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Summary

The potential for microbially mediated anaerobic
redox cycling of iron (Fe) was examined in a first-
generation enrichment culture of freshwater wetland
sediment microorganisms. Most probable number
enumerations revealed the presence of significant
populations of Fe(III)-reducing (approximately
10

 

8

 

 cells ml----

 

1

 

) and Fe(II)-oxidizing, nitrate-reducing
organisms (approximately 10

 

5

 

 cells ml----

 

1

 

) in the fresh-
water sediment used to inoculate the enrichment cul-
tures. Nitrate reduction commenced immediately
following inoculation of acetate-containing (approxi-
mately 1 mM) medium with a small quantity (1% v/v)
of wetland sediment, and resulted in the transient
accumulation of NO

 

2
–

 

 and production of a mixture of
gaseous end-products (N

 

2

 

O and N

 

2

 

) and NH

 

4
++++

 

. Fe(III)
oxide (high surface area goethite) reduction took
place after NO

 

3
–

 

 was depleted and continued until all
the acetate was utilized. Addition of NO

 

3
–

 

 after Fe(III)
reduction ceased resulted in the immediate oxidation
of Fe(II) coupled to reduction of NO

 

3
–

 

 to NH

 

4
++++

 

. No
significant NO

 

2
–

 

 accumulation was observed during
nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation
occurred in pasteurized controls. Microbial commu-
nity structure in the enrichment was monitored by
denaturing gradient gel electrophoresis analysis of
polymerase chain reaction-amplified 16S rDNA and
reverse transcription polymerase chain reaction-
amplified 16S rRNA, as well as by construction of 16S
rDNA clone libraries for four different time points dur-
ing the experiment. Strong similarities in dominant
members of the microbial community were observed

in the Fe(III) reduction and nitrate-dependent Fe(II)
oxidation phases of the experiment, specifically the
common presence of organisms closely related
(

  

≥≥≥≥

 

 95% sequence similarity) to the genera 

 

Geobacter

 

and 

 

Dechloromonas

 

. These results indicate that the
wetland sediments contained organisms such as

 

Geobacter

 

 sp. which are capable of both dissimilatory
Fe(III) reduction and oxidation of Fe(II) with reduction
of NO

 

3
–

 

 to NH

 

4
++++

 

. Our findings suggest that microbially
catalysed nitrate-dependent Fe(II) oxidation has the
potential to contribute to a dynamic anaerobic Fe
redox cycle in freshwater sediments.

Introduction

 

Iron (Fe)-bearing minerals are abundant in soil and sedi-
mentary environments, where they exist predominantly as
solid-phase minerals containing Fe in the ferrous [Fe(II)]
and/or ferric [Fe(III)] oxidation state (Cornell and Schwert-
mann, 1996). Cycling between Fe(II) and Fe(III) (i.e. Fe
redox cycling) can significantly affect the biogeochemistry
of hydromorphic soils and sediments (VanBreemen, 1988;
Stumm and Sulzberger, 1992; Davison, 1993; Roden 

 

et al

 

.,
2004). Direct microbial (enzymatic) reduction coupled to
oxidation of organic carbon and H

 

2

 

 by dissimilatory iron-
reducing bacteria (DIRB) is recognized as the dominant
mechanism for Fe(III) oxide reduction in non-sulfidogenic
anaerobic soils and sediments [see Lovley (1991; 2000)
for review]. This process contributes to both natural and
contaminant (hydrocarbon) organic carbon oxidation in
sedimentary environments, and exerts a broad range of
impacts on the behaviour of trace and contaminant metals
and radionuclides (Lovley and Anderson, 2000).

When Fe(II) comes into contact with O

 

2

 

 or other suitable
oxidants, Fe(II) can be re-oxidized to Fe(III). The dominant
role of microbial catalysis in Fe(II) oxidation in acidic envi-
ronments (e.g. acid mine drainage and acid hot springs)
is well-established (Brock and Gustafson, 1972; Singer
and Stumm, 1972; Johnson 

 

et al

 

., 1993). In contrast,
Fe(II) is subject to spontaneous chemical oxidation by
dissolved O

 

2

 

 at circumneutral pH (Davison and Seed,
1983; Millero 

 

et al

 

., 1987), and the quantitative role of
microbial catalysis in Fe(II) oxidation by O

 

2

 

 in circumneu-
tral aerobic environments is still a matter of debate (Emer-
son, 2000; Emerson and Weiss, 2004; Roden 

 

et al

 

.,
2004). A previously unrecognized potential for microbial
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Fe redox cycling under anoxic conditions has been
revealed through the recent discovery of nitrate-reducing
microorganisms capable of enzymatic oxidation of Fe(II)
[Straub 

 

et al

 

. (1996; 2004); see Fig. 1]. In contrast to abi-
otic Fe(II) oxidation by O

 

2

 

, the abiotic reaction of Fe(II)
with NO

 

3
–

 

 is negligible under the temperature and aque-
ous geochemical conditions typical of natural soil and
sedimentary environments (Weber 

 

et al

 

., 2001). Microor-
ganisms capable of oxidizing Fe(II) with reduction of NO

 

3
–

 

have been observed in several different freshwater sedi-
ments (Kluber and Conrad, 1998; Straub and Buchholz-
Cleven, 1998; Caldwell 

 

et al

 

., 1999; Ratering and Schnell,
2000; Chaudhuri 

 

et al

 

., 2001; Hauck 

 

et al

 

., 2001; Finneran

 

et al

 

., 2002; Senn and Hemond, 2002; Shelobolina 

 

et al

 

.,
2003) as well as sewage sludge systems (Nielsen and
Nielsen, 1998a,b).

The demonstrated potential for biological nitrate-
dependent Fe(II) oxidation in a wide variety of natural
systems suggests that this reaction may play a significant
role in the coupling of Fe and N redox cycles in sedimen-
tary environments. In addition, the recent demonstration
of biological nitrate-dependent Fe(II) oxidation by a pre-
dominant environmental Fe(III)-reducing bacterium, 

 

Geo-
bacter metallireducens

 

 (Finneran 

 

et al

 

., 2002), suggests
that anaerobic Fe redox cycling could be catalysed by a
single group of microorganisms. A tight coupling between
Fe and N redox cycles in anaerobic sedimentary environ-
ments has significant implications for mechanisms of NO

 

3
–

 

removal and the regeneration of reactive Fe(III) oxides in
hydromorphic soils and sediments, as well as the trans-
formation of various natural and contaminant organic and
inorganic compounds.

Although the potential for enzymatic Fe(II) oxidation
coupled to NO

 

3
–

 

 reduction has been well documented, the
microbial communities associated with Fe–N redox
cycling in natural environments are not yet well under-

stood. In this study, a first-generation enrichment culture
of freshwater wetland sediment was subjected to a
sequential shift in redox conditions [from organotrophic
NO

 

3
–

 

 reduction, to organotrophic Fe(III) reduction, to
lithotrophic nitrate-dependent Fe(II) oxidation] in order to
explore the coupling between microbial N and Fe redox
cycling in sediments. Changes in microbial community
structure associated with redox shifts were monitored by
denaturing gradient gel electrophoresis (DGGE) analysis
of polymerase chain reaction (PCR)-amplified 16S rDNA
and reverse transcription polymerase chain reaction (RT-
PCR)-amplified 16S rRNA, and the phylogenetic associa-
tion of organisms predominant in the culture was
assessed through 16S rDNA clone libraries. A follow-up
study evaluated the potential for 

 

G. metallireducens

 

 to
catalyse anaerobic Fe redox cycling analogous to that
observed in the enrichment culture.

 

Results

 

Most probable number (MPN) enumerations

 

Approximately 10

 

5

 

 cells (ml wet sediment)

 

-

 

1

 

 of culturable
(MPN assay) nitrate-dependent Fe(II)-oxidizing microor-
ganisms were detected in Talladega Wetland surface
sediment (Table 1). The abundance of culturable acetate-
oxidizing [nitrate- and Fe(III)-reducing] microorganisms
was approximately three orders of magnitude higher.

 

Sequential nitrate reduction, Fe(III) reduction and 
nitrate-dependent Fe(II) oxidation in the sediment 
enrichment culture

 

Talladega Wetland sediment served as the inoculum (1%
vol:vol) to artificial groundwater (AGW) containing 1 mM
NO

 

3
–

 

, 2 mM acetate and 50 mmol l

 

-

 

1

 

 of synthetic high
surface area goethite. Nitrate was consumed during the
initial 7 days of incubation, resulting in transient accumu-
lation of NO

 

2
–

 

 and production of approximately 0.2 mM
NH

 

4

 

+

 

 (Fig. 2A and B). The molar ratio of NH

 

4

 

+

 

 produced to
NO

 

3
–

 

 reduced (0.280, 

 

r

 

2

 

 

 

=

 

 0.940) was substantially lower
than 1.0, which indicates that gaseous end-products such
as NO, N

 

2

 

O and/or N

 

2

 

 (not measured in this study) were
likely produced. A decrease in Fe(II) (0.75 mmol l

 

-

 

1

 

 of
Fe(II) was introduced with the sediment inoculum) of
approximately 0.2 mmol l

 

-

 

1

 

 occurred during the initial NO

 

3
–

 

Fig. 1.

 

Potential Fe–N redox pathways in anoxic sediments: Organ-
otrophic NO

 

3
–

 

 reduction to N

 

2

 

 (1) or to NH

 

4
+

 

 (2); organotrophic dis-
similatory Fe(III) reduction (3); lithotrophic [Fe(II)-driven] NO

 

3
–

 

 
reduction to N

 

2

 

 (4) or to NH

 

4

 

+

 

 (5). Thick lines denote external loading 
of NO

 

3
–

 

 and organic carbon (CH

 

2

 

O). Temporal variations in NO

 

3
–

 

 and 
CH

 

2

 

O loading have the potential to cause temporal/spatial overlap of 
organotrophic and lithotrophic pathways (see text).

N2, 
NH4

+

NO3
- Fe(III)

Fe(II)

1, 2 4, 5 3

CH2OCH2O

+
CO2

+
CO2

N2, 
NH4

+

NO3
– Fe(III)

Fe(II)

1, 2 4, 5 3

CH2OCH2O

+
CO2

+
CO2

+
CO2

+
CO2

 

Table 1.

 

MPN enumerations of nitrate-reducing, Fe(III)-reducing and
nitrate-dependent Fe(II)-oxidizing microorganisms in Talladega Wet-
land surface sediments.

Culture conditions MPN (cells ml

 

-

 

1

 

) 95% confidence interval

Acetate 

 

+

 

 NO

 

3
–

 

9.3 

 

¥ 

 

10

 

7

 

2.1 

 

¥ 

 

10

 

7

 

-

 

2.7 

 

¥ 

 

10

 

8

 

Acetate 

 

+

 

 Fe(III) 9.3 

 

¥ 

 

10

 

7

 

2.1 

 

¥ 

 

10

 

7

 

-

 

2.7 

 

¥ 

 

10

 

8

 

Fe(II) 

 

+

 

 NO

 

3
–

 

2.4 

 

¥ 

 

10

 

5

 

4.8 

 

¥ 

 

10

 

4

 

-

 

9.6 

 

¥ 

 

10

 

5
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reduction phase. Because this loss of Fe(II) occurred dur-
ing the period of transient NO

 

2
–

 

 accumulation, it is possible
that abiotic Fe(II) oxidation by NO

 

2
–

 

 generated during
organotrophic NO

 

3
–

 

 reduction was responsible for this
result. However, abiotic Fe(II) oxidation by NO

 

3
–

 

 can be
ruled out based on the results of pasteurized control cul-
tures (see below).

Fe(III) reduction [Fe(II) accumulation] commenced
once NO

 

3
–

 

 decreased to below approximately 0.5 mM
(Fig. 2A and B) and continued until acetate was depleted
(data not shown), yielding 7.6 mmol l

 

-

 

1

 

 of 0.5 M HCl-
extractable Fe(II) [equivalent to approximately 15% of the
initial Fe(III) content of the slurry]. Approximately 35% of
the HCl-extractable Fe(II) was present as dissolved Fe(II)
at the end of the Fe(III) reduction phase. Reduction of the
synthetic goethite resulted in an obvious colour change in

the mineral from gold-yellow to dark greenish-brown.
Mixed Fe(II)–Fe(III) phases such as magnetite and/or
green rust were not detected by X-ray diffraction (XRD)
(Fig. 3A). However, comparison of a low-temperature
(77K) Mössbauer spectra for the reduced goethite with
that from a sample of microbially reduced (

 

Shewanella
putrefaciens

 

 in AQDS and HCO

 

3

 

 

 

–

 

 containing medium)
natural goethite (Kukkadapu 

 

et al

 

., 2001) indicated the
presence of trace amounts of Fe(II) associated with
green rust (Fig. 3B). The formation of only minor
amounts of distinct Fe(II)-bearing mineral phases is con-
sistent with other recent studies of the end-products of
natural and synthetic goethite reduction by dissimilatory
Fe(III)-reducing bacteria (Kukkadapu 

 

et al

 

., 2001;
Zachara 

 

et al

 

., 2001). The vast majority of solid-
associated  Fe(II)  was  presumably  sorbed  and/or

 

Fig. 2.

 

Change in 0.5 M HCl-extractable Fe(II) 
and total Fe (A); and NO

 

3
–

 

, NO

 

2
–

 

 and NH

 

4

 

+

 

 (B) 
over time in the wetland sediment enrichment 
culture. Arrow denotes NO3

– amendment to 
induce nitrate-dependent Fe(II) oxidation. Error 
bars indicate standard error of triplicate cul-
tures; bars not visible are smaller than symbol.
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surface-precipitated on residual Fe(III) oxide surfaces
(Zachara et al., 2001; Roden and Urrutia, 2002).

Addition of NO3
– following cessation of Fe(III) reduction

resulted in immediate oxidation of Fe(II) and consumption
of NO3

– (Fig. 2A). Subcultures removed from the primary
enrichment cultures and pasteurized prior to NO3

– re-
addition showed no Fe(II) oxidation or NO3

– consumption
(Fig. 4). Biological oxidation caused the microbially
reduced goethite to change from greenish-brown back to
its original goldish-yellow colour. Approximately 85% of
0.5 M HCl-extractable Fe(II) was oxidized within 15 days
in live cultures. Total 0.5 M HCl-extractable Fe
[Fe(II) + Fe(III)] decreased in parallel with HCl-extractable
Fe(II) during nitrate-dependent Fe(II) oxidation (Fig. 2A),
which suggests the production of crystalline Fe(III) oxide

phases not soluble in 0.5 M HCl. X-ray diffraction and
Mössbauer spectra of the nitrate-oxidized material were
virtually identical to those of the reduced mineral (Fig. 3),
suggesting that goethite was likely reformed.

In contrast to the initial organotrophic NO3
– reduction

phase of the experiment, nitrate-dependent Fe(II) oxida-
tion did not result in the transient accumulation of NO2

–

(< 2 mM). Significant accumulation of NH4
+ (approximately

0.9 mM) took place during nitrate-dependent Fe(II) oxida-
tion (Fig. 2B). The molar ratio of NO3

– reduced to Fe(II)
oxidized (0.191, r 2 = 0.983) was higher than the theoreti-
cal ratio for Fe(II) oxidation coupled to NO3

– reduction to
NH4

+ (0.125), which indicates that small quantities of end-
products other than NH4

+ (e.g. N2, NO, and/or N2O) were
likely produced.
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Fig. 3. X-ray diffraction (A) and 77K Möss-
bauer (B) spectra of microbially reduced and 
nitrate-dependent oxidized HSA goethite from 
the sediment enrichment culture. The ‘HSA 
goethite’ spectrum in panel A is from a mineral 
preparation similar (but not identical) to the 
material used in the enrichment culture experi-
ment; major peak lines for a reference goethite 
phase are shown at bottom. Thick and thin solid 
lines in panel B correspond to microbially 
reduced and nitrate-dependent oxidized HSA 
goethite, respectively, from the sediment 
enrichment culture. The dashed line shows 
results for microbially reduced natural goethite 
from Kukkadapu and colleagues (2001). Arrows 
in panel B point to an Fe(II) doublet (superim-
posed on the goethite sextet) that can be attrib-
uted to green rust (Kukkadapu et al., 2001).



104 K. A. Weber et al.

© 2005 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 8, 100–113

Changes in microbial community structure during Fe–N 
redox metabolism

Denaturing gradient gel electrophoresis analysis of PCR-
amplified 16S rDNA and 16S rRNA RT-PCR products
revealed a change in microbial community structure as
redox conditions shifted from NO3

– reduction to Fe(III)
reduction (Fig. 5). The DGGE results must be interpreted
as a preliminary fingerprint of microbial community struc-
ture, as repeated attempts to amplify bands excised from
the denaturing gradient gel failed. Phylogenetic associa-
tion of dominant members of the microbial community
from each phase of the experiment was achieved via
construction and sequencing of 16S rDNA clone libraries.

The clone libraries verified that a substantial change in
community structure took place upon the shift from nitrate-
reducing to Fe(III)-reducing conditions (Fig. 6A). One of
the most significant changes was an increase in the num-
ber of clones associated with the beta subclass of the
Proteobacteria (Betaproteobacteria), from approximately
3% under nitrate-reducing conditions to approximately
60% under Fe(III)-reducing conditions (Fig. 6A). Dechlo-
romonas sp. was the most frequently identified (75%,
Fig. 6C) phylogenetic group among the Betaproteobacte-
ria clones. A significant fraction (25%) of clones from the
Fe(III)-reducing phase were associated with the delta
subclass of the Proteobacteria (Deltaproteobacteria)
(Fig. 6A). Most of these Deltaproteobacteria clones (66%,
Fig. 6B) were ≥ 95% similar to organisms from the genus
Geobacter, a well-recognized group of dissimilatory
Fe(III)-reducing bacteria (Lovley, 2002). This observation
is consistent with the previous documentation of signifi-
cant (approximately 106 ml-1) numbers of culturable ace-
tate-oxidizing, Fe(III)-reducing Geobacter sp. in Talladega
Wetland surface sediments (Coates et al., 1996).

The 16S rDNA/rRNA fingerprints from the nitrate-

dependent Fe(II) oxidation phase were similar to those
from the Fe(III) reduction phase (Fig. 5), which suggests
that the microbial community active during Fe(III) reduc-
tion was also responsible for nitrate-dependent Fe(II) oxi-
dation. The corresponding clone libraries revealed only a
small shift in community structure. The frequency of
Betaproteobacteria clones increased slightly from 60% to
65%, and the frequency of Deltaproteobacteria clones
decreased slightly from 25% to 22% (Fig. 6A). Within the
Betaproteobacteria, the frequency of clones identified as
Dechloromonas sp. decreased (to 40%) and clones iden-
tified as Azospira sp. (11%), Aquaspirillium sp. (11%),
Aquabacterium sp. (4%) appeared along with several
clones (33%) that were not classified within the Betapro-
teobacteria (Fig. 6C).

Sequential NO3
– Reduction, Fe(III) Reduction and nitrate-

dependent Fe(II) oxidation by G. metallireducens

The potential for G. metallireducens to carry-out anaero-
bic Fe redox cycling was examined in an experiment anal-
ogous to the wetland sediment enrichment culture study.
NO3

– was reduced within the first few days of incubation,
resulting in a transient accumulation of NO2

– (61 mM) and
stoichiometric production of NH4

+ (97% of added NO3
–,

Fig. 7). The presence of NO3
– did not inhibit Fe(III) reduc-

tion, as evidenced by accumulation of Fe(II) concurrent
with NO3

– reduction. When NO3
– was added upon cessa-

Fig. 4. Change in NO3
– and 0.5 M HCl-extractable Fe(II) over time in 

pasteurized subsamples of the wetland sediment enrichment culture 
amended with approximately 2.5 mM NO3

–. The arrow indicates time 
at which the enrichment culture was pasteurized and amended with 
NO3

–. Error bars indicate standard error of triplicate cultures; bars not 
visible are smaller than symbol.
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tion of Fe(III) reduction, 86% of 0.5 M HCl-extractable
Fe(II) was oxidized within 4 days coupled to consumption
of NO3

– and accumulation of NH4
+ (Fig. 7). Fe(II) oxidation

then continued at a slower rate, resulting in the consump-
tion of virtually all (93%) of the 0.5 M HCl-extractable
Fe(II). The molar ratios of NO3

– reduced to Fe(II) oxidized
and NH4

+ produced to Fe(II) consumed (0.175, r2 = 0.989
and 0.189, r2 = 0.897, respectively) were slightly higher
than the theoretical ratio for NO3

– reduction to NH4
+ cou-

pled to Fe(II) oxidation (0.125).

Discussion

Nitrate inhibition of Fe(III) reduction

Nitrate inhibited Fe(III) reduction in the sediment enrich-

ment culture (Fig. 2A), a result consistent with previous
studies of the influence of NO3

– on Fe(III) reduction in pure
and mixed cultures of Fe(III)-reducing bacteria (Obuekwe
et al., 1981; Sorensen, 1982; Jones et al., 1983; DiChris-
tina, 1992; Achtnich et al., 1995; Finneran et al., 2002;
Cooper et al., 2003). In contrast, Fe(III) was reduced
simultaneously with NO3

– in the G. metallireducens cell
suspension. The latter result may be attributed to the
presence of a relatively high initial cell density (approxi-
mately 108 cells ml-1) and an excess of electron donor,
which allowed both processes to occur together. Similar
experiments using a 10-fold lower initial G. metallire-
ducens cell density showed inhibition of Fe(III) reduction
by NO3

– comparable to that observed in the wetland sed-
iment enrichment culture.

Fig. 6. Relative proportions of 16S rRNA gene 
sequences in clone libraries from the enrich-
ment culture.
A. Sequences within the domain Bacteria. 
‘Other’ represents Verrucomicrobiae, Deferri-
bacterales, Cytophaga, Planctomycetacia, 
Fusobacteria and Acidobacteria combined.
B. Sequences with ≥ 95% sequence similarity 
to known genera within the 
Deltaproteobacteria.
C. Sequences with ≥ 95% sequence similarity 
to known genera within the Betaproteobacteria. 
‘Unclassified’ represents sequences 
with < 95% sequence similarity to known gen-
era. Numbers above the bars indicate the total 
number of clones within a given group.
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Mechanism and end-products of nitrate-dependent Fe(II) 
oxidation

The addition of NO3
– following the cessation of Fe(III)

reduction resulted in immediate and rapid oxidation of
both aqueous and solid-phase Fe(II) and production of
substantial  quantities  of  NH4

+  (Fig. 2).  Abiotic  oxidation
of Fe(II) by gaseous end-products such as NO and N2O
can be ruled out based on previous studies in which NO
and N2O additions to soil slurries containing Fe(II) did not
result in an increase in Fe(III) concentrations (Kluber and
Conrad, 1998). Moreover, lack of significant Fe(II) oxida-
tion in pasteurized cultures (Fig. 4) indicated that NO3

– did
not abiotically oxidize the microbially reduced goethite.
This result is consistent with previously reported results

in which abiotic oxidation of Fe(II) by NO3
– was not

observed in suspensions of microbially reduced goethite
or other Fe(III) oxide-bearing solids (Weber et al., 2001).

Production of NH4
+ as an end-product of biological

nitrate-dependent Fe(II) oxidation has not been previously
reported. To date, only studies of abiotic NO3

– reduction
coupled to oxidation of green rust compounds have dem-
onstrated NH4

+ as a predominant end-product of nitrate-
dependent Fe(II) oxidation (Hansen et al., 1996; Hansen
et al., 2001). Green rust was not identified as a major
product of microbial goethite reduction generated in this
study nor in previous studies using similar culture condi-
tions (Cooper et al., 2000; Kukkadapu et al., 2001;
Zachara et al., 2001). This result, together with the lack of
Fe(II) oxidation in pasteurized controls, argues against

Fig. 7. Change in 0.5 M HCl-extractable Fe(II), 
and total Fe (A) and NO3

–, NO2
–, NH4

+ (B) over 
time in growth medium inoculated with nitrate-
grown G. metallireducens cells. Arrow denotes 
the NO3

– to induce nitrate-dependent Fe(II) oxi-
dation. Error bars indicate standard error of trip-
licate cultures; bars not visible are smaller than 
symbol.
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abiotic reaction of NO3
– with green rust as a mechanism

for NH4
+ production in the enrichment culture. A recent

report documented green rust as a minor end-product of
soluble Fe(II) (FeCl2) oxidation coupled to NO3

– reduction
by Azospira suillum (Chaudhuri et al., 2001). These find-
ings suggest the possibility that green rust compounds,
generated during the initial stages of nitrate-dependent
Fe(II) oxidation, served as a reductant for further (i.e.
autocatalytic) abiotic reduction of NO3

– to NH4
+ in our

experiments. However, Chaudhuri and colleagues (2001)
reported that NO3

– was stoichiometrically reduced to N2

under biological Fe(II)-oxidizing conditions, whereas sto-
ichiometric reduction of NO3

– to NH4
+ is observed during

abiotic oxidation of synthetic chloride green rust [Fe(II)GR-

Cl] (Hansen et al., 2001). These results argue against a
green rust-mediated autocatalytic mechanism for abiotic
Fe(II) oxidation in the experiments of Chaudhuri and col-
leagues (2001), further supporting an enzymatic Fe(II)
oxidation mechanism. Together these previous observa-
tions reinforce the argument that the NH4

+ produced dur-
ing nitrate-dependent Fe(II) oxidation in this study was the
result of microbial (enzymatic) catalysis rather than abiotic
reaction(s) with a green rust intermediate.

Oxidation of Fe(II) (soluble and solid-phase) coupled to
NO3

– reduction during the final phase of the sediment
enrichment, as well as the pure culture study with G.
metallireducens (Fig. 7), resulted in a decline in total
0.5 M HCl-extractable Fe in parallel with the decrease in
Fe(II) (Fig. 2A). These results suggest that crystalline
Fe(III) oxide phases were formed, in contrast to previous
studies which indicated that nitrate-dependent Fe(II) oxi-
dation resulted in the formation of poorly crystalline Fe(III)
oxide (Straub et al., 1996; 1998). These contrasting
results may be attributed to the relatively low concentra-
tion of phosphate in the culture medium used in our exper-
iments (0.05 mM, compared with 1.5 mM in the culture
medium employed by Straub et al., 1996, 1998): other
studies with the Straub and colleagues (1996) enrichment
culture (Weber, 2002) have shown that a decrease in
phosphate from approximately 1.5–0.05 mM resulted in a
progressive increase in the formation of crystalline (goet-
hite, lepidocrocite) versus amorphous phases. These data
suggest that in the absence of high concentrations of
inhibitors of Fe(III) oxide crystallization such as phosphate
(Cornell and Schwertmann, 1996), nitrate-dependent
Fe(II) oxidation is likely to result in the production of pre-
dominantly crystalline Fe(III) oxide phases which are
insoluble in dilute (0.5 M) HCl. Given that solid-associated
Fe(II) was the dominant form of Fe(II) available for nitrate-
dependent oxidation in the enrichment culture experiment,
and that virtually all of the Fe(II) oxidized in this experi-
ment was lost from the 0.5 M HCl-extractable pool, our
results indicate that both aqueous and solid-phase Fe(II)
are subject to conversion to crystalline Fe(III) oxides dur-

ing nitrate-dependent Fe(II) oxidation. The similarity of
XRD and Mössbauer spectra for the reduced and nitrate-
dependent oxidized goethite (Fig. 3) indicate that goethite
phases with particle size and crystallinity nearly identical
to that of the starting material were regenerated during
nitrate-dependent oxidation.

Microbial communities associated with Fe–N 
redox cycling

Although previous studies have demonstrated that pure
cultures of organotrophic denitrifying bacteria are capable
of nitrate-dependent Fe(II) oxidation (Straub et al., 1996;
Benz et al., 1998; Chaudhuri et al., 2001), the majority of
the organisms detected during nitrate-dependent Fe(II)
oxidation in this study were more similar to those present
during the Fe(III) reduction phase than in the organ-
otrophic NO3

– reduction phase (Figs 5 and 6). These
results indicate that microorganisms capable of both
Fe(III) reduction and nitrate-dependent Fe(II) oxidation
were responsible for the Fe(II) oxidation activity observed
in the latter stages of the experiment. The rapid onset of
nitrate-dependent Fe(II) oxidation following Fe(III) reduc-
tion supports the idea that Fe(III)-reducing microorgan-
isms which proliferated during the Fe(III) reduction phase
of the experiment were responsible for subsequent nitrate-
dependent Fe(II) oxidation. Organisms such as G. metal-
lireducens (Lovley and Phillips, 1988) and other members
of Geobacteraceae (Lovley, 2002), which are capable
of  organotrophic  growth  with  either  NO3

–  or  Fe(III) as
an electron acceptor, are logical candidates for such
organisms.

In light of the recent observation by Finneran and col-
leagues (2002) that G. metallireducens can couple oxida-
tion of soluble Fe(II) to reduction of NO3

–, we examined
whether G. metallireducens could catalyse nitrate-
dependent oxidation of microbially reduced goethite under
conditions analogous to the wetland sediment enrichment
culture. The results provided clear evidence of such activ-
ity (compare Figs 2 and 7). The large proportion of Geo-
bacter sp. 16S rDNA sequences in clone libraries from the
nitrate-dependent Fe(II) oxidation phase of the experiment
(Fig. 6B), the persistence (suggested by DGGE analysis;
see Fig. 5) of a few key genotypes throughout the Fe(III)
reduction and nitrate-dependent Fe(II) oxidation phases,
and the production of NH4

+ as an end-product of nitrate-
dependent Fe(II) oxidation sp., provides convincing evi-
dence for the role of Geobacter in nitrate-dependent Fe(II)
oxidation in the wetland sediment. It is thus far unknown
whether G. metallireducens and other nitrate-reducing
members of Geobacteraceae are able to conserve energy
for growth/maintenance from nitrate-dependent Fe(II)
oxidation.

The detection of significant numbers of 16S rDNA
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clones associated with Dechloromonas sp. and other
organisms from the Betaproteobacteria in libraries from
the Fe(III)-reducing and nitrate-dependent Fe(II) oxidation
phases in the enrichment culture (Fig. 6A and C) suggests
the possibility that such organisms may have also been
involved in anaerobic Fe–N redox cycling. This idea is
supported by the fact that nitrate-dependent Fe(II) oxida-
tion has been described within the Betaproteobacteria,
specifically in Dechloromonas sp. and Azospira sp. (Bruce
et al., 1999; Chaudhuri et al., 2001), as well as in the
nitrate-dependent Fe(II)-oxidizing bacterium BrG2, which
has 98% sequence identity with Aquabacterium commune
(Buchholz-Cleven et al., 1997). Dechloromonas sp.,
Azospira sp. and Aquaspirillum sp. have been described
as denitrifiers which produce N2 as the reduced N product
(Mahne and Tiedje, 1995; Chaudhuri et al., 2001; Coates
et al., 2001). Given that chemical analysis of the wetland
sediment enrichment identified NH4

+ as a primary product
of nitrate-dependent Fe(II) oxidation, these bacteria were
obviously not the only active members of the nitrate-
dependent Fe(II)-oxidizing microbial community. The com-
bined results of the DGGE and 16S rDNA clone library
analyses suggest (but do not prove) that organisms
related to Dechloromonas sp. were abundant during
Fe(III) reduction as well as nitrate-dependent Fe(II) oxida-
tion. Although dissimilatory Fe(III) reduction by Dechlo-
romonas sp. has not been observed in pure culture, Fe(III)
reduction by Betaproteobacteria has been identified in
Ferribacterium limneticum (Cummings et al., 1999),
whose 16S rRNA gene sequence is 99% similar to that of
Dechloromonas aromatica strain RCB (Coates et al.,
2001).

Biogeochemical significance

Oxidation of soluble and solid-phase Fe(II) coupled to
NO3

– reduction provides the potential for a tight coupling
between N and Fe redox cycles in sedimentary environ-
ments (Straub et al., 2001; 2004). Such coupling is likely
to be particularly significant at the interface between NO3

–

and Fe(III) reduction zones in sediments influenced by
periodic fluctuations in the inputs of organic carbon and
oxidants (see Fig. 1). These fluctuations are common in
shallow subsurface environments, which are typically very
active hydrologically and support a rich and diverse micro-
flora (Chapelle, 2001). When inputs of organic carbon are
relatively high compared with NO3

–, organotrophic NO3
–

reduction may exhaust available NO3
–, thus allowing

microbial Fe(III) reduction and associated production of
aqueous Fe(II) and/or Fe(II)-bearing solid-phases to
occur. During subsequent periods of reduced organic car-
bon loading, rates of NO3

– re-supply may exceed rates of
organotrophic NO3

– reduction, resulting in the availability
of nitrate for lithotrophic, nitrate-dependent Fe(II) oxida-

tion. In this way, reducing equivalents stored in the form
of aqueous and/or Fe(II)-bearing solid-phases may serve
as an significant source of energy for microbial metabo-
lism during periods of reduced organic carbon input.
Organisms such as G. metallireducens which are capable
of switching between organotrophic nitrate and/or Fe(III)
reduction and nitrate-dependent Fe(II) oxidation are likely
to have a competitive advantage in such environments.
Detailed studies of the response of sediment microbial
communities to repeated fluctuations in organic carbon
and NO3

– loading are required to verify this hypothesis.
Nitrate-dependent Fe(II) oxidation has the potential to

significantly influence patterns of organic and inorganic
contaminant transformations in anaerobic soils and sedi-
ments through local consumption of NO3

– and regenera-
tion of Fe(III) oxides. Straub and colleagues (2004)
recently described an example of the potential impact of
Fe–N redox cycling on benzoate oxidation in anaerobic
sediments. A co-culture consisting of Fe(III)-reducing
(Geobacter bremensis) and a consortia of nitrate-
dependent Fe(II)-oxidizing organisms (the stable enrich-
ment culture described in Straub et al., 1996) was able to
oxidize benzoate coupled to Fe(III) oxide reduction
through a process in which a relatively small amount of
amorphous Fe(III) oxide was continuously recycled via
nitrate-dependent Fe(II) oxidation. Such interactions
expand the range of potential mechanisms by which nat-
ural and contaminant organic compounds may be oxidized
in anaerobic soils and sediments. Recent examples of the
influence of anaerobic Fe–N redox cycling on inorganic
biogeochemical processes include the oxidation and
coprecipitation of Fe(III) and As(V) in stratified lake waters
(Senn and Hemond, 2002), and the oxidation of U(IV) by
Fe(III) generated during nitrate-dependent Fe(II) oxidation
in uranium-contaminated subsurface sediments (Finneran
et al., 2002). In addition, formation of relatively crystalline
Fe(III) oxides during biological oxidation of aqueous and
solid-phase Fe(II), as observed in this study, could con-
tribute to the sequestration of metal-radionuclide contam-
inants by incorporation of the metal or radionuclide into
the oxide lattice and/or physical envelopment of the con-
taminant(s). Lack and colleagues (2002) demonstrated
the potential for immobilization of Co(II) and U(VI) in crys-
talline Fe(III) oxides formed during nitrate-dependent
Fe(II) oxidation. Because crystalline Fe(III) oxides are not
as available to microbial Fe(III) reduction as amorphous
Fe(III) oxides, metal-radionuclide contaminants immobi-
lized in crystalline biogenic Fe(III) oxides may be resistant
to remobilization with the onset of Fe(III)-reducing condi-
tions. Further studies of the influence of solid-phase
Fe(II)–Fe(III) conversions on metal-radionuclide specia-
tion are needed to determine the long-term effects of Fe–
N redox cycling on the mobility of such contaminants in
sediments.
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Experimental procedures

Most probable number enumerations

The abundance of culturable acetate-oxidizing nitrate-reduc-
ing bacteria, acetate-oxidizing Fe(III)-reducing bacteria, and
Fe(II)-oxidizing nitrate-reducing bacteria in freshwater wet-
land surface sediments were estimated using a three-tub
MPN technique (Woomer, 1994). A freshwater wetland sed-
iment core was collected from a small (15 ha) wetland
located in the Talladega National Forest, Hale County, Ala-
bama. Previous studies have documented the quantitative
significance of microbial Fe(III) reduction and Fe redox
cycling on sediment carbon metabolism and energy flow in
this environment (Roden and Wetzel, 1996). Upon return to
the laboratory, sediment from the upper 5 cm of the core was
homogenized, sieved (1 mm), and placed under N2 at room
temperature. Triplicate pressure tubes containing sterile,
anaerobic (N2:CO2; 90:10) AGW medium (10 mM PIPES,
2 mM NaHCO3, 5 mM NH4Cl, 0.5 mM KH2PO4, pH 6.8) were
inoculated with serially diluted anaerobic, homogenized sed-
iment. For enumeration of acetate-oxidizing, NO3

–-reducing
bacteria, tubes were amended with 5 mM NaNO3 and 10 mM
Na-acetate from sterile, anaerobic stock solutions. Acetate-
oxidizing, Fe(III)-reducing bacteria were enumerated in
medium amended with 10 mmol l-1 of synthetic hydrous ferric
oxide prior to autoclaving. The culture tubes were then
amended with 10 mM Na-acetate and 2 mM FeCl2 (as a
reducing agent) from sterile, anaerobic stock solutions. The
medium for enumeration of nitrate-dependent Fe(II)-oxidizing
bacteria was amended with 0.5 mM Na-acetate, 5 mM NO3

–

and 10 mM FeCl2 from sterile anaerobic stock solutions.
Pressure tubes were inoculated with 1-ml portions of the

homogenized freshwater wetland sediment slurry. The tubes
were then homogenized by vortexing, serially diluted, and
incubated statically in the dark at 30∞C for 10 weeks. Positive
results for acetate-oxidizing nitrate reducers were determined
checking for depletion of NO3

– (to < 1 mM) by ion chromatog-
raphy. Visual assessment of blackening of the medium, and
formation of reddish-brown precipitates, was used to identify
positive results for Fe(III) reducers and nitrate-dependent
Fe(II) oxidizers respectively. MPN estimates were obtained
using the Most Probable Number Calculator version 4.05
(©1996 Albert J. Klee, Risk Reduction Engineering Labora-
tory, United States Environmental Protection Agency, Cincin-
nati, Ohio, freeware available at http://www.epa.gov/
nerlcwww/other.htm).

Enrichment culture experiment

A PIPES-buffered (10 mM, pH 6.8) AGW medium was used
for the wetland sediment enrichment culture experiment. The
basal AGW contained 0.11 mM MgCl2, 0.61 mM CaCl2 and
2 mM NaHCO3, and was supplemented with 1 mM NaNO3,
2 mM Na-acetate, 0.5 mM NH4Cl, 0.05 mM KH2PO4, 0.1¥ of
previously described (Lovley and Phillips, 1988) vitamin and
trace element solutions, and 50 mmol l-1 of synthetic ‘high
surface area’ (approximately 200 m2 g-1) goethite. The syn-
thetic goethite was synthesized by slow air oxidation of FeCl2
in NaHCO3 buffer (Schwertmann and Cornell, 1991), and its
surface area was determined by multipoint N2 (BET) adsorp-
tion (Micromeritics Model Gemini). Triplicate bottles of

medium were inoculated with 1% (vol:vol) of anaerobic sed-
iment slurry immediately after collection and preparation as
described above. Samples were collected over time for anal-
ysis of NO3

–, NO2
–, NH4

+, acetate, Fe(II), total Fe and 16S
rDNA/rRNA. Once NO3

– and Fe(III) reduction ceased, NO3
–

(3 mM) was re-added to the enrichment cultures in an
attempt to induce nitrate-dependent Fe(II) oxidation. Immedi-
ately prior to the 3 mM NO3

– amendment, a 30-ml subculture
was removed from each culture bottle, transferred into a
sterile, anaerobic (N2:CO2; 80:20) serum bottles, and pas-
teurized (80∞C; 15 min) to produce killed controls. Killed con-
trols were amended with NO3

– (3 mM) following
pasteurization. Live and pasteurized cultures were incubated
statically in the dark at 30∞C and homogenized prior to
sampling.

Anaerobic Fe redox cycling by G. metallireducens

Geobacter metallireducens (a gift from D. R. Lovley, Univer-
sity of Massachusetts Amherst) was grown in NaHCO3-
buffered medium (30 mM NaHCO3, 10 mM NH4Cl, 1 mM
KH2PO4) with acetate (10 mM) as the electron donor and
nitrate (20 mM) as the electron acceptor. The growth medium
was supplemented with 0.5 mM Fe(III)-citrate in order to pro-
vide the extra Fe required for sustained growth with nitrate
as the electron acceptor (Senko and Stolz, 2001), as well as
1 mM ascorbic acid to reduce the accumulation of NO2

– which
can inhibit cell growth on nitrate (E. J. P. Phillips, US Geolog-
ical Survey, pers. comm.). Cells were harvested by centrifu-
gation (7000 g, 10 min) and washed twice with sterile,
anaerobic NaHCO3 buffer. Triplicate 20-ml bottles of the AGW
medium described above were inoculated with approximately
108 cells ml-1 of washed cells, and changes in NO3

–, NO2
–,

NH4
+, acetate, Fe(II) and total Fe were monitored over time.

As in the case of the wetland sediment enrichment culture
experiment, NO3

– (approximately 1 mM) was added to the
cultures once acetate was depleted and Fe(III) reduction had
ceased.

Chemical and spectroscopic analyses

Samples for analyses of Fe(II) and total Fe were collected
and centrifuged (10 000 g) inside an anaerobic chamber, as
previously described (Weber et al., 2001). The supernatant
was withdrawn from the pellet and immediately analysed for
aqueous Fe(II) using Ferrozine (Stookey, 1970). The pellet
was resuspended in 0.5 M HCl and allowed to extract over-
night. Fe(II) and total Fe in the extract were determined as
described in Roden and Lovley (1993). The concentration of
0.5 M HCl-extractable Fe(II) determined via pellet extractions,
together with aqueous Fe(II) measurements, were summed
to yield total Fe(II) concentrations (Weber et al., 2001). Sam-
ples for NO3

–, NO2
–, NH4

+ and acetate were filtered through
a 0.2-mm nylon filter immediately after collection and exposed
to O2 in order to rapidly oxidize Fe(II) (Weber et al., 2001).
The filtered samples were centrifuged and the supernatant
withdrawn for NO3

– and NO2
– analyses. Samples collected for

NH4
+ were filtered a second time prior to analysis. NO3

– and
acetate were determined by ion chromatography (IonPac®
AS14 analytical column, Dionex DX-100 system, Dionex,

http://www.epa.gov/
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Sunnyvale, CA). NO2
– and NH4

+ concentrations were deter-
mined colorimetrically (Wetzel and Likens, 1991) with detec-
tion limits of 0.01 mM and 1 mM respectively.

Powder XRD and low-temperature (77K) Mössbauer spec-
tra of (i) microbially reduced goethite and (ii) microbially
reduced goethite subjected to nitrate-dependent oxidation,
were obtained as described in Kukkadapu and colleagues
(2001, 2004). An XRD pattern was also obtained for a non-
biologically transformed HSA goethite preparation similar
(but not identical) to the material used for the enrichment
culture experiment.

Nucleic acid extraction and purification

Samples for nucleic acid extraction were collected in sterile,
diethyl pyrocarbonate (DEPC) treated polyethylene centri-
fuge tubes and maintained on ice until centrifugation. Col-
lected samples were centrifuged (10 000 g, 20 min) and
washed once with 10 mM RNase-free Tris Buffer (pH 7.8).
The pellet was immediately frozen in liquid N2 and stored at
-80∞C until extraction of nucleic acids.

Nucleic acids were extracted using a modified method of
Zhou and colleagues (1996) by grinding in liquid N2, freeze-
thawing and extended heating (60∞C) in a high-salt extraction
buffer containing hexadecylmethylammonium bromide
(CTAB) and sodium dodecyl sulfate (SDS). CTAB was heated
to 60∞C prior to being added to the extraction buffer. Follow-
ing centrifugation (6000 g, 10 min), the supernatant was
removed from the pellet and nucleic acids were extracted in
phenol:chloroform (1:1; vol:vol), followed by an additional
chloroform extraction. Nucleic acids were precipitated in iso-
propanol, centrifuged (9000 g, 20 min), and resuspended in
RNase-free Tris-EDTA (TE) buffer. The nucleic acid extracts
were divided into two equal volumes and stored at -80∞C until
DNA and RNA purification. All materials and solutions used
during the nucleic acid extraction process were treated with
DEPC prior to use, with the exception of solutions containing
Tris which were prepared in DEPC-treated (denoted as
RNase-free) deionized water.

Nucleic acid extracts used for amplification of 16S rDNA
were purified by gel filtration using Sepharose CL-4B col-
umns as described by Jackson et al. (Jackson et al., 1997),
precipitated with NaCl (0.2 M) in absolute ethanol overnight,
and resuspended in TE buffer. DNA samples were stored at
-80∞C. Nucleic acid extracts dedicated to RT-PCR amplifica-
tion of 16S rRNA were purified by gel filtration using DEPC-
treated Sephadex G-75 (Moran et al., 1993), precipitated with
RNase-free Na-Acetate (0.3 M) in absolute ethanol overnight
and resuspended in RNase-free TE buffer. DNA was
removed from RNA by treatment with DNase I (RNase-free;
Roche Diagnostics Corporation) followed by a phenol:chloro-
form (1:1; vol:vol) extraction. RNA was concentrated by pre-
cipitating with RNase-free Na-Acetate (0.3 M) in absolute
ethanol overnight and resuspended in RNase-free TE buffer.
RNA extracts were stored at -80∞C.

Denaturing gradient gel electrophoresis

A fragment of the variable V3 region of 16S rDNA corre-
sponding to positions 341–907 in Escherichia coli was PCR-
amplified (Touchdown PCR) using the primers denoted as

341F, 5¢-CCTACGGGAGGCAGCAG-3¢ and 907R, 5¢-CCGTC
AATTCCTTTRAGTTT-3¢ with a GC-Clamp added to 5¢ end of
forward primer: 5¢CGCCCGCCGCGCGCGGCGGGCGGG
GCGGGGGCACGGGGGG-3¢ as described by Muyzer and
colleagues (1995). Within the Domain Bacteria, these prim-
ers are universally conserved (Medlin et al., 1988) and have
thus been used to evaluate bacterial diversity in environmen-
tal samples (Muyzer et al., 1993; Muyzer and Ramsing,
1995) as well as the diversity of anaerobic Fe(II)-oxidizing
bacteria (Buchholz-Cleven et al., 1997; Straub and Buchholz-
Cleven, 1998). Products from 10 replicate PCR amplifications
were combined, extracted in phenol:chloroform (1:1: vol:vol),
precipitated with NaCl (0.2 M) in absolute ethanol overnight,
and resuspended in TE buffer. Negative control PCR ampli-
fications (no DNA added to reaction mix) were routinely
conducted.

Reverse transcription of 16S rRNA was performed using
SUPERSCRIPT™ II RNase H– Reverse Transcriptase (Gib-
coBRL®) as specified by the manufacturer, with 907R serving
as the reverse primer. The resulting cDNA was PCR-
amplified as described above. Negative reverse transcriptase
reactions (reverse transcriptase absent from reaction mix)
were routinely conducted and subsequently PCR-amplified
as described above.

Denaturing gradient gel electrophoresis was conducted
using a 6% acrylamide gel containing a 28–56% denaturing
gradient (Muyzer and Ramsing, 1995). Polymerase chain
reaction products of 16S rDNA and reverse transcribed 16S
rRNA were applied directly to a 6% acrylamide gel in 0.5¥
TAE buffer. The gel was electrophoresed at 60∞C at 200 V for
6 h using a Bio-Rad D Gene™ System (Bio-Rad Laborato-
ries, Hercules, CA) (Muyzer et al., 1993). After electrophore-
sis, the gel was stained with ethidium bromide (0.5 mg l-1) for
15 min and rinsed with deionized H2O for 10 min prior to UV
transillumination. Gel images were captured digitally.

Band intensity on DGGE gels was used to infer the relative
abundance and metabolic activity of microorganisms present
at different times during the enrichment culture experiment.
This approach is based on the assumption that 16S rDNA
abundance is directly related to density of the corresponding
organism in the sample (Muyzer et al., 1993; Bruggemann
et al., 2000), and that metabolically active cells possess
greater 16S rRNA content than non-active cells (Kemp et al.,
1993). It is recognized, however, that correlation of metabolic
activity with 16S rRNA content must be done with caution as
regulation of metabolic activity and rRNA content may differ
among various bacterial species (Wagner, 1994). In addition,
the potential for inherent biases in PCR-based detection/
quantification strategies is well recognized (VonWintz-
ingerode et al., 1997). Hence, changes in DGGE-banding
patterns are interpreted as a first approximation of change in
microbial community structure and metabolic activity in the
enrichment culture samples.

Clone libraries

Amplification products for construction of 16S rDNA clone
libraries were generated with primers corresponding the posi-
tions 8F (5¢-AGAGTTTGATCCTGGCTCAG-3¢), and 907R
(described above) in E. coli. Polymerase chain reaction prod-
ucts were purified using QIAquick PCR Purification Kit
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(QIAGEN #28106) according to manufacturer’s instructions
and stored at -20∞C. The pGem®-T vector System (Promega
#A3600) was used according to manufacturer’s instructions,
with Top10 competent E. coli cells from Invitrogen, to gener-
ate clone libraries from PCR-amplified 16S rDNA from sam-
ples collected at days 0, 1.5, 9 and 36 of the enrichment
culture experiment. Between 90 and 100 clones were picked
from each sample transformation. Vector primers M13F1 and
M13R1 were used to amplify cloned sequences. Sequences
were concentrated by precipitation in 95% ethanol and NaCl
(200 mM) overnight at -20∞C and resuspended, in TA buffer
(10 mM, pH 7.6). Concentrated DNA was purified by electro-
phoresis using a low melt agarose gel (1.5%) in TAE running
buffer. Bands in the gel were cut out, frozen overnight, and
spun down at 10 000 g for 10 min. Supernatants were col-
lected and used for sequencing. Clone sequences (44, 58,
53 and 62 for days 0, 1.5, 9 and 36, respectively) were
obtained commercially from Macrogen (Seoul, South Korea)
using T7F and SP6R primers. Each sequence was analysed
by means of GenBank using BLAST (Altschul et al., 1997) as
well as the Ribosomal Database Project – II (Cole et al.,
2003) in order to identify the closest relative. Sequences
which were identified as chimeric were discarded. A value of
95% 16S rDNA sequence identity was established as a con-
servative cut-off for assignment of genus-level phylogenetic
affiliation (Gillis et al., 2001). The final sets of sequences
have  been  submitted  to  GenBank  (Accession  numbers
DQ110012–DQ110129).
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