
2128 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 10, OCTOBER 2008

An XML Model for Use Across Heterogeneous
Client–Server Applications

Suvendi Chinnappen-Rimer and Gerhard P. Hancke, Senior Member, IEEE

Abstract—Applications that use directory services or relational
databases operate in a client–server model, where a client requests
information from a server, and the server returns a response to
the client. These client–server applications typically have a specific
message protocol that is unique to that application. Systems with
multiple client–server applications require that there are separate
client programs that individually communicate with their respec-
tive server programs. A need exists to access information from
heterogeneous systems in a standard message request–response
format. A generic eXtensible Markup Language (XML) model was
developed to obtain data from diverse measurement systems. The
objective of this paper is to describe the XML model that abstracts
the differences in the underlying heterogeneous client–server mes-
sage formats and provides a common XML message interface. The
XML messages are parsed through a common XML gateway that
decides to which application server to forward the messages. The
generic XML messages are translated to the correct application
server format before being sent to the application server.

Index Terms—Client, eXtensible Markup Language (XML),
generic, message, server.

I. INTRODUCTION

INTERNET technologies are increasingly being used to

monitor and manipulate remote electronic devices. One area

that is receiving widespread attention is the use of Internet pro-

tocols in field area networks (FANs) to facilitate services such

as remote monitoring, control, and maintenance [1]. A FAN

connects nodes that are the access points that are responsible

for data acquisition and its short-term storage [2]. The aim

of this paper is to provide an eXtensible Markup Language

(XML) model to create a standardized set of interfaces, which

are interoperable with a variety of client software and hard-

ware [2].

In a typical traditional client–server environment, applica-

tions operate on a request–response mechanism, i.e., the client

applications request information from a server application using

either a private or a public network to transport messages

(requests and responses) between the client and server appli-

cations. Each server application required the use of a separate

client interface.

Manuscript received May 3, 2007; revised January 18, 2008. This paper
was presented in part at the International Symposium on Virtual Environ-
ments, Human–Computer Interfaces, and Measurement Systems, Lugano,
Switzerland, July 2003.

The authors are with the Department of Electrical, Electronic, and Com-
puter Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
gerhard.hancke@up.ac.za; g.hancke@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2008.920027

Fig. 1. Traditional client–server architecture.

For example, consider a typical client–server architecture

that uses the Internet as the message transport network. The

system has the following applications/services running on it:

1) a directory service [e.g., Lightweight Directory Access

Protocol (LDAP)];

2) a Transmission Control Protocol (TCP)-based proprietary

server program;

3) a relational database server.

The traditional architecture would require separate client

programs that access each of the server or database applica-

tions, as shown in Fig. 1.

If a new server application is added, each client needs to load

another client program that can access the server’s data. The

need to install specialized clients on workstations increases the

complexity of maintaining a system and reduces the fl exibility

to introduce new protocols into a system. Any addition of new

software may require the addition of new shared libraries that

may complicate or interfere with existing applications (such as

stability, versions, etc.). It is preferable to deal with changes

at a single server than having to update multiple clients. The

placement of an application-layer gateway between the field bus

and the IP-based network [3] results in a networking solution

that increases the server-side complexity while decreasing the

client-side complexity.

The XML is evaluated as a solution to the problem of

accessing data across diverse client–server applications through

a common message model. Fig. 2 provides an overview of

the proposed system architecture using XML as a common

message format between multiple client–server applications.

This paper is structured as follows. Section II provides a brief

overview of the background and context in which this research

was undertaken, as well as a brief overview of current research

focusing on using XML as a common message interface. In

0018-94 56 /$ 25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



CHINNAPPEN-RIMER AND HANCK E: XML MODEL FOR USE ACROSS HETEROGENEOUS CLIENT–SERVER APPLICATION 2129

Fig. 2. Generic message gateway using XML.

Section III, the similarities between client–server applications

are described. In Section IV, the design of the XML model

is described. In Section V, the various solutions considered in

identifying the type of application server to which to send a

message are highlighted. In Section VI, the various alternatives

are evaluated. Section VII provides a brief overview of the

actual implementation. In Section VIII, the results of using

XML as a generic message interface instead of the native

protocols are analyzed.

II. BACK GROUND AND RELATED WORK

One of the problems experienced by electricity providers in

many countries is that of meter tampering and the intimidation

and coercion of human meter readers to change their measure-

ments. This paper is part of a larger work that is attempting to

remotely obtain electricity usage readings (among other types

of measurements, such as heat, gas, or water) [1]–[3]. Small

electricity measurement devices with internal microcomputers

are connected to a proprietary field bus. These devices are

controlled from a central server that communicates with these

devices.

This paper focuses on the need to allow multiple users to

remotely access these data (from various sources) without re-

quiring specialized software to be installed on their computers.

The research described in this paper forms part of a project that

provides a secure gateway between the Internet and a private

field bus network [1]–[3]. The Internet is used to provide remote

access to the field bus network data. The gateway provides

access to data in FAN node using either a proprietary TCP-

based protocol, an LDAP server, or a database server.

The objective is to develop a common message inter-

face to send requests and receive responses from different

client–server-type applications. XML was used to develop

the common message interface because the interpretation of

XML data is entirely up to the application that processes it.

A generic model was developed to obtain data from diverse

measurement systems. The type of client–server applications

considered send requests and receive responses in text-based

format and has mechanisms to read, modify, insert, and/or

delete data.

This paper and related research is not focused on Web Ser-

vices. XML is a data description language being developed and

independently standardized by Web Services. XML is currently

being used for Web Services as well as other applications that

are not related to Web Services.

Attempts to solve the problem of restructuring and refor-

matting of data as it passes from a software tool or process to

another predate the widespread use of the Internet that started

in the mid 1990s. Blattner et a l. [4 ], [5], in a study on generic

message translation, attempted to solve the problem by provid-

ing a visual interface that can create a mapping between fields in

different message types that specifies which fields have similar

semantic content. The papers of Blattner et a l. were published

before the introduction of XML into the computing landscape.

However, in their paper, the authors conclude that some sort

of “parser generator” must be constructed to take descrip-

tions for data specifications and create a “translator” between

systems.

Since the introduction and standardization of XML, several

studies have been undertaken on the feasibility of using XML

as a means to either provide an interface between legacy

applications and the Internet or describe data in a standard

format.

A study to use XML as the wrapper interface in migrating

legacy applications to the browser-based Internet platform con-

ducted by Bi et a l. [6 ] focused on understanding the function-

ality of the legacy system and the user interaction in the legacy

system. Bi et a l. developed a thin web-based client to interact

with the legacy system that was wrapped within an XML

application. The focus of the paper was legacy applications, but

it demonstrated the effectiveness of using XML to interact with

multiple legacy applications.

The work of Peinl and Mitschang [7] investigates transform-

ing independent autonomous data sources into a common XML

format to provide an integrated communication platform for

mobile applications.

Both works acknowledge the advantages provided by using

XML as the data modeling and exchange mechanism between

applications (clients) and information sources (servers).

The work of Law [8] describes an attempt to use XML

and LDAP messages to describe the network database schema,

with the intention that modification of the database information

could be achieved without taking down the whole system.

The author reached the conclusion that XML’s extensibility

results in increased fl exibility in setting up data content ac-

cording to different applications and/or different vendors. This

conforms to the results of our research, which shows that if

the main elements are defined in a common schema (during

the design of the XML document), the subelements within the

schema can be extended according to the specific needs of the

application.

However, the use of XML for generic messaging does not

come without some disadvantages, i.e., slower processing speed

caused by the additional overhead of using XML to trans-

form and parse messages. Bhoedjang et a l. [9], in their study

of distributed data structures, conclude that the performance

measurements of applications that run application-specific

codes are faster than those that use generic message-passing

software.

The possible advantages of using XML (such as scalability,

interoperability, and portability) to describe instrumentation

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



2130 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 10, OCTOBER 2008

data for use in developing a virtual laboratory are described

by Bagnasco et a l. [10]. The XML was used to describe

each instrument that could be remotely controlled. The authors

concluded that initial experiments were promising and that use

of XML plays an important role in environment definition and

process maintenance.

III. IDENTIFICATION OF SIMILARITIES BETWEEN

HETEROGENEOUS APPLICATIONS

To design the model, the similarities of different client–

server applications were identified, and using these similarities,

a common messaging system using XML as the command

interpretation language was developed.

In typical client–server applications, the following similari-

ties can be identified.

1) The client requires connection information about the

server, such as the host name on which the server resides,

the port number on which the server is listening, the

context or directory in which the server is located, the

data source name and database-specific driver details, etc.

2) The client has to provide the server with authentica-

tion details, so that the server can verify that the client

has access to the information that the server will be

able to provide. This is for security reasons so that

rogue client applications that may have malicious in-

tent are not allowed to gain access to the information

that the server provides. The typical authentication in-

formation required is a user name, a user password

(or access code), and the role of the user (i.e., some

users may have more privileges to information than other

users).

3) The messages sent between the client and the server are of

the request–response type. The message sent from a client

is a request, which contains some specific command name

used in the application. The message sent from the server

is a response to the specific command.

IV. XML MODEL

The model was designed by initially focusing on how

messages are sent and received between a client and the

server. For example, a typical client–server application using

TCP as the message transport mechanism will function as

follows.

1) A server will stay in a listen state, which means that the

server application listens for input data on a specific port.

2) The client will send a connection request to the server.

3) The server will validate the client’s authentication details.

4 ) If the client’s authentication details are valid, the server

will inform the client that the connection is accepted.

5) Otherwise, the server will inform the client that the

authentication details are invalid and that the connection

will not be established.

6 ) The client can send a message (command) to the server.

7) The server will process the request and return a response

to the client.

8) After the client has processed all requests, it informs the

server that the connection will be closed.

9) The client then closes the connection.

10) The server remains in the listen state, in case it has other

clients that are still connected to it or may want to connect

to it.

From the above description and using the similarities iden-

tified in the previous section, an XML model that includes the

following elements was developed.

Connection Information, i.e.,

<connection-info>

<connection-url> ... </ connection-url>

</ connection-info>

Authentication Information, i.e.,

<authentication-info>

<auth-name> ” . . .“ </ auth-name>

<auth-code> ” . . .“ </ auth-code>

<auth-role> ” . . .“ </ auth-role>

<authentication-info>

Request message with a specific command

< request>

<command> ” . . .“ </ command>

... [command parameters] . . .

</ request>

Response message to a specific command

< response>

<command> ” . . .“ </ command>

... [response details] . . .

</ response>

The command names and parameters in the messages sent

between the client and server element’s value can be the specific

command name used in a server application. The XML schema

does not specify what the child elements of the command

element should be. The reason is that each client–server appli-

cation has specific commands with specific fields. Each element

is stored as an element value pair in a hash table that is sent

to the relevant server application. The value of the command

element is irrelevant, because the XML gateway application

assumes that the server application to which the command

value is sent will be able to correctly interpret and process the

command.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



CHINNAPPEN-RIMER AND HANCK E: XML MODEL FOR USE ACROSS HETEROGENEOUS CLIENT–SERVER APPLICATION 2131

The advantages of not specifying the elements within a

command element are as follows.

1) Each client–server application can retain their original

command names without having to create a generic set

of command names that applies to similar types of com-

mands between the different applications.

2) Server applications with different commands and com-

mand parameters that were not considered in the original

design can use the same schema.

3) The XML gateway program that processes the XML

document does not need to know what the required child

elements of the command element are.

V. ROUTING MESSAGES TO THE CORRECT

APPLICATION SERVER

After parsing the XML message received from a client

application, the XML gateway requires a method to determine

the correct application server to which to send the messages.

The following three methods were considered:

1) using a unique address location mechanism;

2) using a specific XML element;

3) trying the first available (connected) server application

specified in the connection URL.

These three possible options are described below.

A . O p tion O ne

Many request commands require (as an input parameter)

some sort of unique address or field that indicates where the

data can be located. This address may be a directory location,

a database table and/or field name, a file name, a network node

and file name, and many other possible location-type variables.

Option one requires that a user prefix the unique data location

value with a unique code that identifies the server application

for which the command is intended. The server ID string is

prefixed to the start of the data location value and separated

from the actual data location value by a dot (“.”), i.e., in a

similar format to the structure of an IP address. The address

content is used in the implementation to determine to which

server application to send the message. The first part of the

address before the end punctuation point (left side of the

address taken as beginning of address) indicates the type of

server application. For example, if the message address is

“SQ L.SY S.GATEWAY @DataHostAddress!gateway,” then the

characters before the first punctuation point are “SQ L.” This

indicates that the request is intended for the database server

specified in the connection URL.

B . O p tion T w o

Option one works well where the command requires input

data that can be used to identify the application server to which

the request is intended. However, some commands may not

require any input data.

To solve this problem, option two considers including an

additional element (the protocol element) to the XML model

that will identify the server application that is a child element

of the request element. This means that all commands within

the request element will be directed to the identified server

application, i.e.,

< request>

<protocol> LDAP

<command> read </ command>

<command> modify </ command>

</ protocol>

</ request>

This approach requires that the client application specify, in

the creation of the XML document, the server for which server

the requests are intended.

C . O p tion T h ree

Option three attempts a connection to each server application

specified in the connection URL. The request is sent to the first

server application that is available and the result returned to the

client.

VI. ANALY SIS OF THE THREE OPTIONS

Option one uses a unique identifier to determine the server

application. The advantage of this approach is that a single user

interface can be used to send and receive messages to multiple

application servers. The drawback is that the user has to enter

a unique application identifier when entering in the location of

the data.

Option two uses an additional element in the XML request

document that describes the application server for which the

message is intended. The advantage of this solution is that the

user is not required to specify a unique identifier per command

request. However, the disadvantage is that there has to be a

separate user interface per application server so that when it

formats a message request, the client application adds the type

of application server for which the message is intended as the

appropriate protocol element value.

Option three works well if there is only one server applica-

tion up at the time and if it happens to be the server application

to which the client intended the request to be sent. However,

if these exact requirements are not met, then the fl aws in this

solution become apparent. For example, if more than one server

application is available, the XML gateway may send the request

to the incorrect server application. Therefore, option three is not

considered as a viable solution.

The XML model uses the dual approach of options one and

two. This provides us with the fl exibility of not requiring that

all commands have a data location identifier element or that all

requests require a protocol element.

Option two is suitable for batch-type interactions, where the

server identifier can be passed as an input parameter to the batch

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



2132 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 10, OCTOBER 2008

Fig. 3. Application architecture.

application when it is run. This negates the need for separate

client applications on the client workstation.

Option one is suitable for user interfaces such as web

browsers, where a common user interface can be used to send

messages to multiple server applications.

VII. IMPLEMENTATION

The application architecture consists of the following major

components:

1) the presentation layer: user interface consisting of HTML

and JavaServer Page (JSP) forms;

2) the business layer: processing and interpretation of XML

document;

3) the data layer: provides access to specified data source.

Currently, the business and data instructions are processed on

a single server machine, but the data sources can be moved to

another server without impacting the application. In addition,

most of the presentation preprocessing is done on the server

so that the client is presented with only HTML-type forms

that require user input or that display the server response

to a request command. The application architecture is shown

in Fig. 3.

The proposed XML model was used as the messaging mech-

anism for the three systems described in the introduction, i.e.,

a directory service, a proprietary TCP server program, and a

relational database server.

A browser-based user interface to the server applications

was implemented for option one. The user was required to

enter the parameters required to process a specific command.

The user interface approach is suited for option one because

the server identifier can be prefixed to an input data field’s

value. A transforming language [i.e., eXtensible Stylesheet

Language Transformation (XSLT)] was used so that each

server’s response could be specifically formatted for that

application.

The XML messages are directly sent to the XML gateway

to test option two. The server identifier is parsed as an input

parameter to the batch program. The batch program uses this

input value when creating the XML document to send to the

XML gateway. The XML document includes the additional

protocol element enclosing the server identifier.

The server application is written in Java, and the server uses

the Linux operating system. The software occupancy require-

ment on the client side is small, i.e., they require support for

either a web browser (option one) or a small batch program

(option two). The batch program need not exceed 20 000 B.

This means that the client application is not restricted to being

a computer workstation but can be a mobile device such as a

personal digital assistant. The design does not require any XML

programs to be stored on the actual meter readers. Data are

requested from the meters and stored in different data sources

on the server. The current server-side software occupancy re-

quirement for the XML application is less than 130 kB. The

main resource users are the data sources. The data sources need

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



CHINNAPPEN-RIMER AND HANCK E: XML MODEL FOR USE ACROSS HETEROGENEOUS CLIENT–SERVER APPLICATION 2133

TABLE I
TIME DIFFERENCE FOR CLIENT–SERVER APPLICATION WITHOUT XML AND WITH XML

TABLE II
MEMORY USAGE DIFFERENCES FOR CLIENT–SERVER APPLICATION WITHOUT XML AND WITH XML

not run on the same server. To run all three data sources on the

same server (a web server), the application requires 256 MB of

random access memory.

VIII. EVALUATION OF XML VERSUS

NON-XML MESSAGES

Option one proved effective in reducing the need for separate

client interfaces. In addition, by using a transforming language

such as XSLT, each server’s response can be specifically for-

matted for that application without increased complexity on the

client side.

Option two is effective when used within a batch client

application, as it reduces the need for different client programs

while ensuring that requests are sent to the appropriate server

application.

The performance of XML versus non-XML messages was

assessed, and the results were analyzed.

Table I shows the result of the time taken (in milliseconds)

to send and receive a non-XML message and an XML message

to each of the different server applications. Similar read- and

write-type commands are used across the different client–server

applications.

From the results, it is clear that non-XML-type messages pro-

vide better performance results than XML-type messages. The

additional time is due to the construction of messages into XML

format and the parsing of the XML messages to determine the

type of command and application server.

The memory usage of XML versus non-XML messages was

assessed, and the results were analyzed. Table II shows the

amount of total occupied memory used when transmitting non-

XML messages versus memory usage when transmitting XML

messages to each of the different server applications. Similar

read- and write-type commands are used across the different

client–server applications. Because the XML messages have a

larger footprint in terms of additional message descriptors and

use of the parser, they will require more memory. It should

be noted that the values in Table II are also dependent on the

underlying data source and how it handles memory resource

allocation and recovery.

The time taken to process a message does not increase in

a directly proportional manner as the number of messages

increase, i.e., the time taken for two messages is not double

the time taken for one message. As shown in Fig. 4 , the time

per XML message, as the number of messages increases, tends

to a constant level per request/command.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



2134 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 10, OCTOBER 2008

Fig. 4 . Time taken to process an XML command as the number of commands
increase.

The time taken to process a single request with multiple

commands within the request element is slightly smaller then

the time taken to process multiple request–command messages.

This is because connection info, request, and other higher

order elements do not have to be parsed for each command.

Because the number of elements preceding a command element

is small, the time taken before reaching the command element

is relatively small. Therefore, it can be concluded that the

XML parser is efficient and may be able to handle larger XML

documents with minimal additional performance cost.

There is clearly a tradeoff between the amount of time it

takes to send a request and receive a response and the fl ex-

ibility of providing a common message interface to multiple

applications.

The following advantages of using XML in the implementa-

tion were identified:

1) standard message format for multiple applications, i.e.,

XML is application independent;

2) common gateway handles requests to multiple application

servers;

3) fl exibility in extending the XML document structure to

incorporate new application servers with minimum addi-

tional changes to existing coding infrastructure;

4 ) additional security benefit of having only one access point

[HyperText Transfer Protocol (HTTP) port] to multiple

applications made available to external networks.

The following disadvantages of using XML in the implemen-

tation were identified:

1) slower response times, leading to decreased performance;

2) increased central processing unit usage;

3) increased memory resource usage.

It should be noted that these measurements were done on a

single computer, i.e., no network transmission overheads affect

the results. The choice of the right type of message must take

into account the size of the message and the transmission delays

of sending data across a network.

IX. CONCLUSION

A common message model for sending and receiving mes-

sages between heterogeneous server applications has been de-

signed and implemented using XML as the data description

language. Similarities between client–server applications were

identified and used as the basis for defining the common XML

elements in the schema.

After the design was implemented and tested, the perfor-

mances of XML and non-XML messages were evaluated. As

expected, the increased verbosity of XML results in a larger

footprint that requires more processing time and resources. This

means that any implementation using XML has to carefully

weigh the benefits of fl exibility, extensibility, and standard

message formats against reduced performance.

XML does not appear to be suitable for applications that

require high-speed, real-time responses. However, client ap-

plications that use the Internet to obtain server information

from multiple applications will benefit from reduced client-side

complexity. Server applications that serve large client bases

and, therefore, require smaller resource allocation per request

may not be scalable because of the integration with XML. The

reduced performance levels from using XML mean that it does

not scale to handle large numbers of concurrent client requests.

If the applications are run in batch mode, where the need

for fast (i.e., microsecond and nanosecond) responses is not

important, then the solution is useful. As long as the time

delay is not too long in human (user) terms, then the additional

response times caused by the XML footprint are negligible.

Note that, in this implementation, the time delay for responses

is less than or is within seconds. However, if the data sources are

located on different servers, the time delay will be dependent on

the network performance.

Therefore, it can be concluded that when used to encode

messages in a standard format for use in client–server-type

environments, XML can provide significant advantages. How-

ever, where performance and memory usage requirements are

important, it is not a feasible solution.

REFERENCES

[1] P. Palensky and T. Sauter, “Security considerations for FAN-Internet con-
nections,” in P roc . IEEE Int. W ork s h op F a c tory C ommu n. Sy s t., Sep. 6 –8,
2000, pp. 27–35.

[2] M. Lobashov, G. Pratl, and T. Sauter, “Implications of power-line com-
munication on distributed data acquisition and control system,” in P roc .

IEEE C onf. Emerg ing T ec h nol. F a c tory A u tom., Sep. 16 –19, 2003, vol. 2,
pp. 6 07–6 13.

[3] T. Sauter, M. Lobashov, and G. Pratl, “Lessons learnt from Internet access
to fieldbus gateways,” in P roc . IEEE 2 8 th A nnu . C onf. Ind . Elec tron. Soc .,
Nov. 5–8, 2002, vol. 4 , pp. 2909–2914 .

[4 ] M. Blattner, L. K ou, J. Carlson, and D. Daniel, “A visual interface for
generic message translation,” in P roc . IEEE W ork s h op V is . L a ng ., 1988,
pp. 121–126 .

[5] M. Blattner and L. K ou, “A user interface for computer-based message
translation,” in P roc . IEEE 2 2 nd A nnu . H a w a ii Int. C onf. Sy s t. Sc i., 1989,
vol. IV, pp. 4 3–51.

[6 ] Y . Bi, M. E. C. Hull, and P. N. Nicholl, “An XML approach for legacy
code reuse,” J . Sy s t. Softw ., vol. 6 1, no. 2, pp. 77–89, Mar. 2002.

[7] P. Peinl and B. Mitschang, “Towards an integrated systems approach
for mobile traveller applications,” in P roc . IEEE 1 s t Int. C onf. W ISE,
Jun. 19/20 2000, vol. 1, pp. 4 91–4 96 .

[8] K . L. E. Law, “XML on LDAP network database,” in P roc . IEEE C a n.

C onf. Elec tr. C omp u t. Eng ., 2000, pp. 4 6 9–4 73.
[9] R. Bhoedjang, J. Romein, and H. Bal, “Optimizing distributed data struc-

tures using application-specific network interface software,” in P roc .

IEEE Int. C onf. P a ra llel P roc es s ., 1998, pp. 4 85–4 92.
[10] A. Bagnasco, M. Chirico, and A. M. Scapolla, “XML technologies

to design didactical distributed measurement laboratories,” in P roc .

1 9 th IEEE Ins tru m. Mea s . T ec h nol. C onf., May 21–23, 2002, vol. 1,
pp. 6 51–6 55.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.



CHINNAPPEN-RIMER AND HANCK E: XML MODEL FOR USE ACROSS HETEROGENEOUS CLIENT–SERVER APPLICATION 2135

Suvendi Chinnappen-R imer received the B.Sc. degree in electrical engineer-
ing in 1991 from the University of the Witwatersrand, Johannesburg, South
Africa, and the M.Eng. degree in 2003 from the University of Pretoria, Pretoria,
South Africa, where she is currently working toward the Ph.D. degree in
computer engineering.

She is currently a Lecturer with the Department of Electrical and Electronic
Engineering Science, University of Johannesburg. Her current research interests
include aspects of wireless sensor and actor networks and the use of image
processing in fault detection.

G erhard P . H ancke (M’88–SM’00) received the
B.Sc., B.Eng., and M.Eng. degrees from the Univer-
sity of Stellenbosch, Stellenbosch, South Africa, and
the D.Eng. degree from the University of Pretoria,
Pretoria, South Africa, in 1983.

He is a Professor and the Chair of the Com-
puter Engineering Program and Research Group for
Computer Networks and Security, Department of
Electrical, Electronic, and Computer Engineering,
University of Pretoria. His research interests are
in wireless sensors and actuators networks, and he

extensively partakes in collaborative research programs with international
research institutions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 03:58 from IEEE Xplore.  Restrictions apply.


