
Anaconda Defeats Hoyle 6-0: A Case Study Competing an Evolved Checkers
Program against Commercially Available Software

Abstract - We have been exploring the potential for a co-
evolutionary process to learn how to play checkers with-
out relying on the usual inclusion of human expertise in
the form of features that are believed to be important to
playing well. In particular, we have focused on the use of
a population of neural networks, where each network
serves as an evaluation function to describe the quality of
the current board position. After only a little more than
800 generations, the evolutionary process has generated a
neural network that can play checkers at the expert level
as designated by the U.S. Chess Federation rating system.
The current effort reports on a competition between the
best-evolved neural network, named “Anaconda,” and
commercially available software. In a series of six games,
Anaconda scored a perfect six wins.

1 Introduction

Checkers is played traditionally on an 8 × 8 board with squares
of alternating colors of red and black (see Fig. 1). There are
two players, denoted as “red” and “white.” Each side has 12
pieces (checkers) which begin in the 12 alternating squares
of same color that are closest to that player’s side, with the
right-most square on the closest row to the player being left
open. The red player moves first and then play alternates be-
tween sides. Checkers are allowed to move forward diago-
nally one square at a time, or, when next to an opposing
checker and there is a space available directly behind that
opposing checker, by jumping diagonally over an opposing
checker. In the latter case, the opposing checker is removed
from play. If a jump would in turn place the jumping checker
in position for another jump, that jump must also be played,
and so forth, until no further jumps are available for that
piece. Whenever a jump is available, it must be played in
preference to a move that does not jump; however, when
multiple jump moves are available, the player has the choice
of which jump to conduct, even when one jump offers the
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removal of more opponent’s pieces (e.g., a double jump ver-
sus a single jump). When a checker advances to the last row
of the board it becomes a king, and can thereafter move di-
agonally forward or backward. The game ends when a player
has no more available moves, which most often occurs by
having their last piece removed from the board but can also
occur when all existing pieces are trapped, resulting in a loss
for the player with no remaining moves and a win for the
opponent (the object of the game). The game can also end
when one side offers a draw and the other accepts.

Our current effort explores the potential for using neural
networks to extract information about how to play expert-
level checkers without being offered human expertise about
the game in terms of features that would be believed to be
important, end game databases, opening moves from grand
masters, or similar information. Using a coevolutionary pro-
cedure, a population of neural networks has evolved a board
evaluation function that can facilitate play at the expert level.
We have tested the best-evolved neural network against com-
mercially available software and report the results here. Sec-
tion 2 provides background on prior efforts in computer check-
ers. Section 3 details the method we employed. Section 4 de-
scribes our results, and Section 5 offers a brief discussion of
the implications of the results.

2 Background on Computer Programs for
Checkers

There have been many attempts to design programs to play
checkers since the late 1950s. These are documented in
Schaeffer (1996) and for the sake of space only two will be
described here. The current computer world champion check-
ers program is Chinook, designed by Schaeffer et al. at the
University of Alberta. The program uses a linear handcrafted
evaluation function that considers several features of the game
board including: 1) piece count, 2) kings count, 3) trapped
kings, 4) turn, 5) runaway checkers (unimpeded path to king);



and other minor factors (Schaeffer, 1996, pp. 63-65). In ad-
dition, the program has: 1) access to a library of opening
moves from games played by grand masters, 2) the complete
endgame database for all boards with eight or fewer pieces,
and 3) a “fudge factor” that was chosen to favor boards with
more pieces over those with fewer pieces. This last facet was
included to present more complicated positions to human op-
ponents in the hopes of eliciting a mistake. No machine learn-
ing methods have been employed successfully in the devel-
opment of Chinook. All of its “knowledge” has been pro-
grammed by humans. Chinook played to a draw after six
games in a 40-game match against the former human world
champion Marion Tinsley, the best player to have lived. (From
1950 until his death in 1995, Tinsley won every tournament
in which he played and lost only three games.) Tinsley re-
tired the match after these six games for health reasons and
died shortly thereafter. Schaeffer (1996, p. 447) offered that
Chinook was rated at 2814, with the best human players rated
at 2632 and 2625.

In contrast to Chinook, the most well-known effort in de-
signing an algorithm to play checkers is owed to Samuel
(1959), which was one of the first apparently successful ex-
periments in machine learning. The method relied in part on
the use of a polynomial evaluation function comprising a sub-
set of weighted features chosen from a larger list of possibili-
ties. The polynomial was used to evaluate alternative board
positions some number of moves into the future using a mini-

max strategy. The technique relied on an innovative self-learn-
ing procedure whereby one player competed against another.
The loser was replaced with a deterministic variant of the
winner by altering the weights on the features that were used,
or in some cases replacing features that had very low weight
with other features. Samuel’s program, which also included
rote learning of games played by masters, was played against
and defeated R.W. Nealey in 1962. IBM Research News de-
scribed Nealey as “a former Connecticut checkers champion,
and one of the nation’s foremost players.”

The success of Samuel’s program was overstated, and con-
tinues to be overstated. The 1962 match against Nealey was,
in retrospect, pocked with errors on both sides, as has been
demonstrated using Chinook to analyze the game (Schaeffer,
1996, pp. 93-97). Moreover, Nealey was not a “former Con-
necticut champion” as advertised at the time of the match,
although he did earn this title later. Nealey defeated Samuel’s
program in a rematch the next year, and Samuel played four
games with his program against both the world champion
and challenger in 1966, losing all eight games. As Schaeffer
(1996, p. 97) wrote: “The promise of the 1962 Nealey game
was an illusion.”

In contrast to relying on look-up tables, perfect end game
databases, grand master openings, or even features about
checker positions that are believed to be important, we con-
sidered the possibility of having neural networks learn to play
checkers without such knowledge. This would appear to be a
necessary precursor to any effort to generate machine intelli-
gence that is capable of solving new problems in new ways.
One measure of success is the level of play that can be at-
tained against humans without preprogramming in the req-
uisite knowledge to play well. Another measure concerns how
well an evolved neural network can fair against other com-
puter programs. The latter measure is assessed in part here.

3 Method for Evolving Neural Networks for
Checkers from Scratch

Each board was represented by a vector of length 32, with
each component corresponding to an available position on
the board. Components in the vector could take on elements
from {−K, −1, 0, +1, +K}, where K was the evolvable value
assigned for a king, 1 was the value for a regular checker,
and 0 represented an empty square. The sign of the value
indicated whether or not the piece in question belonged to
the player (positive) or the opponent (negative). A player’s
move was determined by evaluating the presumed quality of
potential future positions. This evaluation function was struc-
tured as a feedforward neural network with an input layer,
three hidden layers, and an output node. The second and third
hidden layers and the output layer had a fully connected struc-
ture, while the connections in the first hidden layer were spe-
cially designed to possibly capture spatial information from
the board. The nonlinearity function at each hidden and out-
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Figure 1. The opening board in a checkers game. Red moves first.



put node was the hyperbolic tangent (tanh, bounded by ±1)
with a variable bias term, although other sigmoidal functions
could undoubtedly have been chosen. In addition, the sum of
all entries in the input vector was supplied directly to the
output node.

The neural architecture used a series of 91 preprocessing
nodes that covered n × n square overlapping subsections of
the board. These n × n subsections were chosen to provide
spatial adjacency or proximity information such as whether
two squares were neighbors, or were close to each other, or
were far apart. All 36 3 × 3 square subsections of the board
were provided as input to the first 36 hidden nodes in the
first hidden layer. The following 25 4 × 4 square subsections
were assigned to the next 25 hidden nodes in that layer, and
so forth. Fig. 2 shows a sample 3 × 3 square subsection that
contains the state of positions 1, 5, 6, and 9. Two sample 4 ×
4 subsections are also shown. All possible square subsections
of size 3 to 8 (the entire board) were given as inputs to the 91
nodes of the first hidden layer. This enables the neural net-
work to generate features from these subsets of the entire board
that could then be processed in subsequent hidden layers. Fig.
3 shows the general structure of the “spatial” neural network.
At each generation, a player was defined by their associated
neural network in which all of the connection weights (and
biases) and king value were evolvable.

Note that no effort was made to include specific features
that would require human expertise. The only feature of the
board that was offered, indirectly, was the piece differential.
This resulted from connecting the inputs directly to the out-
put, which essentially counts the number of pieces for each
player and indicates the difference. When kings are present,
however, this is not always the case because each neural net-
work evolves its own value of K.

When a board was presented to a neural network for evalu-
ation, its scalar output was interpreted as the worth of that
board from the position of the player whose pieces were de-
noted by positive values. The closer the output was to 1.0, the
better the evaluation of the corresponding input board. Simi-
larly, the closer the output was to –1.0, the worse the board.
All positions that were wins for the player were assigned the
value 1.0, and likewise losses were assigned –1.0.
 The coevolutionary procedure for neural learning was as fol-
lows. A population of 15 neural network strategies, Pi, i = 1,
…, 15, defined by the weights and biases for each neural
network and its associated value of K, was created at random.
Weights and biases were sampled uniformly at random over
[−0.2, 0.2], with the value of K set initially to 2.0. Each strat-
egy had an associated self-adaptive parameter vector σi, i =
1, …, 15, where each component corresponded to a weight or
bias and served to control the step size of the search for new
mutated parameters of the neural network. To be consistent
with the range of initialization, the self-adaptive parameters
for weights and biases were set initially to 0.05.

Each parent generated one offspring by varying all of the
associated weights and biases, and possibly the value of K as
well. Specifically, for each parent, Pi, i = 1, ..., 15, and off-

spring P′i, i = 1, …, 15, was created by:

σ′i(j) = σi(j) exp(τNj(0,1)), j = 1, …, Nw

w′i(j) = wi(j) + σ′i(j)Nj(0,1), j = 1, …, Nw

where Nw is the number of weights and biases in the neural

network (here, 5046), τ = (2(Nw) 0.5)−0.5 = 0.0839, and Nj(0,1)
is a standard normal random variable sampled anew for ev-
ery j. The offspring king value was determined by:

Ki = Ki + δ

where δ was chosen uniformly at random from {−0.1, 0, 0.1}.
For convenience, K′ was bounded between [1.0, 3.0].

All parents and offspring competed for survival by playing
games and receiving points for their resulting play. Each
player in turn played one game against each of five randomly
selected opponents from the population (with replacement).
In each of these games, the player always played red, whereas
the randomly selected opponent always played white. The
players earned +1, –2, or 0 points for winning, losing, or
playing to a draw, respectively. A draw was declared after
100 moves on each side. In total, there were 150 games per
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Figure 2. The first hidden layer of the neural networks assigned
one node to each possible 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, and 8 × 8
subset of the entire board. In the last case, this corresponded to the
entire board. In this manner, the neural network was able to invent
features based on the spatial characteristic of checkers on the board.
Subsequent processing in the second and third hidden layer then
operated on the features that were evolved in the first layer.



generation, with each strategy participating in an average of
10 games. After all games were complete the 15 strategies
with the highest point totals were retained as parents for the
next generation and the process was iterated.

Games were played using a minimax search at a depth of
four ply. The minimax move for each player was determined
by selecting the available move that afforded the opponent
the opportunity to do the least damage as determined by the
network’s evaluation. Four ply was chosen to allow for rea-
sonable training time on the 400 MHz Pentium II (30 gen-
erations = 7 days). When forced moves were encountered,
the ply was increased and the evaluation of a position was
postponed until the board was in a “quiescent” state.

The evolutionary process was iterated for 250 generations
with the resulting best-evolved neural network being tested

against human competitors over the Internet (www.zone.com)
(Chellapilla and Fogel, 1999). That neural network was found
to perform at the level of “Class A,” one step below “expert”
(which is in turn one step below “master” and then “grand
master”), with a rating of 1930.0. Based on observing the
play of the program, we named it “Anaconda” because it of-
ten appeared to win its games by restricting the mobility of
its opponents. Recall that nowhere in the input to the neural
networks was any concept of mobility. To the extent that the
evolutionary process generated neural networks that used this
feature, it had to first invent the concept. After 840 genera-
tions, the best-evolved neural network was again played
against people at the Internet site and its performance has
improved to the expert level (Chellapilla and Fogel, 2000).
Of interest here is to test the performance of the best-evolved
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Figure 3.  The complete “spatial” neural network used to represent strategies. The network served as the board evaluation function. Given
any board pattern as a vector of 32 inputs, the first hidden layer (spatial preprocessing) assigned a node to each possible square subset of the
board. The outputs from these nodes were then passed through two additional hidden layers of 40 and 10 nodes, respectively. The final
output node was scaled between [−1,1] and included the sum of the input vector as an additional input. All of the weights and bias terms of
the network were evolved, as well as the value used to describe kings.



neural network at generation 840 against commercially avail-
able checkers-playing software.

4  Experiment and Results

The authors were provided a copy of Hoyle’s Classic Games
by Sierra Online for competing in an online checkers tourna-
ment. (The results of that tournament will be described else-
where). The Classic Games CD offers a variety of different
opponents with either “average” or “expert” skill at checkers
(Fig. 4). A series of six games were played in which Ana-
conda played one game as red and one game as white against
three characters who were designated as experts (Beatrice,
Natasha, and Leopold). Anaconda relied mainly on a search
ply of six moves. From previous experience with Anaconda
at a search ply of eight moves, it is doubtful that a ply of six

would provide Anaconda with the ability to play at the “ex-
pert” level by U.S. Chess Federation standards. Neverthe-
less, Anaconda achieved a perfect six wins and no losses or
draws in the six games played. A typical game is offered in
the Appendix.

5  Discussion

Whereas a great effort has been made to generate commer-
cial chess programs that can play at the grand master level,
there has been little comparable effort to do the same for check-
ers. The performance of the “expert” checkers programs in
Hoyle’s Classic Games does not appear to correlate well with
the level of play that would be expected for a player rated
above 2000 on the U.S. Chess Federation scale (this is the
same scale used for checkers on www.zone.com, with 2000

Figure 4. The various characters that are offered for competition in Hoyle’s Classic Games for checkers. Games were played against
Beatrice, Natasha, and Leopold, each of whom is described as having “expert” level play.



being the threshold for designating expert-level play). The
results of the competition suggest that a program like Ana-
conda could possess some commercial market value, particu-
larly because its level of play should be tunable based on the
number of moves that it looks ahead. Experiments to deter-
mine the effects of variable ply look-ahead on the level of
attained performance remain for future work.

The experiment performed here, as well as the previous
results documented in Chellapilla and Fogel (1999, 2000),
demonstrate an ability for an evolutionary algorithm to start
with essentially no preprogrammed information in the game
of checkers (except for the possibility of using piece differen-
tial) and learn, over successive generations, how to play at a
level that is challenging not only to humans, but to some of
the programs they have created.

Early speculation on the potential success of this sort of
effort was entirely negative. A. Newell, in Minsky (1961)
offered: “It is extremely doubtful whether there is enough
information in ‘win, lose, or draw’ when referred to the whole
play of the game to permit any learning at all over available
time scales.” Minksy (1961) noted being in “complete agree-
ment” with Newell. The challenge taken up in the protocol
described here goes further by not offering feedback except
after a series of games, where a neural network does not get
to know which game was a victory and which was a defeat.
The authors hope the results provide impetus for increased
attention on the robust and useful application of coevolution
to difficult problems where human expertise may be insuffi-
cient or altogether lacking.
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Appendix: Moves for Game 1 — Anaconda vs.
“Beatrice” from Hoyle’s Classic Games.

Beatrice moves first as Red. Anaconda moves second as White.
Anaconda takes an early lead in moves 20-22, gives up pieces
between moves 28-30, and comes back for a win in move 58
(a double jump). After Red plays 22-25 on move 60, Ana-
conda sees a way to force a win: game over.

1.R:11-15 1.W:22-18
2.R:15-22(f) 2.W:26-17
3.R:9-14 3.W:24-20
4.R:8-11 4.W:27-24
5.R:11-15 5.W:32-27
6.R:15-18 6.W:30-26
7.R:4-8 7.W:25-22
8.R:18-25(f) 8.W:29-22(f)
9.R:8-11 9.W:17-13
10.R:11-15 10.W:24-19
11.R:15-24(f) 11.W:28-19(f)
12.R:7-11 12.W:27-24
13.R:11-15 13.W:31-27
14.R:5-9 14.W:20-16
15.R:1-5 15.W:16-11
16.R:3-7 16.W:11-8
17.R:7-11 17.W:8-4
18.R:11-16 18.W:4-8
19.R:16-20 19.W:8-11
20.R:15-18 20.W:22-15(f)
21.R:2-7 21.W:11-2(f)
22.R:12-16 22.W:19-12(f)
23.R:10-19-28(f) 23.W:12-8
24.R:28-32 24.W:8-4
25.R:32-28 25.W:23-19
26.R:14-18 26.W:4-8
27.R:28-24 27.W:27-23
28.R:18-27 28.W:2-7
29.R:24-15(f) 29.W:7-10
30.R:15-19 30.W:10-1(f)
31.R:9-14 31.W:1-6
32.R:27-32 32.W:6-10
33.R:14-18 33.W:8-12
34.R:32-27 34.W:12-8
35.R:19-16 35.W:10-14
36.R:27-31 36.W:14-23(f)
37.R:31-22(f) 37.W:8-3
38.R:16-11 38.W:21-17
39.R:11-15 39.W:23-18
40.R:15-11 40.W:18-25(f)
41.R:11-15 41.W:25-22
42.R:15-11 42.W:22-18
43.R:20-24 43.W:18-23
44.R:24-28 44.W:23-18
45.R:28-32 45.W:18-23
46.R:11-16 46.W:3-7



47.R:16-12 47.W:7-11
48.R:32-28 48.W:17-14
49.R:28-24 49.W:14-10
50.R:24-28 50.W:10-6
51.R:28-24 51.W:11-15
52.R:5-9 52.W:6-2
53.R:9-14 53.W:2-6
54.R:14-17 54.W:13-9
55.R:12-8 55.W:6-10
56.R:8-4 56.W:9-6
57.R:4-8 57.W:15-11
58.R:8-15(f) 58.W:10-19-28(f)
59.R:17-22 59.W:6-1
60.R:22-25


