelastic grazing incidence inelastic X-ray scattering is feasible 
at a high flux beamline such as ID28, on a modern third generation synchrotron 
source. 
 
 

 
 

Figure 7-3 IXS spectrum of 2H- NbSe2 taken at h=1.67 on ID28, ESRF. The data have been fitted 

using a damped harmonic oscillator to describe the energy resolution profile. The fit shown 
includes convolution with the measured energy resolution profile (width ~ 4.4meV). 
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Figure 7-4 The phonon dispersion curve along the ΓM line for 2H-NbSe2 at 500 K according to 
Motizuki et al.94. Dashed represent the dispersion curves for the Σ1 modes and solid curves the 
other modes. These have been calculated using the rigid ion model and by taking account of 
susceptibility i.e. considering ion-ion interactions caused by electron–lattice interaction. The dot- 
dashed line shows the dispersion curves calculated by the rigid ion model. The 2/3 ΓM is 
equivalent to q = 1.67,0,0.  

 

Figure 7-5: Preliminary surface room temperature dispersion curve of 2H-NbSe2, as obtained by 
means of IXS on ID28, ESRF.  ξ = 2 – h in reciprocal space units. The errors in the fits are of the 
order of 1 meV. 
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8 Conclusions and outlook 
 
The objective of this thesis is to improve the understanding of the role that the surface 
plays in phase transitions, in particular in the case of layered materials. The quasi two- 
dimensional transition metal dichalcogenide NbSe2 was chosen because it undergoes a 
charge density wave transition. This occurs as a result of a strong electron correlation 
brought about by the anisotropic structure of NbSe2. In order to unravel the properties 
of this transition we used the surface sensitive technique of grazing incidence X-ray 
diffraction. We isolated the surface charge density wave structure on a high-quality 
single crystal. Measurements with an X-ray beam impinging at an angle both above 
and below the critical angle of total external reflection were performed in order to 
carry out a direct comparison between the surface and bulk behaviour. There is a great 
amount of theory describing phase transitions in half-infinite systems. This is both 
useful for guidance during experiment and for analysing the final results.  
 
In this thesis, the quality of the samples turned out to be a central issue, and it was 
only after a time-consuming search and extensive testing that an appropriate 2H-
NbSe2 sample was found. Even then, well below the transition, the long-range order 
describing the static CDW modulation does not exceed a coherence length of ~ 800 Å. 
This is due to defects in the crystal, particularly stacking faults and – related to the 
latter – the occurrence of different polytypes. 
 
The central finding of this thesis is that the charge density wave transition at the 
surface occurs at a higher temperature than in the bulk, with Tcs (1.6 ± 0.4) K above 
Tcb. We observe that the behaviour of the surface CDW differs from that of the bulk. 

In addition the transition appears to be continuous. It is likely that we observe the 
unusual case defined as a “surface transition” and not the usual case of an “ordinary 
transition”.  
Grazing incidence diffraction on superstructures is experimentally difficult as 
superstructures often provide low-intensity reflections, as is the case for the charge 
density wave superstructure in NbSe2. In order to confirm this result which has the 
restriction of limited counting statistics – particularly due to the very small available 
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sample area – the experiment was repeated several times and carried out at different 
instruments.  
 
In order to further characterise the phase transition the critical exponents for the CDW 
transition of NbSe2 were determined. In our earlier experiments the errors were too 
large for a meaningful discussion. From the final measurements at ESRF beamline 
ID1 we found bulk βb to be 0.175 ± 0.02 which is between the value of 0.125 
predicted for a two-dimensional system Ising model and that of 0.33 for a three- 
dimensional Ising-like bulk transition (mean field theory predicts 0.5). This value is 
also close to that one finds if there is a first order component present so we cannot 
rule out this possibility from our data completely. However, we do observe an 
increase in short range correlation length close to Tcb which is a trait of a continuous 
transition. The surface exponent β1,e was determined with respect to the bulk 
transition temperature, giving the ‘extraordinary transition’ exponent. We obtained a 
value of 0.20 ± 0.04 from our data which within the error bars agrees with the value of 
0.175 predicted for the ‘extraordinary transition’ of the Ising model. In a further 
attempt to unravel the surface dynamics we followed the discussion of Diehl10 and as 
further outlined by Landau and Binder12. Our surface data behaves as expected for an 
extraordinary transition indicating that the bulk is ordering in the presence of an 
already ordered surface. This finding is in agreement with the presence of a ‘surface 
transition’ for the CDW critical point at the NbSe2 surface. Indeed, the difference 
between the two transition temperatures is very small. It is thus difficult to isolate the 
characteristic features of a surface transition. This limited our ability to determine the 

‘surface transition’ exponent β1,s. We extracted a value of  0.5 ± 0.3 from our data. 
The Ising theory predicts a value of 0.125 for a ‘surface transition’. 
 
In the course of our study of the charge density wave structure we considered it would 
also be useful to measure the phonon behaviour directly at the surface. Previously, X-
ray and neutron inelastic scattering techniques have been restricted to bulk studies due 
to a lack of flux and the complexity of achieving a grazing incidence geometry at an 
inelastic scattering beamline. With some modifications to the ID 28 beamline at the 
ESRF synchrotron source and a specially developed alignment process, we have 
successfully proved the feasibility of inelastic grazing incidence X-ray scattering and 
thus measured surface phonons in NbSe2 in a depth of ~23 Å. Two transverse acoustic 
modes were observed and also some optical bands at higher energy. As a result of 
these test measurements there are plans to modify ID28 for future surface 
experiments. Also, the technique of grazing incidence INX has been included as part 
of the scientific case for the proposed IXS beamline on PETRA III, DESY100.  
 
For the future study of phase transitions especially at surfaces, both high resolution 
and high intensity are required in an X-ray scattering experiment. For layered crystals 
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the available effective sample size is restricted due to sample mosaicity, therefore, the 
small beam size and brilliance delivered by a high resolution beamline on new 
synchrotron sources such as PETRA III at DESY could provide new opportunities in 
the study of phase transitions at surfaces and interfaces. The treatment of phase 
transitions at surfaces by Dietrich and Wagner9, Binder11 and Diehl10 and others is yet 
to be fully verified experimentally. More recent theory papers such as Landau et 

al.12,13 reiterate the importance of being able to measure as close to the critical 
temperature as possible in understanding critical behaviour at the surface. A 
combination of improved surface quality of the crystals and improved flux 
enhancements limitations will allow access to regions much closer to the critical 
transition temperature.  
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