An XML Log Standard and Tool for Digital
Library Logging Analysis

Marcos André Gongalves, Ming Luo, Rao Shen, Mir Farooq Ali, and Edward
A. Fox

Virginia Tech, Blacksburg VA 24061, USA
{mgoncalv,fox}@vt.edu

Abstract. Log analysis can be a primary source of knowledge about
how digital library patrons actually use DL systems and services and
how systems behave while trying to support user information seeking
activities. Log recording and analysis allow evaluation assessment, and
open opportunities to improvements and enhanced new services. In this
paper, we propose an XML-based digital library log format standard that
captures a rich, detailed set of system and user behaviors supported by
current digital library services. The format is implemented in a generic
log component tool, which can be plugged into any digital library system.
The focus of the work is on interoperability, reusability, and complete-
ness. Specifications, implementation details, and examples of use within
the MARIAN digital library system are described.

1 Introduction

Log analysis is a primary source of knowledge about how digital library patrons
actually use DL systems and services and how systems behave while trying to
support user information seeking activities. Log recording and analysis allows
evaluation assessment and opens opportunities to improvements and enhanced
new services. Indeed, the benefits of logging are numerous, including improving
performance by recording effective evaluation data [13], helping in designing and
testing of user interfaces [7], and better allocation of resources [17].

Conventional libraries have a long history of concern for privacy [10]. While
circulation statistics are widely available, storage of patron-related information
is rare in such libraries. The introduction of On-Line Public Access Catalogs
(OPACs) has changed the picture and allowed some degree of log recording and
analysis to improve library services [1, 16,17, 15]. More recently, web servers and
proxy caching servers have made web log analysis become common place, record-
ing each and every access to their documents. These, along with the advance of
techniques in web log mining, have made possible a number of new and enhanced
services such as customization and personalization [14].

Digital libraries differ from the Web in many ways. Firstly, digital library col-
lections are explicitly organized, managed, described, and preserved. Secondly,
web sites and web search engines assume very little about the users, tasks, and
data they deal with. Digital libraries normally have much more knowledge of

their users and tasks since they are built to satisfy specific needs of interested
communities. And thirdly, the digital objects in DL collections tend to be much
more structured than the information presented in the Web. Therefore, digital
library logging should offer much richer information and opportunities. Despite
the fact that many current DL systems do some kind of logging, they tremen-
dously differ in the format in which they record the information and even the
sort of information that is recorded. Interoperability, reuse of log analysis tools,
and comparability of log analysis results are major problems.

In this paper, we propose an XMIL-based standard digital library log for-
mat that captures a rich, detailed set of system and user behaviors supported
by current digital library services. The proposed standard is implemented in a
generic log component tool, which can be plugged into any digital library system
to produce the specified format. The focus of this work is on interoperability,
reusability, and completeness. Specifications, implementation details, and exam-
ples of use within the MARIAN digital library system are described.

This paper is organized as follows. Section 2 covers related work and analyzes
associated problems. Section 3 describes the DL log format and motivation for
design. Section 4 presents the log tool, its implementation and some examples.
Section 5 outlines future work and concludes the paper.

2 Related Work

Most current Web servers store log files in the Common Log Format (CLF)-
a simplistic format which reflects the stateless nature of the HTTP protocol
by recording just individual server events. Apache, perhaps the most used web
server, uses an extension of CLF called Combined Log Format, which tries to
keep some state information by recording the links between resources.

A sample of CLF is given below. The fields are host; rfc931, i.e., information
returned regarding identity of the person, otherwise ‘-’; authuser, if a userid is
sent for authentication, otherwise ‘-’; day; month; year; hour; minutes; seconds;
request; the first line of the HTTP request as sent by the client; ddd, status
code returned by the server, otherwise ‘-’; and bbb, the number of bytes sent
(not including the HTTP/1.0 header), otherwise ‘.

bbn-cache-3.cisco.com - - [22/0ct/1998:00:20:21 -0400] "GET
/~harley/courses.html HTTP/1.0" 200 1734

bbn-cache-3.cisco.com - - [22/0ct/1998:00:20:22 -0400] "GET
/~harley/clip_art/word_icon.gif HTTP/1.0" 200 1050

wwwd.e-softinc.com - - [22/0ct/1998:00:20:27 -0400] "HEAD

/ HTTP/1.0" 200 0

user-38ldbam.dialup.mindspring.com - - [22/0ct/1998:00:20:48 -0400] "GET
/~lhuang/junior/capehatteras.html HTTP/1.0" 200 328
user-38ldbam.dialup.mindspring.com - - [22/0ct/1998:00:20:48 -0400] "GET
/~lhuang/junior/PB2panforringed.mirror.gif HTTP/1.0" 200 20222
eger—-dl0l.agria.hu - - [22/0ct/1998:00:20:51 -0400] "GET

/~tjohnson/pinouts/ HTTP/1.0" 200 26994

Distinct from simple web servers, which focus primarily on browsing behavior,
web search engines and digital libraries also record data about search and other
information seeking behaviors. The following is a sample of a query transaction
submitted through the OpenText search engine. It shows the search terms and
operations, but also records a good deal of internal cryptic information about
how the system operates internally.

Mon Sep 28 17:48:42 1998

————— Starting Search -----

Mon Sep 28 17:48:42 1998
{Transaction Begin}

Mon Sep 28 17:48:42 1998
{RankMode Relevancel}

Mon Sep 28 17:48:42 1998
"Bacillus thuringiensis "

Mon Sep 28 17:48:42 1998

PO = "Bacillus thuringiensis "
Mon Sep 28 17:48:42 1998

R = (*D including (*P0))

Mon Sep 28 17:48:42 1998

R = (((*R rankedby *P0)))

Mon Sep 28 17:48:42 1998

S = (subset.1.10 (*R))

Mon Sep 28 17:48:42 1998

SLO = (region "OTSummary" within.1 (*S))
Mon Sep 28 17:48:42 1998

(*SLO within.1 (subset.1.1 *S))
Mon Sep 28 17:48:42 1998

(*SLO within.1 (subset.2.1 *S))
Mon Sep 28 17:48:42 1998
{Transaction End}

Mon Sep 28 17:48:42 1998

————— Ending Search -----

Digital library systems, most probably for historical reasons, usually imple-
ment logs that resemble web log formats or utilize proprietary formats. As an
example, below is an annotated sample of a portion of the log of the Green-
stone digital library system [23]. Greenstone is a comprehensive, open-source
digital library system, which enables logging by setting a specific flag in the
configuration file. Each line in the sample user log contains: (a) the IP address
of the user’s computer; (b) a timestamp in square brackets; (c¢) the CGI argu-
ments in parentheses; and, (d) the name of the user’s browser (Netscape is called
“Mozilla”).

ADMINISTRATION 37

/fast-cgi-bin/niupepalibrary

(a) its-wwwl.massey.ac.nz

(b) [Thu Dec 07 23:47:00 NZDT 2000]

(c) (a=p, b=0, bcp=, beu=, c=niupepa, cc=, ccp=0, ccs=0, cl=, cm=,

cq2=, d=, e=, er=, =0, fc=1, gc=0, gg=text, gt=0, h=, h2=, hl=1,
hp=, il=1, j=, j2=, k=1, ky=, l=en, m=50, n=, n2=, 0=20, p=home,
pw=, gq=, q2=, r=1, s=0, sp=frameset, t=1, ua=, uan=, ug=,
uma=listusers, umc=, umnpwl=, umnpw2=, umpw=, umug=, umun=, umus=,
un=, us=invalid, v=0, w=w, x=0, z=130.123.128.4-950647871)

(d) "Mozilla/4.08 [en] (Win95; I ;Nav)"

The last CGI argument, “z”, is an identification code or “cookie” generated
by the user’s browser: it comprises the user’s IP address followed by the times-
tamp when they first accessed the digital library. The log file usage.txt is placed
in the /etc directory in the Greenstone file structure.

Other digital library log formats that we analyzed include those associated
with the Dienst protocol (used by the old NCSTRL-Networked Computer Sci-
ence Technical Reference Library), and the EMERGE, Phronesis, and MARIAN
digital library systems.

2.1 Problems with existing DL logs

A careful analysis of the logs of the web and DL systems discussed above reveals
a common set of problems. These include:

1. Disorganization: Barring a few, most of the system logs were very poorly
organized and structured.

2. Complexity of analysis: Lack of proper thought in recording the log in-
formation makes log analysis a hard problem. Indeed, complex data mining
techniques are currently needed to extract some useful information from web
and similar types of logs [19, 20].

3. Incompleteness: Important information that would be necessary for anal-
ysis was omitted from some logs. As an example, most of the logs failed to
record the client postal and email address, information that is essential in
any user-based study of the system.

4. Incompatibility: Each of the systems had their own log formats, making
it difficult to use the same tools to analyze logs from different systems for
the same kind of study.

5. Ambiguity: Many of the log entries and their semantics were not properly
and precisely specified in the log format itself, which could lead to ambiguity
in analyzing them.

6. Inflexibility: The logs recorded a good deal of system specific informa-
tion which would not be applicable to other systems. This information was
recorded in conjunction with other information that was system indepen-
dent.

7. Verboseness: Many of the logs looked just like code dumps used for debug-
ging by the implementers of the system, rather than containing clear and
precise information about system usage and behavior.

The above problems were found across the whole set of logs that we analyzed.
In the next section, we present our standardized digital library log format design,
which attempts to solve many of those problems.

3 The Digital Library Standardized Log Format

As per the previous analysis, current web and digital library logging has a num-
ber of problems. Our solution is to propose an XML-based DL standard format
which is comprehensive, reflective of the actual DL system behavior, easily read-
able, precise, flexible to accommodate in varying systems, and succinct enough
to be easily implemented.

3.1 DL Log Standard Design

As a first step in creating the DL log format, we collected an extensive, flat set
of attributes that we felt were necessary to be recorded in the DL log. The next
step was to organize these attributes in a fashion that was logical and structured
and could be easily represented and implemented. We chose to produce an XML
Schema [21] to formally describe the syntax and semantics of our DL log format.
XML provides a standard syntax for the log format; different XML element tags
represent different semantic attributes to be registered in the log. As a matter
of fact, a similar use of XML to guarantee structural quality of web logs is
reported in [24]. XML Schema provides an equivalent to a grammar in XML
syntax to specify the structure of the log format. Also, XML log files produced
by our tool can be validated against the schema for correctness. Besides that,
XML Schema has a rich set of basic types, such as those for numbers, dates, and
times, which further contribute to standardization. And finally, the abundance
of XML parsers and other related software helps in the construction of analysis
tools.

The DL log format had to be reflective of how a generic DL system behaves.
We achieve this goal in two ways:

1. By using the 5S digital library theory of Streams, Structures, Spaces, Sce-

narios and Societies [22] as guidance for how to organize the log structure
and define the semantics of the DL components whose behavior would be
logged.
The 5S theory formally defines a standard nomenclature and the semantics
of the most common DL components using compositions of mathematical
objects. Informally, using the 5S concepts, we summarize that a digital li-
brary involves managed collections of digital information, accessible over
a network, and with associated services to support the needs of its com-
munities. Information is manifest in terms of digital objects, which contain
structured textual or multimedia streams (e.g., images, audio, video). Meta-
data describes different properties of digital objects, and is commonly struc-
tured into records. Collections and Catalogs, i.e., organized sets of metadata
records, are stored in persistent, probably distributed repositories. In many
cases, structures of digital objects and metadata are explicitly represented
and explored to improve the quality of services. Basic DL services include in-
dexing, searching, and browsing, and their behaviors are described by means
of sets of scenarios, which correspond to sequences of user and/or system
events and associated actions.

2. By having the notion of a “transaction” as the basic unifying entity of the
log format.
Basically everything that occurs in a DL system could be broken down to the
level of a transaction, either as interaction between users and the system or
among the system components themselves. Simple examples of a transaction
in our format would be a search query submitted by a user, the registering
of a new user, or the recording of some system failure. This may be an
isolated transaction in a system that does not have the notion of an explicit
“session”, or it might be a part of a bunch of transactions that define a
session. However, most of the current DL log formats, such as CLF, record
just one or a few kinds of events or transactions. All or most of the entries in
those log files have similar semantics. Our log format is designed to record a
number of different kinds of transactions. Examples of distinct transactions
are search, browse, session start, etc.

3.2 DL Log format structure

Figure 1 shows the higher-level organization of the DL log format. Each DL log
file consists of a number of log entries, each entry representing a type of trans-
action. Transactions could be categorized as being related to session creation,
user registration, user and system events associated with the use of DL services,
administration activities, errors, and user-responses. An important and essential
feature of the format should be to identify each transaction precisely. To achieve
this, we record the timestamp at which it occurred and also associate a unique
ID with each transaction. This ID should ideally be monotonically increasing
across one server to provide a logical representation of successive transactions.
Additionally, in case we’re dealing with a non-session based system, we need a
way to identify the user. One way to do this is to associate the location (IP
address) from which the user is interacting with the system. Each transaction
is then associated with a specific statement. A partial XML Schema of the high
level organization is shown below.

<xsd:complexType name="LogType">
<xsd:element name="LogEntry" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Transaction"/>
<xsd:complexType>
<xsd:attribute name="ID" type="xsd:int/>
</xsd:complexType>
</xsd:element>
<xsd:element name="TimeStamp" type="xsd:dateTime"/>
<xsd:element name="MachineInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="IPAddress" type="xsd:string"/>
<xsd:element name="Port" type="xsd:int" minOccurs="0"/>

LOG

Log Entry

Transaction Statement

Sessionld TimeStamp

Machinelnfo

Fig. 1. Top level Hierarchy.

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="SessionId" type="xsd:string" minOccurs="0"/>
<xsd:element name="Statement" type="StatementType"/>
</xsd:sequence>
</xsd:element>
</xsd:complexType>

There are basically two kinds of statements: 1) those related to specific user
and system events associated to DL services; and 2) general statements related
to administrative and other general activities. In more detail (Figure 2), the
following types of statements are defined:

— SessionInfo: In the case of an explicit session based system, the session
start and end times, as well as the user’s and associated information, need
to be recorded. We also assign a globally unique ID to each session. Using
this ID, it is very easy to group together all the transactions that occur
within this session.

— Registration info: In many session-based systems, users have to register
themselves with the system when they use it for the first time. They usually
have to select a user-ID, password, and possibly provide their identifying
and demographic information.

Statement

| }

‘Sessionlnfo‘ ‘Event ‘ ‘Errorlnfo‘ ‘Helplnfo‘

‘ RegisterInfo ‘ ‘ Admlnfo ‘

Fig. 2. Decomposition of statement into different types.

Administration information: Most systems record administration activ-
ities like system startup, shutdown, backup start, backup end, etc. This
transaction type is provided to record such information.

Error Information: This element is related to errors or failures that may
occur anytime in the system. Invalid query, document not found, etc., are
examples of error and failure information that need to be recorded. If the
user forgets to explicitly logout in a session based system the connection
time out can be recorded.

Help Information: Some DL systems provide help facilities to aid the
user. Use of this feature should be considered to be separate from the other
actions described above. Our log format considers this to be another type of
transaction. It can be an interesting investigation to find out which kinds of
help are frequently used by a user.

Event: We consider this to be the heart of the DL log format. User or
system events occur as a result of users performing information seeking ac-
tivities and using digital library services, or as a system response to those
activities. Each event is associated with an action, which encompasses the
main operations associated with DL services such as searching, browsing,
updating, and recording of system information related to these three opera-
tions. Each of those actions is performed over a collection of digital objects
or a catalog of metadata. User events also have a status code that is based
on the outcome of the action (e.g., success, failure, etc.). Four different kinds
of actions are currently defined (Figure 3):

1. Search: Searching is a basic DL service. Different systems implement
a number of different query languages and search schemes based on the

Statement

l

!

‘ SessionInfo ‘ ‘ Event ‘ ‘ ErrorInfo ‘ ‘ HelpInfo ‘

‘Registerlnfo‘ ‘Admlnfo ‘

‘ Action ‘ ‘ StatusInfo ‘

v

'

‘ Search ‘

‘ Browse ‘ ‘ Update ‘ ‘ StoreSysInfo ‘

Fig. 3. Decomposition of an event into different types.

underlying retrieval model they use. Two of the common models are
boolean and ranked retrieval [5,4]. Each of these systems also can pro-
vide additional features like selection of collection(s), structure related
information such as which field the search concerns (author, title, sub-
ject, ...), the duration of activities, and some way to indicate whether
this search operation is to be performed in the context of a previous,
larger search. Systems also can provide options to the users to select
how they want to view the results from their queries, including sort
option and maximum number of results to be presented. The details of
the search element are presented in the portion of the Log Schema below.

<xsd:complexType
<xsd:sequence>
<xsd:element

<xsd:element
<xsd:element

name="SearchType">

name="Collection"

type= "xsd:string" minOccurs="0"/>
name="MetadataCatalog" type= "xsd:string" minOccurs="0"/>
name="0bjectType">

<xsd:complexType>
<xsd:element name="DigitalObject"

type="xsd:string" minOccurs="0"/>

<xsd:element name='"MetadataRecord"

type="xsd:string" minOccurs="0"/>

<xsd:element name="HoldingsRecords"

type="xsd:string" minOccurs="0"/>

<xsd:element name="CommunityRecords"

type="xsd:string" minOccurs="0"/>

</xsd:complexType>
</element>
<xsd:element name="SearchBy"
type= "xsd:string" minOccurs="0"/>
<xsd:element name="SearchType">
<xsd:complexType>
<xsd:element name="persistent"
type="xsd:string" minOccurs="0"/>
<xsd:element name="non-persistent"
type="xsd:string" minOccurs="0"/>
</xsd:complexType>
<xsd:element>
<xsd:element name="QueryString"
type= "xsd:string" minOccurs="0"/>
<xsd:element name="TimeQut"
type= "xsd:string" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="StartDate" type='"xsd:date"/>
<xsd:element name="EndDate" type='"xsd:date"/>
</xsd:sequence>
</xsd:complexType>
</element>
<xsd:element name="PresentationInfo"
type= "PresentationInfoType" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

! l l

‘SearchBy‘ ‘QueryString ‘ ‘TimeOut‘ ‘Presentationlnfo ‘

‘ Collection ‘ ‘ Catalog ‘

‘Format ‘ ‘SortBy‘ ‘NumberOfResults‘ CutOff

Fig. 4. Search Attributes.

Specific types of objects can be searched including generic digital ob-
jects, metadata records, holding records (which keep holding informa-
tion for real objects in a library system), and community records (non-
bibliographic resources that fulfill some information need of a commu-
nity). SearchBy is used in structured queries and covers specific fields
under which the query will be performed. The value of SearchType is set
to persistent if the search is to be performed over the result of a previ-
ous search. Since query syntax is heavily dependent on the specific DL
system and underlying retrieval model, we only record the exact query
string used. Log analysts will consider this information in the context
of the particular system for their studies. The PresentationInfo includes
presentation format (e.g., list, threaded, tabular), which type of sort to
apply (e.g., by confidence, by a specific field), number of results, and cut
off threshold.

2. Browse: Browsing services can be performed by navigation through
lists of search results, indexes organized by specific fields, and generic
hypertexts. In the browse section we include identifiers of nodes and
links navigated, and presentation information.

3. Update: Some systems also provide facilities to allow an administrator
or user to add, modify or edit some part(s) of collections and/or catalogs
resident in a repository.

4. Store information: This action allows us to record the data associated
with the search and browse actions from the point of view of the sys-
tem. So, basically actions 1, 2 and 3 above record the user’s data, while
this action records the system’s response data. After any action the sys-
tem needs to record some information like number of bytes transferred,
response time of the action, highest and lowest ranked item, etc.

4 DL Log Tool and its Implementation

The DL XML Log Tool is implemented using generic Java classes and can be
used by any digital library or analysis system. There are mainly two classes in
the log tool implementation, XMLLogData.java, used for storing data, and XM-
LLogManager.java, which provides methods to write and read log information
according to our DL log format. XMLLogData.java basically provides a struc-
ture to hold private data with Set and Get methods to set and get values. For
example it has one attribute String SessionInfo for session-based systems and it
has SetSessionInfo() and GetSessionInfo() methods to set and get the value of
SessionInfo. All the read and write methods are synchronized to avoid conflicts
and inconsistences. The most difficult part is how to plug-in the tool into the
target system. That should be done by calling specific methods of the XML-
LogManager wherever a specific type of transaction occurs. Since this is heavily
dependent on the target system architecture and implementation, that should
be done by developers or administrators.

First tests were performed on the MARTAN digital library system [12]. MAR-
TAN is a session-based digital library software designed to store, search, and

browse large numbers of objects in a distributed environment. MARIAN was
originally developed at Virginia Tech in C++ and recently evolved to a pure
Java version. MARIAN has a resource management mechanism, which adminis-
ters and allocates all the system resources such as class managers and searchers.
In the MARIAN system, we only have one XMLLogManager Java object in
memory, created as an attribute of the ResourceClassManager. Whenever in-
formation needs to be logged the client calls the corresponding method of the
XMLLogManager instance of the ResourceManager.

4.1 Examples

We have included examples of some log transactions in MARIAN captured from
real use of the system. In the examples, we use the Dirline collection, a U.S.
National Library of Medicine’s online digital library containing location and
descriptive information about a wide variety of information resources including
organizations and projects concerned with health and biomedicine.

1. Login to the System:

<Transaction ID = "3452">
<SessionId > 987654usr3 </SessionId>
<SessionInfo>
<SessionStart> Start </SessionStart>
<LoginInfo>
<UserId> mhabib <UserId>
</LoginInfo>
</SessionInfo>
<TimeStamp> 2002-05-31T20:10:55.000-05:00 </TimeStamp>
<MachineInfo>
<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>
</MachineInfo>
</TransId>

2. Query on all Dirline records enties about “low back pain” in any part of the
record.

<Transaction ID = "3455">
<Sessionld > 987654usr3 </SessionIld>
<TimeStamp> 2002-05-31T20:11:07.000-05:00 </TimeStamp>
<MachineInfo>
<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>
</MachineInfo>
<Statement>
<Event>
<Action>
<Search>
<Collection>Dirline</Collection>
<0bjectType>CommunityRecord</ObjectType>

<SearchBy>SearchByAnyParts</SearchBy>
<SearchType>NonPersistant</SearchType>
<QueryString>low back pain</QueryString>
<TimeFrame>
<StartTime>2002-05-31T20:11:07.000-05:00</StartTime>
<EndTime>2002-05-31T20:11:09.000-05:00</EndTime>
</TimeFrame>
<PresentationInfo>
<Format>List</Format>
<SortBy>ByRank</SortBy>
<NumberOfResults>217</Number0fResults>
<Cutoff>20</Cutoff>
</PresentationInfo>
</Search>
</Action>
<StatusInfo>successful</StatusInfo>
</Event>
</Statement>
</Transaction>

3. Browse an item of the ranked list returned as a answer for the previous
search.

<Transaction ID = "3456">
<SessionId > 987654usr3 </SessionId>
<TimeStamp> 2002-05-31T20:11:15.000-05:00 </TimeStamp>
<MachineInfo>
<IPAddress> 128.173.244.56 <IPAddress>
<Port> 8000 </Port>
</MachineInfo>
<Statement>
<Event>
<Action>
<Browse>
<DocID> 5114 </DocID>
<DocName>University of Washington School of
Medicine Multidisciplinary Pain Center (UWPC)
</DocName>
</Browse>
</Action>
</Event>
</Statement>
</Transaction>

5 Conclusions and Future work

We propose an XML-based digital library log format standard that captures
a rich, detailed set of system and user behaviors supported by current digital
library services. The format is implemented in a generic log component tool,

which can be plugged into any digital library system. Specifications, implemen-
tation details, and examples of use within the MARIAN digital library system
were described.

Future work will proceed on several fronts. We will be using our log format
to allow evaluations of several of our projects, collections and systems, including
those in the context of the Networked Digital Library of Theses and Disserta-
tions (NDLTD, www.ndltd.org) and the Computing and Information Technol-
ogy Interactive Digital Educational Library (CITIDEL, www.citidel.org). Since
CITIDEL is a part of the National STEM (Science, technology, engineering, and
mathematics) education Digital Library (NSDL, www.nsdl.org), we will advo-
cate use of the log format and tools throughout NSDL. We will test the log
tool with other DL systems. A major concern of any comprehensive log format
such as ours should be user privacy. We should allow users to choose the level
of detail they want the system to log about their activities. Ideally, user infor-
mation should be logged and maintained at the client side [11] so that users
can use that information as they desire, for example, to provide portions of the
data to personalization tools in order to get personalization services. We will be
investigating extensions in the MARIAN Webgate module to allow such a view.

The current XML format can be very verbose. We will investigate efficient
compression techniques to allow scalable analysis of our DL logs. Also, we will
consider the application and possible extension of our XML format and tools to
support alternative DL architectures, e.g., that of the NCSTRL+ digital library
which uses buckets (object-oriented digital objects that contain data, metadata,
and the methods for accessing both [9]). Finally, our log proposal needs to be
discussed and related to standards and framework activities like OAIS [28].

Acknowledgements

Thanks also are given for the support of NSF through its grants: IIS-9986089, IIS-
0002935, IIS-0080748, 11S-0086227, DUE-0121679, DUE-0121741, and DUE-0136690.
The first author also is supported by CAPES, process 1702/98-0.

References

1. Borgman, Christine L., Hirsh, Sandra G., and Hiller, John, Rethinking Online Mon-
itoring Methods for Information Retrieval Systems: From Search Product to Search
Process, Journal of the American Society of Information Science, 47(7) 568-583,
1996.

2. Borgman, Christine L., Personal communication, 1998.

3. Bishop, Ann P., Digital Libraries and Knowledge Disaggregation: The Use of Journal
Article Components, Proceedings ACM Digital Libraries '98, Pittsburgh, 29-39, 1998

4. Sparck Jones, Karen and Peter Willett, editors, Readings in Information Retrieval,
San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1997, xv, 589.

5. Frakes, William B. and Ricardo Baeza-Yates, editors, Information Retrieval: Data
Structures & Algorithms, Englewood Cliffs, NJ: Prentice-Hall, 1992, viii, 504.

6. Marchionini, Gary, Information seeking in electronic environments, Boston: Cam-
bridge University Press, 1995.

7. Marchionini, Gary, Advanced Interface Designs for the BLS
Website: Final Report to the Bureau of Labor Statistics,
http://ils.unc.edu/march /blsreport98/final report.html

8. Jomes, Steve, Cunningham, Sally Jo, and McNab, Rodger, Usage Analysis of a Dig-
ital Library, Proceedings ACM Digital Libraries 98, Pittsburgh, 293-294, 1998.

9. Nelson, Michael L., Maly, Kurty, Shen, Stewart N. T., Zubair, Mohammad, NC-
STRL+: Adding Multi-Discipline and Multi-Genre Support to the Dienst Protocol
Using Clusters and Buckets, Proceedings of the IEEE Forum on Research and Tech-
nology Advances in Digital Libraries, IEEE ADL ’98, April 22-24, 1998, Santa Bar-
bara, California, USA, 128-136

10. Lynch, Clifford. Personalization and Recommender Systems in the Larger Con-
text: New Directions and Research Questions (Keynote Speech), Proceedings of the
DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries,
Dublin, Ireland, 18-20, June, 2001.

11. Cassel, Lillian N., Wolz, Ursula, Client Side Personalization, Proceedings of the
DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries,
Dublin, Ireland, 18-20, June, 2001

12. Gongalves, Marcos A., France, Robert K., and Fox, Edward A., MARIAN: Flexible
Interoperability for Federated Digital Libraries, Proceedings of the 5th European
Conference on Research and Advanced Technology for Digital Libraries, Darmstadt,
Germany, September 4-9, 173-186, 2001.

13. Barclay, Jean, Assessing the benefits of learning logs, Education and Training,
Vol.38 No.2, 1996.

14. Riecken, Douglas, Introduction: personalized views of personalization, Communi-
cations of the ACM, 43(8): 26-28, 2000.

15. Peters, Thomas A., The history and development of Transaction Log Analysis,
Library Hi Tech, 11(2): 41-66, 1993.

16. Sandore, Beth, Applying the Results of Transaction Log Analysis, Library Hi Tech,
11(2): 87-97, 1993.

17. Kaske, Neil K., Research Methodologies and Transaction Log Analysis: Issues,
Questions and a Proposed Model, Library Hi Tech, 11(2): 79-86, 1993.

18. Gladney, H. M. and Lotspiech, J. B., Safequarding digital library contents and
users. Assuring convenient security and data quality, D-Lib Magazine, May 1997.
19. Spiliopoulou, Myra, Web usage mining for Web site evaluation, Communications

of the ACM, 43(8): 127-134, 2000.

20. Mobasher, Bamshad, Cooley, Robert, Srivastava, Jaideep, Automatic Personaliza-
tion Based on Usage Mining, Communications of the ACM, 43(8): 142-151, 2000.

21. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn (Eds).
“XML Schema Part 1: Structures”. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

22. M. A. Gongalves, E. A. Fox, L. T. Watson, and N. A. Kipp. Streams, structures,
spaces, scenarios and societies (5S): A formal model for digital libraries. Technical
Report TR-01-12, Virginia Tech, Blacksburg, VA, 2001.

23. Witten, Ian H., Bainbridge, David, Boddie, Stefan J., Greenstone: open-source dig-
ital library software with end-user collection building,” Online Information Review,
25(5), 2001

24. Suleman, Hussein, Fox, Edward A., Abrams, Marc, Building quality into a digital
library,. the Proceedings of the Fifth ACM Conference on Digital Libraries, June
2-7, San Antonio, TX, USA, 228-229, 2001.

25. Davis, Lagoze, Krafft, Dienst: Building a production technical report server, Ad-
vances in Digital Libraries ’95, Springer Verlag, 1995.

26. Networked Computer Science Technical Reference Library, http://www.ncstrl.org/

27. Dienst Protocol, http://www.cs.cornell.edu/NCSTRL/protocol.html

28. Open Archival Information System Recommendation,
http://www.ccsds.org/documents/p2/CCSDS-650.0-R-1.pdf

29. OpenText Search Engine, http://www.opentext.com

