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SUMMARY

We present a method for simulating quasistatic crack propagation in 2-D which combines the extended

finite element method (XFEM) with a general algorithm for cutting triangulated domains, and

introduce a simple yet general and flexible quadrature rule based on the same geometric algorithm. The

combination of these methods gives several advantages. First, the cutting algorithm provides a flexible

and systematic way of determining material connectivity, which is required by the XFEM enrichment

functions. Also, our integration scheme is straightfoward to implement and accurate, without requiring

a triangulation that incorporates the new crack edges or the addition of new degrees of freedom to the

system. The use of this cutting algorithm and integration rule allows for geometrically complicated

domains and complex crack patterns. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulating the propagation of cracks using traditional finite element methods is challenging

because the topology of the domain changes continuously. The Extended Finite Element

Method (XFEM) has been used very successfully to model cracks because the finite element

mesh can be created independent from the crack geometry, and in particular the domain does

not have to be remeshed as the crack propagates.

We now summarize the main idea and historical background of XFEM (see [1], [2], and

[3] for more complete surveys). The idea is to enrich the usual finite element spaces with

additional degrees of freedom, which incorporate the near tip asymptotic solutions and allow

the displacements to be discontinuous across the crack face. The application of XFEM to cracks

began with the Belytschko and Black [4], where they applied the partition of unity methods

(see for instance [5]) to the problem of using finite elements with discontinuous basis functions.

In [6] Moes, et. al., used XFEM to create a technique for simulating crack propagation in two

dimensions without remeshing the domain. The extension to three dimensions was begun by

Sukumar et al. [7], where they used the two dimensional enrichment functions for planar cracks,

and then extended in [8].

Since its introduction, XFEM enrichment has been employed in a variety of settings to

model fracture. Using special enrichments cohesive fracture can be modelled, this began with

the work of Moes and Belytschko [9], extended in [10], and continues to be developed (see for

instance [11], [12], [13], [14]). There has been much work in other settings: [15] for fracture

with elastodynamics, and [16] to model crack propagation in composite materials. XFEM

has been combined naturally with the level set method of Osher and Sethian ([17], [18]) to

track the moving discontinuity sets (for cracks see for instance [19], [20], [21], [22], [23] and
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AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 3

for holes and inclusions see [24]) and has also been coupled with fast marching methods

by Sukumar, et. al. [25]. There has been some work to study the error estimates [26] and

XFEM has also been combined with other techniques to increase the rate of convergence,

such as cut off functions and geometric enrichment in [27], [28] and [29]. However, the XFEM

approach carries technical challenges: assembling the stiffness matrix requires integration of

singular/discontinuous functions and implementing enrichment requires resolving material

connectivity (often using a level set representation).

Integrating the gradients of the XFEM basis functions is difficult because of the singularities

and discontinuities. As noted in [30], the use of Gauss quadrature or Monte Carlo integration

is unstable: since the crack path through a given triangle is unknown a priori, the singularities

can move very close to quadrature points. One approach to the problem (see, for instance,

[31]) is to perform a Delaunay triangulation on the cut triangle that incorporates the crack

edges, and then to use Gauss quadrature on each of the resulting triangles. This triangulation

does not provide additional degrees of freedom; it is only used for integration of the basis

functions. However, this approach can be difficult to implement when the geometry of the

crack is complicated by branching or multiple cracks, and is generally impossible in three

dimensions without introducing new vertices. Two other methods, introduced in [32] and [33],

use mappings of the crack enrichment functions to domains where Gauss quadrature can be

used, but also require meshing of the tip triangle. Another approach is to use higher order Gauss

quadrature (see [34]). In [35], Ventura, et al. transformed the area integral required for assembly

of the stiffness matrix to a more stable line integral. In [36], Park, et al. also used a mapping

technique to remove the singularity for tetrahedral elements (in three dimensions). Also for

integrating singularities in tetrahedral elements, Areias and Belytschko used a smoothing
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technique in [8]. For integrating the Heaviside functions, Ventura [37] used a map to equivalent

polynomials which were integrated using standard quadrature techniques; Holdych, et al. [38]

used a similar technique where they introduced a dependence of the Gauss weights on the

position of the node within the triangle. In [39], Benvenuti, et al. regularize the Heaviside

function for integration with Gauss quadrature, and then prove that the solutions coverge as

the regularization parameter goes to zero. We introduce a simple method of integration (see

Section 4) that combines naturally with our geometric cutting algorithm (see Section 3).

In order to allow cracks to open, XFEM needs to generate additional degrees of freedom,

a process referred to as enrichment. In a region that has been unambiguously separated

into two pieces (i.e., away from the crack tip), the enrichment is provided by a Heaviside

function, defined to be 1 on one side of the crack and -1 on the other side. This is easy

in the case of a single straight crack, but more challenging as the geometry of the crack

becomes complicated. In [30], Daux et. al., handle the case of branched cracks by using separate

enrichments for each crack, and then use another enrichment function to represent the junction

itself. They then generalize this technique to cracks that have multiple branches, however their

method requires that the cracks have been hierarchically decomposed into a main crack and

its branched components, and still involves solving the problem of material connectivity. In

[40] and [41] the above work was extended to incorporate multiple cracks and to address the

issue of cracks intersecting each other. In [42], Song and Belytschko introduced the cracking

node method, which is based on XFEM and is designed to more easily handle complicated

crack geometries. The use of virtual or ghost nodes to incorporate discontinuities has become

increasingly popular, see for instance [43]. The methods of Hansbo and Hansbo [44] and Song

et al. (see [45], [46]), which are equivalent (see [47]), use a notion of ghost or phantom degrees
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of freedom to handle displacement discontinuities. Also, Dolbow and Harari [48] use phantom

nodes in the context of embedded interface problems. We use a similar notion of virtual nodes,

which are created by leveraging a recent computational geometric algorithm to cut domains

with crack curves.

In this paper, we present a method for simulating quasistatic crack propagation in 2-D,

which combines XFEM with a simple integration technique and a very general algorithm for

cutting triangulated domains. Our approach:

• is based on virtual nodes created by a cutting algorithm that incorporates material

connectivity,

• can handle complicated crack patterns (including multiple tips in the same element,

crack branches, and crack tips in fully cut elements),

• can handle geometrically complex domains,

• does not require remeshing of the domain (which is in the spirit of XFEM),

• employs a quadrature rule that is built on the cutting algorithm, and whose degree of

complexity is independent of the crack geometry.

2. GOVERNING EQUATIONS

Under the assumption of a quasistatic evolution, it can be assumed that at each time the

material is in elastic equilibrium. Denoting the rest configuration of the material by Ω ⊂ R
2

open and bounded (with boundary denoted ∂Ω), the equations of material equilibrium are
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Figure 1. An example of our technique: top, a crack cutting the simulation mesh; center, cutting of

the embedded quadrature mesh; bottom, computed stress field, with uniform traction applied to left

and right edges.
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given by:

div(σ) + b = 0 in Ω \ Γ,

u = u0 on ∂ΩD,

σ · n = t̄ on ∂Ωt,

σ · n = 0 on Γ+,

σ · n = 0 on Γ−.

where σ is the Cauchy stress tensor, b is the body force per unit volume, u is the displacement,

u0 are the Dirichlet values (applied to a subset of the boundary that we write as ∂ΩD), t̄ is

the traction (applied to ∂Ωt ⊂ ∂Ω), n denotes the unit outer normal, Γ is the crack surface,

and Γ+, Γ− represent the two different orientations of the crack surface. In this paper, we will

consider the case of small strains and displacements and linear elasticity, which further gives

us the relations:

ε(u) = ∇su,

where ∇su is the symmetric part of the displacement gradient, and

σ = C : ε,

where C is the Hooke tensor. Equivalently, equilibrium can be described as minimizing the

potential energy, i.e., one would find the displacement u that minimizes

Ψ[u] :=
1

2

∫

Ω

ε(u) : C : ε(u)dx −
∫

Ω

b · udx −
∫

∂Ωt

t̄ · uds (1)

subject to u = u0 on ∂ΩD.
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2.1. Extended Finite Elements

Conceptually, the starting point of our work is the extended finite element method (XFEM),

which was proposed and studied in the context of fracture by Belytschko, et. al., see for instance

[6]. In this method, at each step in the evolution one solves an approximation to the equations

of material equilibrium in a finite dimensional subspace. This subspace is formed by taking

the usual C0 conforming finite elements (in our case, on triangles), and enriching this space

with additional degrees of freedom that allow cracks to open and increase the accuracy of the

approximation near the crack tip. Thus, the functions in the XFEM space Uh have the form:

uh(x) =
∑

i

uiφi(x) +
∑

j

bjφj(x)H(x) +
∑

k

φk(x)

(

4
∑

ℓ=1

c
ℓ
kFℓ(r(x), θ(x))

)

, (2)

where {φi} are the usual nodal basis functions, H(x) is the Heaviside function associated

to the current crack geometry, {bj} are enrichment degrees of freedom associated with crack

separation away from the tip, {cℓ
k} are enrichment degrees of freedom associated with near-tip

displacement, and

{Fℓ(r, θ)} :=
{√

r sin(θ/2),
√

r cos(θ/2),
√

r sin(θ/2) sin(θ),
√

r cos(θ/2) sin(θ)
}

are the asymptotic crack tip functions (r and θ are the polar coordinates from the crack tip).

Notice in (2) that uh is written as a linear combination of three types of basis functions:

the nodal basis functions (which have support local to mesh nodes), Heaviside enrichment

functions, and the near-tip enrichment functions (which have support local to the crack tip).

The sum over i in (2) is taken over all the mesh nodes, while the second two sums are taken

over those nodes whose conforming basis functions have support that overlaps the crack (see

[6]). We will henceforth refer to the set of elements in the support of the conforming basis

function for a node as the one-ring of that node. The representation in (2) is for a crack with
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only one crack tip, but can be generalized to accomodate crack geometries that have multiple

tips.
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3. CUTTING OF CRACKED DOMAINS

For simplicity of exposition we first focus on the discretization away from any crack tips (thus,

ignoring tip enrichment) where (2) takes the simpler form:

uh(x) =
∑

i

uiφi(x) +
∑

nj∈J

bjφj(x)H(x), (3)

where J is the set of nodes whose one-ring is cut by the crack. A part of our approach is to

replace the Heaviside degrees of freedom with virtual nodes (see [43]), also known as ghost

or phantom nodes (see for instance [45], [44], [48]). However, we create our virtual nodes in a

different way: we use a cutting algorithm designed to cut triangulated domains with arbitrary

curves (see [49]).

3.1. Description of the Cutting Algorithm

We now briefly summarize the cutting algorithm (see [49] for more detail). In two dimensions,

the algorithm operates on a triangulated domain and a segmented cutting curve, and produces

another mesh whose triangles incident to the crack have been duplicated into materially

disconnected counterparts (see Figure 5).

In the first stage, the cutting algorithm processes each individual triangle. We identify the

distinct material components that the triangle is split into by the cutting curve and describe

each of them as a closed polygonal region (depicted in blue in Figure 2). Then, for each of these

material regions, a duplicate copy of the triangle is made, creating new vertices (called virtual

nodes) in the non-material regions of these duplicate triangles. In Figure 2, the cutting surface

divides the triangle into two distinct material regions, so two copies of the original triangle

are made, with each of the copies associated to one of the material regions. In the duplicated

triangles, the nodes in the material regions (drawn in the figure with solid blue dots) can be
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AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 11

identified with the three original degrees of freedom. The two triangles are also furnished with

virtual nodes (in the right of the figure, the nodes labeled n4, n5, n6 and depicted as unfilled

blue circles). A triangle that has been cut by a more geometrically complex crack surface is

depicted in Figure 3. In this scenario, the triangle at left is duplicated three times, each copy

associated to its own material region.

Figure 2. Cutting example: on left, original mesh triangle; on right, duplicates with material regions

(solid blue) and virtual nodes (hollow blue circles)

Figure 3. Cutting example for a complex crack: on left, original mesh triangle; on right, three duplicates

with material regions (solid blue) and six virtual nodes (hollow blue circles)

After processing all individual triangles affected by the crack, the algorithm determines

the global material connectivity (see Figure 4). For a given triangle T ′ of the aforementioned

duplication process, each of its vertices is either a material node, meaning it is contained in

the material region assigned to that triangle copy, or a virtual node. For each triangle T of
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the uncut mesh, let C(T ) denote the set of triangles in the duplicated mesh that were created

by copying T . Also, let P be the map that takes a triangle T ′ of the duplicated mesh to its

parent triangle in the simulation mesh, i.e., the triangle that was copied in order to create T ′.

The cutting algorithm then proceeds as follows. For every triangle T ′ in the duplicated mesh,

find T = P (T ′). For every triangle T2 that neighbors T , inspect each triangle in C(T2), and

determine if it shares a material connection with the original triangle T ′. If so, the relevant

nodes are identified as equivalent, and the corresponding degrees of freedom are collapsed.

The entire cutting process is illustrated in Figure 4. The mesh at left, composed of three

triangles, is cut by the two red cracks (here the geometry is quite complicated, since the center

triangle contains a branch, a tip, and is cut into multiple pieces). First, the cutting algorithm

treats each triangle in isolation, and creates a duplicate version for each material region created

by the crack, shown at the center of Figure 4. Then, in the second phase, the copies are joined

together so that they are hinged on the same degrees of freedom where they share material

connectivity along an edge (on the right of the figure).

Figure 5 illustrates the result of the cutting algorithm where the cutting surface completely

cuts one triangle and only partially cuts another. Figure 6 illustrates the results of taking the

mesh on the left of Figure 5, refining it near the crack, cutting this refined mesh, and then

resolving the global connectivity (the circular inset shows how the resulting virtual nodes allow

the crack to separate). In our context, the unrefined mesh corresponds to our simulation mesh,

while the refined mesh – after being cut as in the diagram – is used for quadrature purposes

(see Section 4).

Now, consider a mesh that has been cut as described above. Since some of the nodes are

virtual, meaning they do not correspond to material nodes, as in [44] we create nodal basis
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AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 13

Figure 4. The mesh at left is cut by two cracks, one of which contains a branch. The cutting algorithm

first treats each triangle separately, creating duplicates for each material region (at center), and then

uses the global mesh topology to hinge these duplicates on the proper degrees of freedom (at right).

Figure 5. Global cut topology, unrefined mesh. The mesh at left is cut by the crack, resulting in the

mesh at right, with duplicated triangles and virtual nodes.

functions that respect the crack geometry, i.e., we take into account that nodes and triangles

may have been duplicated (see Figure 7 for a one-dimensional illustration). Take {φ̃i} to be

the usual piecewise affine “hat” functions for the simulation mesh, and xi to be the node of

the simulation mesh corresponding to φ̃i (again, this could be a virtual node). Using ωi to

denote the collection of triangles in the one-ring of the mesh node xi, we define a new set of
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Figure 6. Global cut topology, refined mesh; the mesh at upper left is cut, resulting in the geometry

at bottom; upper right shows virtual nodes with a blow up of a region near the crack.

truncated hat functions {φi} by setting:

φi(x) = φ̃i(x)
∑

T ∈ωi

ITM
(x), (4)

where ITM
is the characteristic function of the material region for triangle T .

Figure 7. A one-dimensional illustration of our truncated basis functions. At left, a mesh element

formed by nodes 1 and 2 is depicted with a graph (in green) of one of the usual hat functions φ̃2; the

element is cut (symbolized by the red dot), resulting in two duplicate elements at right. The usual hat

function φ̃2 is then truncated according to the material regions of each copy.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 1:1–1

Prepared using nmeauth.cls



AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 15

In many cases, this virtual node approach is equivalent to the use of Heaviside functions,

i.e., they produce equivalent finite element spaces (see [45]). However, certain crack geometries

can produce different finite element spaces. As an example, the configuration in the center

of Figure 8 is cut by a crack represented by the red line. The resulting finite element spaces

differ, depending on the use of Heaviside enrichment (whose results are pictured in Figure 8,

left) or virtual nodes (Figure 8, right). In general, the finite element spaces resulting from the

virtual node technique are at least as rich as the spaces resulting from Heaviside enrichment

(in terms of the number of degrees of freedom).

Figure 8. Cutting the mesh at left produces different degrees of freedom for Heaviside enrichment

(center) from virtual nodes (right)

3.2. Using the Cutting Algorithm to Mesh Domains

The cutting algorithm described above can also be used to create meshes for domains with

geometrically complicated boundaries (see Figure 9). The process is as follows: first, we create
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a triangular mesh on a square domain that contains our desired domain. Then, we describe

the boundary of our new domain, which can be geometrically quite elaborate, using a closed

segmented curve. This curve is provided as input to the cutting algorithm. The result is a

mesh that has been cut into disconnected pieces, one piece corresponding to the interior of the

domain and the other piece corresponding to the exterior. We then simulate propagation on

the mesh that represents the interior of the new domain, by providing the crack at time zero

as described by another segmented curve, and then using the crack to cut the domain enterior.

We illustrate the use of this technique in the simulation examples of Section 6.4.

Figure 9. An illustration of using the cutting algorithm to mesh a domain with complex boundary. A

square containing the domain is triangulated (shown at left), and the cutting algorithm is run with

the boundary of the domain as input. This results in two disconnected meshes, one corresponds to

the interior of the domain (shown at right) and the other is the exterior.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 1:1–1

Prepared using nmeauth.cls



AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 17

4. INTEGRATION

Our integration scheme uses what we refer to as a hybrid mesh approach, which we describe

in this section. In the case of a conforming triangulation, which we assume here for simplicity,

we triangulate the domain to create a mesh (see Figure 5, left), and then our process involves

further creating the following two triangle meshes:

• The simulation mesh, which we create by cutting the original mesh with the crack surface

as described in Section 3 (see Figure 5, right). This simulation mesh is used to define

the actual degrees of freedom for the system, which include both nodal and crack tip

enrichment degrees of freedom.

• The quadrature mesh, which we create by first refining the original mesh near the crack

and crack tips and then cutting this refined mesh (see Figure 6, bottom). Interpolation

for this mesh only uses nodal basis functions, and these nodal positions are fixed by

the values of the degrees of freedom of the simulation mesh. We use this mesh only to

perform the required integrations, and it does not add additional degrees of freedom to

the system.

We solve the equations of equilibrium using the relatively coarse simulation mesh (with fewer

degrees of freedom), but perform the required integrations on the finer quadrature mesh, by

approximating the (generally nonlinear) basis functions using functions that are piecewise

affine on the finer quadrature mesh.

Our quadrature rule is similar to another approach from the XFEM literature (see for

instance [31]). This involves performing a Delaunay triangulation of triangles containing the

crack, and then assembling the stiffness matrix by using Gauss quadrature on these new
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triangles. This method, like our integration rule, uses a finer triangulation of the original mesh

to perform the integrations needed for assembly of the stiffness matrix. Also, like our method,

this finer triangulation does not add degrees of freedom, the new triangles are only used for

integration. However, in our integration technique the cutting algorithm is used to resolve the

crack geometry, and so, in contrast to the Delaunay approach, the quadrature mesh does not

have to conform to the exact crack geometry. This decouples the resolution of the quadrature

mesh from the resolution of the segmented curve used to model the crack. Also, the cutting

algorithm can handle complicated crack geometries, which may not be straightforward to re-

tessellate with a Delaunay approach.

4.1. Construction of the Simulation Mesh and Quadrature Mesh

We now describe the creation of our hybrid mesh in more detail, and we will use notation

consistent with [51]. We first construct the simulation mesh by cutting the original mesh using

the techniques of Section 3. Then, using modified hat functions (as in (4)), we define our

simulation finite element space Vh (where h signifies the dependency on the discretization) as

those functions uh with the form:

uh(x) =
∑

i

uiφi(x) +
∑

k

φk(x)

(

4
∑

ℓ=1

c
ℓ
kFℓ(r(x), θ(x))

)

, (5)

where {Fℓ} are the functions given in Section 2.1. This expression is similar to (2), only that the

Heaviside enrichment has been replaced with the virtual nodes of the cutting algorithm and the

corresponding truncated basis. Let Fh denote the degrees of freedom of the space Vh, and note

that elements of Fh can be identified with column vectors u =
(

u1 ... uj ... c
ℓ
k ...

)T ∈ R
N ,

where N is the total number of degrees of freedom.

Now, we construct the quadrature mesh. We take the original mesh and regularly refine
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AN XFEM METHOD FOR GEOMETRICALLY ELABORATE CRACK PROPAGATION 19

triangles that are cut by the crack. Away from the crack, this refinement is graded down to

the original mesh resolution using a red-green approach (see [52]). We run the cutting algorithm

on this refined mesh so that the integration mesh will also account for the crack topology. The

result of this procedure is the quadrature mesh (see Figure 6 in Section 3). We then define

the quadrature finite element space Vq
h to be the piecewise affine finite element space that is

associated to this quadrature mesh, i.e. we write for u
q
h ∈ Vq

h

u
q
h(x) =

∑

i

u
q
i φ

q
i (x) (6)

where {φq
i } are the associated nodal basis functions (multiplied by suitable characteristic

functions as in (4)). We denote the degrees of freedom of Vq
h by Fq

h, which is identified with

R
M , where M is twice the number of nodes on the quadrature mesh. Note that we do not

employ crack tip enrichment in this space, so all the degrees of freedom in Fq
h are identified

with nodes of the quadrature mesh.

We use the quadrature finite element space to integrate the gradients of the basis functions

of Vh. This is done by embedding the quadrature mesh onto the simulation mesh, through the

establishment of a fixed linear relationship between the degrees of freedom Fq
h and Fh (see

[50]). Consider u
q
i ∈ Fq

h and the position of its corresponding mesh node x
q
i . We define the

value of u
q
i from the degrees of freedom in Fh using (5) by:

u
q
i =

∑

j

ujφj(x
q
i ) +

∑

k

φk(xq
i )

4
∑

ℓ=1

c
ℓ
kFℓ(r(x

q
i ), θ(x

q
i )). (7)

Note that the sum over j in (7) will involve at most three nonzero terms since x
q
i will be in the

support of at most three of the φj . As seen in (7), the variables u
q
i are functionally constrained

to the degrees of freedom in Fh, and do not represent any new degrees of freedom. Also, this

defines a linear relationship between the quadrature and simulation degrees of freedom, which
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can be represented by a matrix W (see (8)). Binding the quadrature mesh to the simulation

mesh results in the following integration scheme: during assembly, we first project the basis

functions of Vh onto the space Vq
h and then compute the associated matrix using those projected

functions. This integration is explained further in the next section.

The quadrature mesh node x
q
i does not necessarily correspond to a material node. It can

also be a virtual node created by the cutting algorithm. Special care needs to be taken in

computing the polar coordinates (r (xq
i ) , θ (xq

i )) of such virtual nodes. As illustrated in Figure

10, for virtual nodes we reverse the orientation of the angle θ with respect to the crack,

essentially associating the virtual nodes with the other side of the crack, where the material

for that triangle lies. That way, θ(x) becomes a continuous map across the triangle, and can

take values outside the typical bounds [−π, π].

Figure 10. The polar angle of a virtual node in a quadrature triangle is measured accross the crack to

ensure continuity of θ inside of the quadrature triangles.

4.2. Integration Scheme

The relation (7) defines the quadrature degrees of freedom in terms of the simulation degrees

of freedom. Letting u ∈ Fh, then (7) can be written using a matrix W that maps u to a vector
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u
q ∈ Fq

h:

u
q = Wu. (8)

Since Vq
h is a piecewise affine finite element space, there is a natural process for assembly of

the stiffness matrix in that space, Kq
h. Let a denote the bilinear form associated with the energy

(1). Then, our quadrature method approximates the true stiffness matrix of the enriched space

used for simulation, Kh, by

u
T
Khu = a (uh(x), uh(x))

≈ a (uq
h(x), uq

h(x))

= (uq
h)

T
K

q
hu

q
h,

= u
T
W

T
K

q
hWu, (9)

where uh is the function in Vh corresponding to the vector u ∈ Fh and u
q
h is the function in

Vq
h corresponding to the vector u

q ∈ Fq
h. This means that

Kh ≈ W
T
K

q
hW .

Thus our integration scheme will be integrating only an approximation of the non-smooth

basis functions (see Figure 11), but this approximation improves as we refine the embedded

quadrature mesh. Note that our sampling of the singular basis functions could also occur at

points near the singularity. However, unlike integration schemes based on Gauss quadrature

or Monte Carlo methods, those evaluations will get additionally weighted by the area of the

smaller quadrature triangle. Thus, no single value, possibly located near the singularity at the

tip, contributes disproportionally. Finally, we note that for simplicity and improved stability we

further approximate the integrations in (9) by treating cut quadrature triangles as if they were

full of material, i.e., we remove the multiplication by the characteristic functions introduced in
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(4) and assemble Kh over the usual nodal “hat” functions. Note that this optional modification

naturally vanishes under refinement of the quadrature mesh, as the error in the support of the

integrated shape functions goes to zero.

Figure 11. Tow samplings of the enrichment function F1 =
√

r sin(θ/2): on the left, a sampling on a

low resolution quadrature mesh, on the right, sampling on a high resolution mesh.
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5. CRACK PROPAGATION

For a fixed state of the system, i.e., a given crack and an equilibrium displacement for that crack

and boundary conditions, there are several different criteria used by engineers to determine the

angle at which the crack will propagate. We follow [6] in using the maximum circumferential

stress criterion to compute the propagation direction and then move the crack by a small fixed

increment. We chose this approach so that the results of using our integration technique can

be compared against the tests cases in [6]. This method is fairly standard and the details are

found in the references, so we only sketch it here.

The criterion involves computing the stress intensity factors at the crack tip, and then

calculating the angle of maximal stress by the relation:

θc = 2 arctan





1

4





KI

KII
±

√

(

KI

KII

)2

+ 8







 . (10)

To compute the stress intensity factors, we use the so called interaction J-integral, which is

defined for two possible states of the system, whose variables we denote using superscript 1

and 2, by:

I(1,2) :=

∫

Γ

(

W (1,2)δ1j −
[

σ
(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1

]

)

njds (11)

where

W (1,2) := σ
(1)
ij ǫ

(2)
ij . (12)

Choosing the two states to be the current state and a pure Mode I state in the above gives

KI:

KI =
E∗

2
I(Curr,Mode I), (13)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 1:1–1

Prepared using nmeauth.cls



24 C.L. RICHARDSON, J. HEGEMANN, E. SIFAKIS, J. HELLRUNG, J.M. TERAN

where

E∗ =















E

1 − ν2
plane strain

E plane stress,

(14)

and E is Young’s modulus and ν is Poisson’s ratio. KII is found similarly. As in [6], to

actually compute these interaction integrals requires converting them into area intregrals via

multiplication by a suitably smooth test function and applying integration by parts.

The resulting area integral is then computed on the embedded quadrature mesh described in

Section 4. Having used finite elements to compute the displacement, the stresses and strains for

the current state of the system are piecewise affine on the embedded mesh. We then interpolate

the displacements, strains, and stresses for the pure Mode I and pure Mode II solutions used

to compute (11) using functions in the space Mh. The required integrations are then simple

to compute, since all the quantities in (11) are piecewise affine. The only challenge is to choose

an integration area that encompasses enough of the triangles of the simulation mesh to achieve

accuracy, but not so large as to introduce more error brought on by the finite domain size.

Our experiments show that integrating over the one-ring or two-ring of the simulation triangle

that contains the crack tip provides good results (the results of Section 6 use a two-ring). Note

that by one-ring of a triangle T we mean the set of all triangles that share a node with T , and

by two-ring of a triangle T we mean the set of all triangles that are either in the one-ring of

T or share a node with a triangle in the one-ring of T .
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6. NUMERICAL EXPERIMENTS

We tested our approach with some examples from the literature (see [6], [4]). First, we chose

these examples because the exact stress intensity factors (or good approximations) can be

calculated analytically for comparision, and also we can compare our results to the literature.

6.1. Example 1: Straight Crack with Pure Mode I Displacement

The first example involves a straight center crack in a rectangular body with a constant traction

applied to part of the boundary of the body, as diagrammed in Figure 12 (as in [6] we use

L = 16, W = 7, a = 3.5, ǫ = 100[kpsi] and ν = .3).

Figure 12. The setup for the first numerical experiment.

In this case, the exact Mode I stress intensity factor is given by

KI = Cσ
√

aπ,

where C is the finite geometry correction factor:

C = 1.12 − 0.231
( a

W

)

+ 10.55
( a

W

)2

− 21.72
( a

W

)3

+ 30.39
( a

W

)4

.
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We normalize KI through an appropriate choice of σ, and compare our results over various

combinations of granularity of the simulation mesh and refinement levels of the quadrature

mesh. The results of this study are found in the table of Figure 13: each column represents

a different resolution for the simulation mesh, and data is presented for different levels of

regular refinement near the crack (0 − 5 levels). Note that the computed intensity factors

improve as the simulation mesh is refined, as expected, but also we are able to get good

results for coarser simulation meshes by refining the quadrature mesh (of course up to a limit

that is determined by the simulation resolution). Also, increasing the refinement levels of the

quadrature mesh roughly matches the results for increases in resolution of the simulation mesh,

and that accuracy is acheived at less cost since refining the quadrature mesh does not add new

degrees of freedom to the system.
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KI

Levels 8x4 16x8 32x16 64x32 128x64

0 1.54778000 1.11393000 1.00303000 1.01901000 0.98573100

1 0.89678100 0.91319400 0.97447200 1.01661000 0.98443400

2 0.82495400 0.91514000 0.95464700 1.00335000 0.97799900

3 0.84035000 0.90665100 0.96431200 0.98717700 0.96803500

4 0.83361600 0.91260700 0.95926000 0.98667700 0.96945600

5 0.84292500 0.90972400 0.96276500 0.98118700 0.96666500

KII

Levels 8x4 16x8 32x16 64x32 128x64

0 0.18590300 0.09165160 0.10725100 0.05913580 0.01374570

1 0.04005210 0.03758170 0.03205980 0.00391652 0.00846525

2 0.02733560 0.01045710 0.00299528 0.00849926 0.00699155

3 0.01483750 -0.00186129 0.00743422 -0.00470591 0.00537171

4 0.00600684 -0.00094331 0.00796979 -0.00481388 0.00312401

5 0.01097960 -0.00105607 0.00809645 -0.00851569 -0.00154344

Figure 13. Results for first numerical example; analytical result is KI = 1, KII = 0. Note that increasing

refinements in the quadrature mesh roughly match results for increasing resolution of the base mesh.

6.2. Example 2: Straight Crack with Constant Shear Displacement

The second example involved the same geometry as the first example, namely a straight edge

crack, but we applied a zero displacement condition to one end and a constant shear (with
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respect to the crack frame) to the other end (see the diagram in Figure 14). In this case, the

stress intensity factors are known (see [6]): KI = 34.0[psi
√

in] and KII = 4.55[psi
√

in]. Again,

we compared our results when varying the refinement of both the simulation and quadrature

meshes, with results summarized in the table of Figure 15.

Figure 14. The setup for the second numerical experiment.
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KI

Levels 16x8 32x16 64x32 128x64

0 65.41790000 53.60800000 45.35520000 40.20960000

1 34.11440000 35.16530000 35.01640000 34.56440000

2 28.34310000 31.69620000 33.10160000 33.86180000

3 27.20410000 31.08820000 32.96800000 33.75550000

4 27.18120000 31.17290000 32.94070000 33.86550000

5 27.32760000 31.15840000 33.01980000 33.87260000

KII

Levels 16x8 32x16 64x32 128x64

0 35.32480000 24.00590000 16.58030000 11.85800000

1 13.27730000 10.71430000 8.77887000 7.33766000

2 7.56987000 6.70199000 6.00861000 5.46512000

3 5.88499000 5.54668000 5.27518000 5.02933000

4 5.42942000 5.24631000 5.10806000 5.02421000

5 5.29152000 5.14862000 5.12151000 5.02322000

Figure 15. Results for second numerical example; analytical result is KI = 34.0, KII = 4.55. Note that

most of the benefits of refinement of the quadrature mesh are realized after only two to three levels

of refinement (infinite refinement would correspond to exact quadrature during assembly).
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6.3. Angled Center Crack with Mixed Mode Displacement

Following the example in Section 4.3 of [6], we compute the stress intensity factors for a plate

with an angled center crack and subjected to a far field constant traction, as pictured in Figure

16. The dimensions of the square plate are taken to be W = 10[in] and the crack length is set

by a = .5[in]. Since the crack size is small compared to the dimensions of the plate, the stress

intensity factors can be approximated by the intensity factors corresponding to the solution

in the entire plane, which are given by

KI = σ
√

πa cos2(β),

KII = σ
√

πa sin(β) cos(β).

Figure 16. The setup for the angled center crack numerical experiment.

We computed the stress intensity factors as β ranges from 0 to π/2 in increments of π/20. We

used a simulation mesh with resolution of 64x64 elements, and varied the levels of refinement

for the quadrature mesh. We illustrate in Figure 17 the results of a comparison between the

“exact” KI and KII for the various values of β (plotted using blue squares and orange diamonds,

respectively) and the computed values (yellow triangles for computed KI and green triangles for
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KII). On the left of the figure, we plot the results for one level of refinement in the quadrature

mesh; on the right of the figure we plot the results for five levels of refinement. While one level

of refinement gives decent agreement with the exact values, as we refine the quadrature mesh

the agreement with the exact values becomes much stronger (and is comparable to the results

of [6]).

Figure 17. Results for angled crack example: Exact KI (blue square) and KII (orange diamond) as

compared to computed values (yellow and green triangles, respectively). The graph at left shows

results for 1 level of refinement on quadrature mesh; the graph at right shows results for 5 levels.

6.4. Propagation Examples

In Figures 18, 20, 21, and 22 we show results of using our method for simulating the propagation

of cracks. In the first example, shown in Figure 18, we simulate a rectangular domain that has

been initialized with a straight crack. We apply symmetric displacement boundary conditions
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to the right and left sides of the domain, and the result is a crack that moves straight, and in

the end cuts the domain into two disconnected regions. The colors of the diagrams in Figure 18

represent the Frobenius norm of the stress, red denotes relatively large values and blue denotes

small values (we also use this color convention for the remaining figures of this section).

Figure 18. Simulation of a rectangular domain with symmetric boundary displacements; from upper

left : initial configuration, 5 timesteps, 10 timesteps, 15 timesteps.

Our next propagation example involves the quasistatic propagation of a crack in a beam,

as pictured in the diagram of Figure 19. As in [4], we varied the inital perturbation angle θ,

using values 1.43, 2.86, and 5.71 (all degrees). The results of simulating the propagation for

these three angles is presented in Figure 20, where we have plotted the position of the crack

tip at each timestep using blue triangles for 1.43 degrees, orange squares for 2.86, and yellow
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triangles for 5.71. Our results are in good agreement with the results in [4].

Figure 19. The setup used to show propagation beam for various values of the initial perturbation

angle θ.

Figure 20. The results of cantilever beam propagation; the position of the crack tip at each timestep

is plotted using blue triangles for θ = 1.43 degrees, orange squares for θ = 2.86, and yellow triangles

for θ = 5.71.

In Figure 21, we illustrate a more complicated scenario. Our initial setup, pictured in the

upper left corner of the figure, is a square that has two holes of the same (small) radius. The

holes of the domain are created by employing the cutting algorithm described in Section 3.2,
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and we remove the duplicated triangles that are associated with the holes. The simulation is

initialized with two cracks, one emerging from each hole, at the same angle with respect to the

horizontal, so that the resulting geometry is symmetric (see the zoom-in on the holes showing

the cracks, at upper right). We subject this domain to constant traction at the right and left

side of the domain. The bottom row of the figure shows the results of the crack simultation

after twenty timesteps (note that for clarity we removed the disconnected material region in

between the two cracks at the final timestep).

In Figure 22 we further complicate the geometry of the domain and cracks. As in the previous

example, we constructed a domain with more complicated geometry by cutting a rectangular

domain with the cutting algorithm, as described in Section 3.2 (this new domain is the reference

configuration of our material body). Then, we create initial cracks in the domain that have

junctions, in order to illustrate the geometric flexibility of our algorithm. Note that, in this

case, some of the elements will be duplicated into more than two copies, since the cracks will

cut triangles near the junction into three materially distinct elements. We subject this new

domain to a dirichlet condition at the left and right ends, and also we apply traction conditions

to five other parts of the boundary (in the diagram they can be seen by the higher stresses that

they produce). We then simulated the progagation of the cracks over twenty timesteps. Note

that as the cracks evolve they can join with other cracks, which we accomplish by procedurally

merging cracks whose paths intersect.
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Figure 21. Cracks propagating in a domain with holes; top row : initial configuration on left and a

zoom into the holes on right ; bottom row : analagous diagrams for result after 20 timesteps.
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Figure 22. Simulation with complex geometry; from upper left : initial configuration, 5 timesteps, 15

timesteps, 25 timesteps.
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7. CONCLUDING REMARKS

We presented an XFEM-based method for the simulation of crack propagation. This method

uses virtual nodes generated by the cutting algorithm of Sifakis, et.al., [49] to create the extra

degrees of freedom that allow the crack to open, in a way that is general and flexible. Our

technique gives accurate stress intensity factors, which we use to propagate the crack. Our our

discretization and simulation approach can accomodate complex crack and domain geometry.

We illustrated the accuracy of our method by comparison with results from the literature, and

showed the geometric flexibity with propagation examples in complicated domains.
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