#### University of Nebraska - Lincoln ### DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 2006 ## Anaerobic redox cycling of iron by freshwater sediment microorganisms Karrie A. Weber University of Nebraska-Lincoln, kweber@unl.edu Matilde M. Urrutia University of Alabama - Tuscaloosa Perry F. Churchill University of Alabama - Tuscaloosa Ravi K. Kukkadapu Pacific Northwest National Laboratory, Richland, WA Eric E. Roden University of Alabama - Tuscaloosa, eroden@bsc.as.ua.edu Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.; Kukkadapu, Ravi K.; and Roden, Eric E., "Anaerobic redox cycling of iron by freshwater sediment microorganisms" (2006). Faculty Publications in the Biological Sciences. 217. https://digitalcommons.unl.edu/bioscifacpub/217 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. # Anaerobic redox cycling of iron by freshwater sediment microorganisms Karrie A. Weber,<sup>1\*†</sup> Matilde M. Urrutia,<sup>1</sup> Perry F. Churchill,<sup>1</sup> Ravi K. Kukkadapu<sup>2</sup> and Eric E. Roden<sup>1\*</sup> <sup>1</sup>The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487-0206, USA. <sup>2</sup>Pacific Northwest National Laboratory, MSIN K8-96, Richland, WA 99352, USA. #### **Summary** The potential for microbially mediated anaerobic redox cycling of iron (Fe) was examined in a firstgeneration enrichment culture of freshwater wetland sediment microorganisms. Most probable number enumerations revealed the presence of significant of Fe(III)-reducing (approximately 10<sup>8</sup> cells ml<sup>-1</sup>) and Fe(II)-oxidizing, nitrate-reducing organisms (approximately 10<sup>5</sup> cells ml<sup>-1</sup>) in the freshwater sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (approximately 1 mM) medium with a small quantity (1% v/v) of wetland sediment, and resulted in the transient accumulation of NO<sub>2</sub><sup>-</sup> and production of a mixture of gaseous end-products (N<sub>2</sub>O and N<sub>2</sub>) and NH<sub>4</sub><sup>+</sup>. Fe(III) oxide (high surface area goethite) reduction took place after NO<sub>3</sub><sup>-</sup> was depleted and continued until all the acetate was utilized. Addition of NO<sub>3</sub><sup>-</sup> after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of NO<sub>3</sub><sup>-</sup> to NH<sub>4</sub><sup>+</sup>. No significant NO<sub>2</sub> accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified 16S rDNA and reverse transcription polymerase chain reactionamplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed Received 16 December, 2004; accepted 2 May, 2005. \*For correspondence. E-mail eroden@bsc.as.ua.edu; Tel. (+1) 205 348 0556; Fax (+1) 205 348 1403 or e-mail kweber@nature.berkeley.edu; Tel. (+1) 510 642 4972; Fax (+1) 510 642 4995. †Present address: University of California, Department of Plant and Microbial Biology, Berkeley, CA 94720-3102, USA. in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related ( $\geq$ 95% sequence similarity) to the genera *Geobacter* and *Dechloromonas*. These results indicate that the wetland sediments contained organisms such as *Geobacter* sp. which are capable of both dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO<sub>3</sub><sup>-</sup> to NH<sub>4</sub><sup>+</sup>. Our findings suggest that microbially catalysed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments. #### Introduction Iron (Fe)-bearing minerals are abundant in soil and sedimentary environments, where they exist predominantly as solid-phase minerals containing Fe in the ferrous [Fe(II)] and/or ferric [Fe(III)] oxidation state (Cornell and Schwertmann, 1996). Cycling between Fe(II) and Fe(III) (i.e. Fe redox cycling) can significantly affect the biogeochemistry of hydromorphic soils and sediments (VanBreemen, 1988; Stumm and Sulzberger, 1992; Davison, 1993; Roden et al., 2004). Direct microbial (enzymatic) reduction coupled to oxidation of organic carbon and H<sub>2</sub> by dissimilatory ironreducing bacteria (DIRB) is recognized as the dominant mechanism for Fe(III) oxide reduction in non-sulfidogenic anaerobic soils and sediments [see Lovley (1991; 2000) for review]. This process contributes to both natural and contaminant (hydrocarbon) organic carbon oxidation in sedimentary environments, and exerts a broad range of impacts on the behaviour of trace and contaminant metals and radionuclides (Lovley and Anderson, 2000). When Fe(II) comes into contact with $O_2$ or other suitable oxidants, Fe(II) can be re-oxidized to Fe(III). The dominant role of microbial catalysis in Fe(II) oxidation in acidic environments (e.g. acid mine drainage and acid hot springs) is well-established (Brock and Gustafson, 1972; Singer and Stumm, 1972; Johnson *et al.*, 1993). In contrast, Fe(II) is subject to spontaneous chemical oxidation by dissolved $O_2$ at circumneutral pH (Davison and Seed, 1983; Millero *et al.*, 1987), and the quantitative role of microbial catalysis in Fe(II) oxidation by $O_2$ in circumneutral aerobic environments is still a matter of debate (Emerson, 2000; Emerson and Weiss, 2004; Roden *et al.*, 2004). A previously unrecognized potential for microbial $$CH_{2}O$$ $NO_{3}^{-}$ $Fe(III)$ $CH_{2}O$ $N_{2}$ $N_{4}^{+}$ $Fe(III)$ $CO_{2}$ $CO_{2}$ $CO_{2}$ Fig. 1. Potential Fe-N redox pathways in anoxic sediments: Organotrophic NO<sub>3</sub><sup>-</sup> reduction to N<sub>2</sub> (1) or to NH<sub>4</sub><sup>+</sup> (2); organotrophic dissimilatory Fe(III) reduction (3); lithotrophic [Fe(II)-driven] NO<sub>3</sub><sup>-</sup> reduction to N<sub>2</sub> (4) or to NH<sub>4</sub><sup>+</sup> (5). Thick lines denote external loading of NO<sub>3</sub><sup>-</sup> and organic carbon (CH<sub>2</sub>O). Temporal variations in NO<sub>3</sub><sup>-</sup> and CH<sub>2</sub>O loading have the potential to cause temporal/spatial overlap of organotrophic and lithotrophic pathways (see text). Fe redox cycling under anoxic conditions has been revealed through the recent discovery of nitrate-reducing microorganisms capable of enzymatic oxidation of Fe(II) [Straub et al. (1996; 2004); see Fig. 1]. In contrast to abiotic Fe(II) oxidation by O2, the abiotic reaction of Fe(II) with NO<sub>3</sub><sup>-</sup> is negligible under the temperature and aqueous geochemical conditions typical of natural soil and sedimentary environments (Weber et al., 2001). Microorganisms capable of oxidizing Fe(II) with reduction of NO<sub>3</sub><sup>-</sup> have been observed in several different freshwater sediments (Kluber and Conrad, 1998; Straub and Buchholz-Cleven, 1998; Caldwell et al., 1999; Ratering and Schnell, 2000; Chaudhuri et al., 2001; Hauck et al., 2001; Finneran et al., 2002; Senn and Hemond, 2002; Shelobolina et al., 2003) as well as sewage sludge systems (Nielsen and Nielsen, 1998a,b). The demonstrated potential for biological nitratedependent Fe(II) oxidation in a wide variety of natural systems suggests that this reaction may play a significant role in the coupling of Fe and N redox cycles in sedimentary environments. In addition, the recent demonstration of biological nitrate-dependent Fe(II) oxidation by a predominant environmental Fe(III)-reducing bacterium, Geobacter metallireducens (Finneran et al., 2002), suggests that anaerobic Fe redox cycling could be catalysed by a single group of microorganisms. A tight coupling between Fe and N redox cycles in anaerobic sedimentary environments has significant implications for mechanisms of NO<sub>3</sub><sup>-</sup> removal and the regeneration of reactive Fe(III) oxides in hydromorphic soils and sediments, as well as the transformation of various natural and contaminant organic and inorganic compounds. Although the potential for enzymatic Fe(II) oxidation coupled to NO<sub>3</sub><sup>-</sup> reduction has been well documented, the microbial communities associated with Fe-N redox cycling in natural environments are not yet well understood. In this study, a first-generation enrichment culture of freshwater wetland sediment was subjected to a sequential shift in redox conditions [from organotrophic NO<sub>3</sub><sup>-</sup> reduction, to organotrophic Fe(III) reduction, to lithotrophic nitrate-dependent Fe(II) oxidation] in order to explore the coupling between microbial N and Fe redox cycling in sediments. Changes in microbial community structure associated with redox shifts were monitored by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified 16S rDNA and reverse transcription polymerase chain reaction (RT-PCR)-amplified 16S rRNA, and the phylogenetic association of organisms predominant in the culture was assessed through 16S rDNA clone libraries. A follow-up study evaluated the potential for G. metallireducens to catalyse anaerobic Fe redox cycling analogous to that observed in the enrichment culture. #### Results Most probable number (MPN) enumerations Approximately 10<sup>5</sup> cells (ml wet sediment)<sup>-1</sup> of culturable (MPN assay) nitrate-dependent Fe(II)-oxidizing microorganisms were detected in Talladega Wetland surface sediment (Table 1). The abundance of culturable acetateoxidizing [nitrate- and Fe(III)-reducing] microorganisms was approximately three orders of magnitude higher. Sequential nitrate reduction, Fe(III) reduction and nitrate-dependent Fe(II) oxidation in the sediment enrichment culture Talladega Wetland sediment served as the inoculum (1% vol:vol) to artificial groundwater (AGW) containing 1 mM NO<sub>3</sub>-, 2 mM acetate and 50 mmol l<sup>-1</sup> of synthetic high surface area goethite. Nitrate was consumed during the initial 7 days of incubation, resulting in transient accumulation of NO<sub>2</sub><sup>-</sup> and production of approximately 0.2 mM NH<sub>4</sub><sup>+</sup> (Fig. 2A and B). The molar ratio of NH<sub>4</sub><sup>+</sup> produced to $NO_3^-$ reduced (0.280, $r^2 = 0.940$ ) was substantially lower than 1.0, which indicates that gaseous end-products such as NO, N2O and/or N2 (not measured in this study) were likely produced. A decrease in Fe(II) (0.75 mmol | of Fe(II) was introduced with the sediment inoculum) of approximately 0.2 mmol I<sup>-1</sup> occurred during the initial NO<sub>3</sub><sup>-</sup> Table 1. MPN enumerations of nitrate-reducing, Fe(III)-reducing and nitrate-dependent Fe(II)-oxidizing microorganisms in Talladega Wetland surface sediments. | Culture conditions | MPN (cells ml <sup>-1</sup> ) | 95% confidence interval | |------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------| | Acetate + NO <sub>3</sub> <sup>-</sup><br>Acetate + Fe(III)<br>Fe(II) + NO <sub>3</sub> <sup>-</sup> | $9.3 \times 10^{7}$<br>$9.3 \times 10^{7}$<br>$2.4 \times 10^{5}$ | $2.1 \times 10^{7} - 2.7 \times 10^{8}$ $2.1 \times 10^{7} - 2.7 \times 10^{8}$ $4.8 \times 10^{4} - 9.6 \times 10^{5}$ | **Fig. 2.** Change in 0.5 M HCl-extractable Fe(II) and total Fe (A); and $NO_3^-$ , $NO_2^-$ and $NH_4^+$ (B) over time in the wetland sediment enrichment culture. Arrow denotes $NO_3^-$ amendment to induce nitrate-dependent Fe(II) oxidation. Error bars indicate standard error of triplicate cultures; bars not visible are smaller than symbol. reduction phase. Because this loss of Fe(II) occurred during the period of transient $NO_2^-$ accumulation, it is possible that abiotic Fe(II) oxidation by $NO_2^-$ generated during organotrophic $NO_3^-$ reduction was responsible for this result. However, abiotic Fe(II) oxidation by $NO_3^-$ can be ruled out based on the results of pasteurized control cultures (see below). Fe(III) reduction [Fe(II) accumulation] commenced once $NO_3^-$ decreased to below approximately 0.5 mM (Fig. 2A and B) and continued until acetate was depleted (data not shown), yielding 7.6 mmol $\Gamma^1$ of 0.5 M HCl-extractable Fe(II) [equivalent to approximately 15% of the initial Fe(III) content of the slurry]. Approximately 35% of the HCl-extractable Fe(II) was present as dissolved Fe(II) at the end of the Fe(III) reduction phase. Reduction of the synthetic goethite resulted in an obvious colour change in the mineral from gold-yellow to dark greenish-brown. Mixed Fe(II)-Fe(III) phases such as magnetite and/or green rust were not detected by X-ray diffraction (XRD) (Fig. 3A). However, comparison of a low-temperature (77K) Mössbauer spectra for the reduced goethite with that from a sample of microbially reduced (Shewanella putrefaciens in AQDS and HCO<sub>3</sub> - containing medium) natural goethite (Kukkadapu et al., 2001) indicated the presence of trace amounts of Fe(II) associated with green rust (Fig. 3B). The formation of only minor amounts of distinct Fe(II)-bearing mineral phases is consistent with other recent studies of the end-products of natural and synthetic goethite reduction by dissimilatory Fe(III)-reducing bacteria (Kukkadapu et al., 2001; Zachara et al., 2001). The vast majority of solidassociated Fe(II) was presumably sorbed and/or Fig. 3. X-ray diffraction (A) and 77K Mössbauer (B) spectra of microbially reduced and nitrate-dependent oxidized HSA goethite from the sediment enrichment culture. The 'HSA goethite' spectrum in panel A is from a mineral preparation similar (but not identical) to the material used in the enrichment culture experiment; major peak lines for a reference goethite phase are shown at bottom. Thick and thin solid lines in panel B correspond to microbially reduced and nitrate-dependent oxidized HSA goethite, respectively, from the sediment enrichment culture. The dashed line shows results for microbially reduced natural goethite from Kukkadapu and colleagues (2001). Arrows in panel B point to an Fe(II) doublet (superimposed on the goethite sextet) that can be attributed to green rust (Kukkadapu et al., 2001). surface-precipitated on residual Fe(III) oxide surfaces (Zachara *et al.*, 2001; Roden and Urrutia, 2002). Addition of $NO_3^-$ following cessation of Fe(III) reduction resulted in immediate oxidation of Fe(II) and consumption of $NO_3^-$ (Fig. 2A). Subcultures removed from the primary enrichment cultures and pasteurized prior to $NO_3^-$ readdition showed no Fe(II) oxidation or $NO_3^-$ consumption (Fig. 4). Biological oxidation caused the microbially reduced goethite to change from greenish-brown back to its original goldish-yellow colour. Approximately 85% of 0.5 M HCl-extractable Fe(II) was oxidized within 15 days in live cultures. Total 0.5 M HCl-extractable Fe [Fe(II) + Fe(III)] decreased in parallel with HCl-extractable Fe(II) during nitrate-dependent Fe(II) oxidation (Fig. 2A), which suggests the production of crystalline Fe(III) oxide phases not soluble in 0.5 M HCl. X-ray diffraction and Mössbauer spectra of the nitrate-oxidized material were virtually identical to those of the reduced mineral (Fig. 3), suggesting that goethite was likely reformed. In contrast to the initial organotrophic $NO_3^-$ reduction phase of the experiment, nitrate-dependent Fe(II) oxidation did not result in the transient accumulation of $NO_2^-$ (< 2 $\mu$ M). Significant accumulation of $NH_4^+$ (approximately 0.9 mM) took place during nitrate-dependent Fe(II) oxidation (Fig. 2B). The molar ratio of $NO_3^-$ reduced to Fe(II) oxidized (0.191, $r^2$ = 0.983) was higher than the theoretical ratio for Fe(II) oxidation coupled to $NO_3^-$ reduction to $NH_4^+$ (0.125), which indicates that small quantities of end-products other than $NH_4^+$ (e.g. $N_2$ , $NO_3^-$ and/or $N_2O_3^-$ ) were likely produced. **Fig. 4.** Change in NO<sub>3</sub><sup>-</sup> and 0.5 M HCI-extractable Fe(II) over time in pasteurized subsamples of the wetland sediment enrichment culture amended with approximately 2.5 mM NO<sub>3</sub><sup>-</sup>. The arrow indicates time at which the enrichment culture was pasteurized and amended with NO<sub>3</sub><sup>-</sup>. Error bars indicate standard error of triplicate cultures; bars not visible are smaller than symbol. Changes in microbial community structure during Fe–N redox metabolism Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rDNA and 16S rRNA RT-PCR products revealed a change in microbial community structure as redox conditions shifted from NO<sub>3</sub><sup>-</sup> reduction to Fe(III) reduction (Fig. 5). The DGGE results must be interpreted as a preliminary fingerprint of microbial community structure, as repeated attempts to amplify bands excised from the denaturing gradient gel failed. Phylogenetic association of dominant members of the microbial community from each phase of the experiment was achieved via construction and sequencing of 16S rDNA clone libraries. The clone libraries verified that a substantial change in community structure took place upon the shift from nitratereducing to Fe(III)-reducing conditions (Fig. 6A). One of the most significant changes was an increase in the number of clones associated with the beta subclass of the Proteobacteria (Betaproteobacteria), from approximately 3% under nitrate-reducing conditions to approximately 60% under Fe(III)-reducing conditions (Fig. 6A). Dechloromonas sp. was the most frequently identified (75%, Fig. 6C) phylogenetic group among the Betaproteobacteria clones. A significant fraction (25%) of clones from the Fe(III)-reducing phase were associated with the delta subclass of the Proteobacteria (Deltaproteobacteria) (Fig. 6A). Most of these Deltaproteobacteria clones (66%, Fig. 6B) were ≥ 95% similar to organisms from the genus Geobacter, a well-recognized group of dissimilatory Fe(III)-reducing bacteria (Lovley, 2002). This observation is consistent with the previous documentation of significant (approximately 10<sup>6</sup> ml<sup>-1</sup>) numbers of culturable acetate-oxidizing, Fe(III)-reducing Geobacter sp. in Talladega Wetland surface sediments (Coates et al., 1996). The 16S rDNA/rRNA fingerprints from the nitrate- dependent Fe(II) oxidation phase were similar to those from the Fe(III) reduction phase (Fig. 5), which suggests that the microbial community active during Fe(III) reduction was also responsible for nitrate-dependent Fe(II) oxidation. The corresponding clone libraries revealed only a small shift in community structure. The frequency of Betaproteobacteria clones increased slightly from 60% to 65%, and the frequency of Deltaproteobacteria clones decreased slightly from 25% to 22% (Fig. 6A). Within the Betaproteobacteria, the frequency of clones identified as *Dechloromonas* sp. decreased (to 40%) and clones identified as *Azospira* sp. (11%), *Aquaspirillium* sp. (11%), *Aquabacterium* sp. (4%) appeared along with several clones (33%) that were not classified within the Betaproteobacteria (Fig. 6C). Sequential NO<sub>3</sub><sup>-</sup> Reduction, Fe(III) Reduction and nitratedependent Fe(II) oxidation by G. metallireducens The potential for *G. metallireducens* to carry-out anaerobic Fe redox cycling was examined in an experiment analogous to the wetland sediment enrichment culture study. $NO_3^-$ was reduced within the first few days of incubation, resulting in a transient accumulation of $NO_2^-$ (61 $\mu$ M) and stoichiometric production of $NH_4^+$ (97% of added $NO_3^-$ , Fig. 7). The presence of $NO_3^-$ did not inhibit Fe(III) reduction, as evidenced by accumulation of Fe(II) concurrent with $NO_3^-$ reduction. When $NO_3^-$ was added upon cessa- **Fig. 5.** DGGE analysis of PCR-amplified 16S rDNA and RT-PCR-amplified 16S rRNA from the enrichment culture. Time (day) corresponds to the *x*-axis in Fig. 2. 'Inoculum' refers to 16S rDNA and 16S rRNA extracted from the sediment used to inoculate the enrichment cultures. Deltaproteobacteria. **Fig. 6.** Relative proportions of 16S rRNA gene sequences in clone libraries from the enrichment culture. A. Sequences within the domain Bacteria. 'Other' represents *Verrucomicrobiae, Deferribacterales, Cytophaga, Planctomycetacia, Fusobacteria* and *Acidobacteria* combined. B. Sequences with ≥ 95% sequence similarity to known genera within the C. Sequences with $\geq$ 95% sequence similarity to known genera within the Betaproteobacteria. 'Unclassified' represents sequences with < 95% sequence similarity to known genera. Numbers above the bars indicate the total number of clones within a given group. tion of Fe(III) reduction, 86% of 0.5 M HCI-extractable Fe(II) was oxidized within 4 days coupled to consumption of $NO_3^-$ and accumulation of $NH_4^+$ (Fig. 7). Fe(II) oxidation then continued at a slower rate, resulting in the consumption of virtually all (93%) of the 0.5 M HCI-extractable Fe(II). The molar ratios of $NO_3^-$ reduced to Fe(II) oxidized and $NH_4^+$ produced to Fe(II) consumed (0.175, $r^2 = 0.989$ and 0.189, $r^2 = 0.897$ , respectively) were slightly higher than the theoretical ratio for $NO_3^-$ reduction to $NH_4^+$ coupled to Fe(II) oxidation (0.125). #### **Discussion** Nitrate inhibition of Fe(III) reduction Nitrate inhibited Fe(III) reduction in the sediment enrich- ment culture (Fig. 2A), a result consistent with previous studies of the influence of NO<sub>3</sub><sup>-</sup> on Fe(III) reduction in pure and mixed cultures of Fe(III)-reducing bacteria (Obuekwe *et al.*, 1981; Sorensen, 1982; Jones *et al.*, 1983; DiChristina, 1992; Achtnich *et al.*, 1995; Finneran *et al.*, 2002; Cooper *et al.*, 2003). In contrast, Fe(III) was reduced simultaneously with NO<sub>3</sub><sup>-</sup> in the *G. metallireducens* cell suspension. The latter result may be attributed to the presence of a relatively high initial cell density (approximately 10<sup>8</sup> cells ml<sup>-1</sup>) and an excess of electron donor, which allowed both processes to occur together. Similar experiments using a 10-fold lower initial *G. metallireducens* cell density showed inhibition of Fe(III) reduction by NO<sub>3</sub><sup>-</sup> comparable to that observed in the wetland sediment enrichment culture. Fig. 7. Change in 0.5 M HCI-extractable Fe(II), and total Fe (A) and NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup> (B) over time in growth medium inoculated with nitrategrown G. metallireducens cells. Arrow denotes the NO<sub>3</sub><sup>-</sup> to induce nitrate-dependent Fe(II) oxidation. Error bars indicate standard error of triplicate cultures; bars not visible are smaller than symbol. Mechanism and end-products of nitrate-dependent Fe(II) oxidation The addition of NO<sub>3</sub><sup>-</sup> following the cessation of Fe(III) reduction resulted in immediate and rapid oxidation of both aqueous and solid-phase Fe(II) and production of substantial quantities of NH<sub>4</sub><sup>+</sup> (Fig. 2). Abiotic oxidation of Fe(II) by gaseous end-products such as NO and N2O can be ruled out based on previous studies in which NO and N<sub>2</sub>O additions to soil slurries containing Fe(II) did not result in an increase in Fe(III) concentrations (Kluber and Conrad, 1998). Moreover, lack of significant Fe(II) oxidation in pasteurized cultures (Fig. 4) indicated that NO<sub>3</sub><sup>-</sup> did not abiotically oxidize the microbially reduced goethite. This result is consistent with previously reported results in which abiotic oxidation of Fe(II) by NO<sub>3</sub> was not observed in suspensions of microbially reduced goethite or other Fe(III) oxide-bearing solids (Weber et al., 2001). Production of NH<sub>4</sub><sup>+</sup> as an end-product of biological nitrate-dependent Fe(II) oxidation has not been previously reported. To date, only studies of abiotic NO<sub>3</sub><sup>-</sup> reduction coupled to oxidation of green rust compounds have demonstrated NH<sub>4</sub><sup>+</sup> as a predominant end-product of nitratedependent Fe(II) oxidation (Hansen et al., 1996; Hansen et al., 2001). Green rust was not identified as a major product of microbial goethite reduction generated in this study nor in previous studies using similar culture conditions (Cooper et al., 2000; Kukkadapu et al., 2001; Zachara et al., 2001). This result, together with the lack of Fe(II) oxidation in pasteurized controls, argues against abiotic reaction of NO<sub>3</sub><sup>-</sup> with green rust as a mechanism for NH<sub>4</sub><sup>+</sup> production in the enrichment culture. A recent report documented green rust as a minor end-product of soluble Fe(II) (FeCl<sub>2</sub>) oxidation coupled to NO<sub>3</sub><sup>-</sup> reduction by Azospira suillum (Chaudhuri et al., 2001). These findings suggest the possibility that green rust compounds, generated during the initial stages of nitrate-dependent Fe(II) oxidation, served as a reductant for further (i.e. autocatalytic) abiotic reduction of NO<sub>3</sub><sup>-</sup> to NH<sub>4</sub><sup>+</sup> in our experiments. However, Chaudhuri and colleagues (2001) reported that NO<sub>3</sub><sup>-</sup> was stoichiometrically reduced to N<sub>2</sub> under biological Fe(II)-oxidizing conditions, whereas stoichiometric reduction of NO<sub>3</sub><sup>-</sup> to NH<sub>4</sub><sup>+</sup> is observed during abiotic oxidation of synthetic chloride green rust [Fe(II)GB-[CI] (Hansen et al., 2001). These results argue against a green rust-mediated autocatalytic mechanism for abiotic Fe(II) oxidation in the experiments of Chaudhuri and colleagues (2001), further supporting an enzymatic Fe(II) oxidation mechanism. Together these previous observations reinforce the argument that the NH<sub>4</sub><sup>+</sup> produced during nitrate-dependent Fe(II) oxidation in this study was the result of microbial (enzymatic) catalysis rather than abiotic reaction(s) with a green rust intermediate. Oxidation of Fe(II) (soluble and solid-phase) coupled to NO<sub>3</sub><sup>-</sup> reduction during the final phase of the sediment enrichment, as well as the pure culture study with G. metallireducens (Fig. 7), resulted in a decline in total 0.5 M HCI-extractable Fe in parallel with the decrease in Fe(II) (Fig. 2A). These results suggest that crystalline Fe(III) oxide phases were formed, in contrast to previous studies which indicated that nitrate-dependent Fe(II) oxidation resulted in the formation of poorly crystalline Fe(III) oxide (Straub et al., 1996; 1998). These contrasting results may be attributed to the relatively low concentration of phosphate in the culture medium used in our experiments (0.05 mM, compared with 1.5 mM in the culture medium employed by Straub et al., 1996, 1998): other studies with the Straub and colleagues (1996) enrichment culture (Weber, 2002) have shown that a decrease in phosphate from approximately 1.5-0.05 mM resulted in a progressive increase in the formation of crystalline (goethite, lepidocrocite) versus amorphous phases. These data suggest that in the absence of high concentrations of inhibitors of Fe(III) oxide crystallization such as phosphate (Cornell and Schwertmann, 1996), nitrate-dependent Fe(II) oxidation is likely to result in the production of predominantly crystalline Fe(III) oxide phases which are insoluble in dilute (0.5 M) HCl. Given that solid-associated Fe(II) was the dominant form of Fe(II) available for nitratedependent oxidation in the enrichment culture experiment, and that virtually all of the Fe(II) oxidized in this experiment was lost from the 0.5 M HCI-extractable pool, our results indicate that both aqueous and solid-phase Fe(II) are subject to conversion to crystalline Fe(III) oxides during nitrate-dependent Fe(II) oxidation. The similarity of XRD and Mössbauer spectra for the reduced and nitratedependent oxidized goethite (Fig. 3) indicate that goethite phases with particle size and crystallinity nearly identical to that of the starting material were regenerated during nitrate-dependent oxidation. #### Microbial communities associated with Fe-N redox cycling Although previous studies have demonstrated that pure cultures of organotrophic denitrifying bacteria are capable of nitrate-dependent Fe(II) oxidation (Straub et al., 1996; Benz et al., 1998; Chaudhuri et al., 2001), the majority of the organisms detected during nitrate-dependent Fe(II) oxidation in this study were more similar to those present during the Fe(III) reduction phase than in the organotrophic NO<sub>3</sub><sup>-</sup> reduction phase (Figs 5 and 6). These results indicate that microorganisms capable of both Fe(III) reduction and nitrate-dependent Fe(II) oxidation were responsible for the Fe(II) oxidation activity observed in the latter stages of the experiment. The rapid onset of nitrate-dependent Fe(II) oxidation following Fe(III) reduction supports the idea that Fe(III)-reducing microorganisms which proliferated during the Fe(III) reduction phase of the experiment were responsible for subsequent nitratedependent Fe(II) oxidation. Organisms such as G. metallireducens (Lovley and Phillips, 1988) and other members of Geobacteraceae (Lovley, 2002), which are capable of organotrophic growth with either NO<sub>3</sub><sup>-</sup> or Fe(III) as an electron acceptor, are logical candidates for such In light of the recent observation by Finneran and colleagues (2002) that G. metallireducens can couple oxidation of soluble Fe(II) to reduction of NO<sub>3</sub>, we examined whether G. metallireducens could catalyse nitratedependent oxidation of microbially reduced goethite under conditions analogous to the wetland sediment enrichment culture. The results provided clear evidence of such activity (compare Figs 2 and 7). The large proportion of Geobacter sp. 16S rDNA sequences in clone libraries from the nitrate-dependent Fe(II) oxidation phase of the experiment (Fig. 6B), the persistence (suggested by DGGE analysis; see Fig. 5) of a few key genotypes throughout the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases, and the production of NH<sub>4</sub><sup>+</sup> as an end-product of nitratedependent Fe(II) oxidation sp., provides convincing evidence for the role of *Geobacter* in nitrate-dependent Fe(II) oxidation in the wetland sediment. It is thus far unknown whether G. metallireducens and other nitrate-reducing members of Geobacteraceae are able to conserve energy for growth/maintenance from nitrate-dependent Fe(II) oxidation. The detection of significant numbers of 16S rDNA clones associated with Dechloromonas sp. and other organisms from the Betaproteobacteria in libraries from the Fe(III)-reducing and nitrate-dependent Fe(II) oxidation phases in the enrichment culture (Fig. 6A and C) suggests the possibility that such organisms may have also been involved in anaerobic Fe-N redox cycling. This idea is supported by the fact that nitrate-dependent Fe(II) oxidation has been described within the Betaproteobacteria, specifically in Dechloromonas sp. and Azospira sp. (Bruce et al., 1999; Chaudhuri et al., 2001), as well as in the nitrate-dependent Fe(II)-oxidizing bacterium BrG2, which has 98% sequence identity with Aquabacterium commune (Buchholz-Cleven et al., 1997). Dechloromonas sp., Azospira sp. and Aquaspirillum sp. have been described as denitrifiers which produce N<sub>2</sub> as the reduced N product (Mahne and Tiedje, 1995; Chaudhuri et al., 2001; Coates et al., 2001). Given that chemical analysis of the wetland sediment enrichment identified NH<sub>4</sub><sup>+</sup> as a primary product of nitrate-dependent Fe(II) oxidation, these bacteria were obviously not the only active members of the nitratedependent Fe(II)-oxidizing microbial community. The combined results of the DGGE and 16S rDNA clone library analyses suggest (but do not prove) that organisms related to Dechloromonas sp. were abundant during Fe(III) reduction as well as nitrate-dependent Fe(II) oxidation. Although dissimilatory Fe(III) reduction by Dechloromonas sp. has not been observed in pure culture, Fe(III) reduction by Betaproteobacteria has been identified in Ferribacterium limneticum (Cummings et al., 1999), whose 16S rRNA gene sequence is 99% similar to that of Dechloromonas aromatica strain RCB (Coates et al., 2001). #### Biogeochemical significance Oxidation of soluble and solid-phase Fe(II) coupled to NO<sub>3</sub><sup>-</sup> reduction provides the potential for a tight coupling between N and Fe redox cycles in sedimentary environments (Straub et al., 2001; 2004). Such coupling is likely to be particularly significant at the interface between NO<sub>3</sub><sup>-</sup> and Fe(III) reduction zones in sediments influenced by periodic fluctuations in the inputs of organic carbon and oxidants (see Fig. 1). These fluctuations are common in shallow subsurface environments, which are typically very active hydrologically and support a rich and diverse microflora (Chapelle, 2001). When inputs of organic carbon are relatively high compared with NO<sub>3</sub>-, organotrophic NO<sub>3</sub>reduction may exhaust available NO<sub>3</sub>-, thus allowing microbial Fe(III) reduction and associated production of aqueous Fe(II) and/or Fe(II)-bearing solid-phases to occur. During subsequent periods of reduced organic carbon loading, rates of NO<sub>3</sub><sup>-</sup> re-supply may exceed rates of organotrophic NO<sub>3</sub><sup>-</sup> reduction, resulting in the availability of nitrate for lithotrophic, nitrate-dependent Fe(II) oxidation. In this way, reducing equivalents stored in the form of aqueous and/or Fe(II)-bearing solid-phases may serve as an significant source of energy for microbial metabolism during periods of reduced organic carbon input. Organisms such as G. metallireducens which are capable of switching between organotrophic nitrate and/or Fe(III) reduction and nitrate-dependent Fe(II) oxidation are likely to have a competitive advantage in such environments. Detailed studies of the response of sediment microbial communities to repeated fluctuations in organic carbon and $NO_3^-$ loading are required to verify this hypothesis. Nitrate-dependent Fe(II) oxidation has the potential to significantly influence patterns of organic and inorganic contaminant transformations in anaerobic soils and sediments through local consumption of NO<sub>3</sub><sup>-</sup> and regeneration of Fe(III) oxides. Straub and colleagues (2004) recently described an example of the potential impact of Fe-N redox cycling on benzoate oxidation in anaerobic sediments. A co-culture consisting of Fe(III)-reducing (Geobacter bremensis) and a consortia of nitratedependent Fe(II)-oxidizing organisms (the stable enrichment culture described in Straub et al., 1996) was able to oxidize benzoate coupled to Fe(III) oxide reduction through a process in which a relatively small amount of amorphous Fe(III) oxide was continuously recycled via nitrate-dependent Fe(II) oxidation. Such interactions expand the range of potential mechanisms by which natural and contaminant organic compounds may be oxidized in anaerobic soils and sediments. Recent examples of the influence of anaerobic Fe-N redox cycling on inorganic biogeochemical processes include the oxidation and coprecipitation of Fe(III) and As(V) in stratified lake waters (Senn and Hemond, 2002), and the oxidation of U(IV) by Fe(III) generated during nitrate-dependent Fe(II) oxidation in uranium-contaminated subsurface sediments (Finneran et al., 2002). In addition, formation of relatively crystalline Fe(III) oxides during biological oxidation of aqueous and solid-phase Fe(II), as observed in this study, could contribute to the sequestration of metal-radionuclide contaminants by incorporation of the metal or radionuclide into the oxide lattice and/or physical envelopment of the contaminant(s). Lack and colleagues (2002) demonstrated the potential for immobilization of Co(II) and U(VI) in crystalline Fe(III) oxides formed during nitrate-dependent Fe(II) oxidation. Because crystalline Fe(III) oxides are not as available to microbial Fe(III) reduction as amorphous Fe(III) oxides, metal-radionuclide contaminants immobilized in crystalline biogenic Fe(III) oxides may be resistant to remobilization with the onset of Fe(III)-reducing conditions. Further studies of the influence of solid-phase Fe(II)-Fe(III) conversions on metal-radionuclide speciation are needed to determine the long-term effects of Fe-N redox cycling on the mobility of such contaminants in sediments. #### **Experimental procedures** #### Most probable number enumerations The abundance of culturable acetate-oxidizing nitrate-reducing bacteria, acetate-oxidizing Fe(III)-reducing bacteria, and Fe(II)-oxidizing nitrate-reducing bacteria in freshwater wetland surface sediments were estimated using a three-tub MPN technique (Woomer, 1994). A freshwater wetland sediment core was collected from a small (15 ha) wetland located in the Talladega National Forest, Hale County, Alabama. Previous studies have documented the quantitative significance of microbial Fe(III) reduction and Fe redox cycling on sediment carbon metabolism and energy flow in this environment (Roden and Wetzel, 1996). Upon return to the laboratory, sediment from the upper 5 cm of the core was homogenized, sieved (1 mm), and placed under N2 at room temperature. Triplicate pressure tubes containing sterile, anaerobic (N2:CO2; 90:10) AGW medium (10 mM PIPES, 2 mM NaHCO<sub>3</sub>, 5 mM NH<sub>4</sub>Cl, 0.5 mM KH<sub>2</sub>PO<sub>4</sub>, pH 6.8) were inoculated with serially diluted anaerobic, homogenized sediment. For enumeration of acetate-oxidizing, NO<sub>3</sub>-reducing bacteria, tubes were amended with 5 mM NaNO<sub>3</sub> and 10 mM Na-acetate from sterile, anaerobic stock solutions. Acetateoxidizing, Fe(III)-reducing bacteria were enumerated in medium amended with 10 mmol l<sup>-1</sup> of synthetic hydrous ferric oxide prior to autoclaving. The culture tubes were then amended with 10 mM Na-acetate and 2 mM FeCl<sub>2</sub> (as a reducing agent) from sterile, anaerobic stock solutions. The medium for enumeration of nitrate-dependent Fe(II)-oxidizing bacteria was amended with 0.5 mM Na-acetate, 5 mM NO<sub>3</sub> and 10 mM FeCl<sub>2</sub> from sterile anaerobic stock solutions. Pressure tubes were inoculated with 1-ml portions of the homogenized freshwater wetland sediment slurry. The tubes were then homogenized by vortexing, serially diluted, and incubated statically in the dark at 30°C for 10 weeks. Positive results for acetate-oxidizing nitrate reducers were determined checking for depletion of NO<sub>3</sub><sup>-</sup> (to < 1 mM) by ion chromatography. Visual assessment of blackening of the medium, and formation of reddish-brown precipitates, was used to identify positive results for Fe(III) reducers and nitrate-dependent Fe(II) oxidizers respectively. MPN estimates were obtained using the Most Probable Number Calculator version 4.05 (©1996 Albert J. Klee, Risk Reduction Engineering Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio, freeware available at http://www.epa.gov/ nerlcwww/other.htm). #### Enrichment culture experiment A PIPES-buffered (10 mM, pH 6.8) AGW medium was used for the wetland sediment enrichment culture experiment. The basal AGW contained 0.11 mM MgCl<sub>2</sub>, 0.61 mM CaCl<sub>2</sub> and 2 mM NaHCO<sub>3</sub>, and was supplemented with 1 mM NaNO<sub>3</sub>, 2 mM Na-acetate, 0.5 mM NH<sub>4</sub>Cl, 0.05 mM KH<sub>2</sub>PO<sub>4</sub>, 0.1× of previously described (Lovley and Phillips, 1988) vitamin and trace element solutions, and 50 mmol l<sup>-1</sup> of synthetic 'high surface area' (approximately 200 m<sup>2</sup> g<sup>-1</sup>) goethite. The synthetic goethite was synthesized by slow air oxidation of FeCl<sub>2</sub> in NaHCO<sub>3</sub> buffer (Schwertmann and Cornell, 1991), and its surface area was determined by multipoint N<sub>2</sub> (BET) adsorption (Micromeritics Model Gemini). Triplicate bottles of medium were inoculated with 1% (vol:vol) of anaerobic sediment slurry immediately after collection and preparation as described above. Samples were collected over time for analysis of $NO_3^-$ , $NO_2^-$ , $NH_4^+$ , acetate, Fe(II), total Fe and 16S rDNA/rRNA. Once NO<sub>3</sub><sup>-</sup> and Fe(III) reduction ceased, NO<sub>3</sub><sup>-</sup> (3 mM) was re-added to the enrichment cultures in an attempt to induce nitrate-dependent Fe(II) oxidation. Immediately prior to the 3 mM NO<sub>3</sub><sup>-</sup> amendment, a 30-ml subculture was removed from each culture bottle, transferred into a sterile, anaerobic (N2:CO2; 80:20) serum bottles, and pasteurized (80°C; 15 min) to produce killed controls. Killed controls were amended with NO<sub>3</sub>- (3 mM) following pasteurization. Live and pasteurized cultures were incubated statically in the dark at 30°C and homogenized prior to sampling. #### Anaerobic Fe redox cycling by G. metallireducens Geobacter metallireducens (a gift from D. R. Lovley, University of Massachusetts Amherst) was grown in NaHCO<sub>3</sub>buffered medium (30 mM NaHCO<sub>3</sub>, 10 mM NH<sub>4</sub>Cl, 1 mM KH<sub>2</sub>PO<sub>4</sub>) with acetate (10 mM) as the electron donor and nitrate (20 mM) as the electron acceptor. The growth medium was supplemented with 0.5 mM Fe(III)-citrate in order to provide the extra Fe required for sustained growth with nitrate as the electron acceptor (Senko and Stolz, 2001), as well as 1 mM ascorbic acid to reduce the accumulation of NO<sub>2</sub><sup>-</sup> which can inhibit cell growth on nitrate (E. J. P. Phillips, US Geological Survey, pers. comm.). Cells were harvested by centrifugation (7000 a, 10 min) and washed twice with sterile, anaerobic NaHCO<sub>3</sub> buffer. Triplicate 20-ml bottles of the AGW medium described above were inoculated with approximately 10<sup>8</sup> cells ml<sup>-1</sup> of washed cells, and changes in NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, acetate, Fe(II) and total Fe were monitored over time. As in the case of the wetland sediment enrichment culture experiment, NO<sub>3</sub><sup>-</sup> (approximately 1 mM) was added to the cultures once acetate was depleted and Fe(III) reduction had ceased. #### Chemical and spectroscopic analyses Samples for analyses of Fe(II) and total Fe were collected and centrifuged (10 000 g) inside an anaerobic chamber, as previously described (Weber et al., 2001). The supernatant was withdrawn from the pellet and immediately analysed for aqueous Fe(II) using Ferrozine (Stookey, 1970). The pellet was resuspended in 0.5 M HCl and allowed to extract overnight. Fe(II) and total Fe in the extract were determined as described in Roden and Lovley (1993). The concentration of 0.5 M HCl-extractable Fe(II) determined via pellet extractions. together with aqueous Fe(II) measurements, were summed to yield total Fe(II) concentrations (Weber et al., 2001). Samples for NO<sub>3</sub>-, NO<sub>2</sub>-, NH<sub>4</sub>+ and acetate were filtered through a 0.2-µm nylon filter immediately after collection and exposed to O<sub>2</sub> in order to rapidly oxidize Fe(II) (Weber et al., 2001). The filtered samples were centrifuged and the supernatant withdrawn for NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> analyses. Samples collected for NH<sub>4</sub><sup>+</sup> were filtered a second time prior to analysis. NO<sub>3</sub><sup>-</sup> and acetate were determined by ion chromatography (IonPac® AS14 analytical column, Dionex DX-100 system, Dionex, Sunnyvale, CA). $NO_2^-$ and $NH_4^+$ concentrations were determined colorimetrically (Wetzel and Likens, 1991) with detection limits of 0.01 $\mu$ M and 1 $\mu$ M respectively. Powder XRD and low-temperature (77K) Mössbauer spectra of (i) microbially reduced goethite and (ii) microbially reduced goethite subjected to nitrate-dependent oxidation, were obtained as described in Kukkadapu and colleagues (2001, 2004). An XRD pattern was also obtained for a non-biologically transformed HSA goethite preparation similar (but not identical) to the material used for the enrichment culture experiment. #### Nucleic acid extraction and purification Samples for nucleic acid extraction were collected in sterile, diethyl pyrocarbonate (DEPC) treated polyethylene centrifuge tubes and maintained on ice until centrifugation. Collected samples were centrifuged (10 000 g, 20 min) and washed once with 10 mM RNase-free Tris Buffer (pH 7.8). The pellet was immediately frozen in liquid $N_2$ and stored at $-80^{\circ}$ C until extraction of nucleic acids. Nucleic acids were extracted using a modified method of Zhou and colleagues (1996) by grinding in liquid N<sub>2</sub>, freezethawing and extended heating (60°C) in a high-salt extraction buffer containing hexadecylmethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). CTAB was heated to 60°C prior to being added to the extraction buffer. Following centrifugation (6000 g, 10 min), the supernatant was removed from the pellet and nucleic acids were extracted in phenol:chloroform (1:1; vol:vol), followed by an additional chloroform extraction. Nucleic acids were precipitated in isopropanol, centrifuged (9000 g, 20 min), and resuspended in RNase-free Tris-EDTA (TE) buffer. The nucleic acid extracts were divided into two equal volumes and stored at -80°C until DNA and RNA purification. All materials and solutions used during the nucleic acid extraction process were treated with DEPC prior to use, with the exception of solutions containing Tris which were prepared in DEPC-treated (denoted as RNase-free) deionized water. Nucleic acid extracts used for amplification of 16S rDNA were purified by gel filtration using Sepharose CL-4B columns as described by Jackson et al., 1997), precipitated with NaCl (0.2 M) in absolute ethanol overnight, and resuspended in TE buffer. DNA samples were stored at -80°C. Nucleic acid extracts dedicated to RT-PCR amplification of 16S rRNA were purified by gel filtration using DEPCtreated Sephadex G-75 (Moran et al., 1993), precipitated with RNase-free Na-Acetate (0.3 M) in absolute ethanol overnight and resuspended in RNase-free TE buffer. DNA was removed from RNA by treatment with DNase I (RNase-free; Roche Diagnostics Corporation) followed by a phenol:chloroform (1:1; vol:vol) extraction. RNA was concentrated by precipitating with RNase-free Na-Acetate (0.3 M) in absolute ethanol overnight and resuspended in RNase-free TE buffer. RNA extracts were stored at -80°C. #### Denaturing gradient gel electrophoresis A fragment of the variable V3 region of 16S rDNA corresponding to positions 341–907 in *Escherichia coli* was PCR-amplified (Touchdown PCR) using the primers denoted as 341F. 5'-CCTACGGGAGGCAGCAG-3' and 907R. 5'-CCGTC AATTCCTTTRAGTTT-3' with a GC-Clamp added to 5' end of forward primer: 5'CGCCCGCCGCGCGCGGGGGGGGG GCGGGGCACGGGGGG-3' as described by Muyzer and colleagues (1995). Within the Domain Bacteria, these primers are universally conserved (Medlin et al., 1988) and have thus been used to evaluate bacterial diversity in environmental samples (Muyzer et al., 1993; Muyzer and Ramsing, 1995) as well as the diversity of anaerobic Fe(II)-oxidizing bacteria (Buchholz-Cleven et al., 1997; Straub and Buchholz-Cleven, 1998). Products from 10 replicate PCR amplifications were combined, extracted in phenol:chloroform (1:1: vol:vol), precipitated with NaCl (0.2 M) in absolute ethanol overnight, and resuspended in TE buffer. Negative control PCR amplifications (no DNA added to reaction mix) were routinely conducted. Reverse transcription of 16S rRNA was performed using SUPERSCRIPT™ II RNase H⁻ Reverse Transcriptase (GibcoBRL®) as specified by the manufacturer, with 907R serving as the reverse primer. The resulting cDNA was PCR-amplified as described above. Negative reverse transcriptase reactions (reverse transcriptase absent from reaction mix) were routinely conducted and subsequently PCR-amplified as described above. Denaturing gradient gel electrophoresis was conducted using a 6% acrylamide gel containing a 28–56% denaturing gradient (Muyzer and Ramsing, 1995). Polymerase chain reaction products of 16S rDNA and reverse transcribed 16S rRNA were applied directly to a 6% acrylamide gel in 0.5× TAE buffer. The gel was electrophoresed at 60°C at 200 V for 6 h using a Bio-Rad D Gene<sup>TM</sup> System (Bio-Rad Laboratories, Hercules, CA) (Muyzer *et al.*, 1993). After electrophoresis, the gel was stained with ethidium bromide (0.5 mg l<sup>-1</sup>) for 15 min and rinsed with deionized H<sub>2</sub>O for 10 min prior to UV transillumination. Gel images were captured digitally. Band intensity on DGGE gels was used to infer the relative abundance and metabolic activity of microorganisms present at different times during the enrichment culture experiment. This approach is based on the assumption that 16S rDNA abundance is directly related to density of the corresponding organism in the sample (Muyzer et al., 1993; Bruggemann et al., 2000), and that metabolically active cells possess greater 16S rRNA content than non-active cells (Kemp et al., 1993). It is recognized, however, that correlation of metabolic activity with 16S rRNA content must be done with caution as regulation of metabolic activity and rRNA content may differ among various bacterial species (Wagner, 1994). In addition, the potential for inherent biases in PCR-based detection/ quantification strategies is well recognized (VonWintzingerode et al., 1997). Hence, changes in DGGE-banding patterns are interpreted as a first approximation of change in microbial community structure and metabolic activity in the enrichment culture samples. #### Clone libraries Amplification products for construction of 16S rDNA clone libraries were generated with primers corresponding the positions 8F (5'-AGAGTTTGATCCTGGCTCAG-3'), and 907R (described above) in *E. coli*. Polymerase chain reaction products were purified using QIAquick PCR Purification Kit (QIAGEN #28106) according to manufacturer's instructions and stored at -20°C. The pGem®-T vector System (Promega #A3600) was used according to manufacturer's instructions, with Top10 competent E. coli cells from Invitrogen, to generate clone libraries from PCR-amplified 16S rDNA from samples collected at days 0, 1.5, 9 and 36 of the enrichment culture experiment. Between 90 and 100 clones were picked from each sample transformation. Vector primers M13F1 and M13R1 were used to amplify cloned sequences. Sequences were concentrated by precipitation in 95% ethanol and NaCl (200 mM) overnight at -20°C and resuspended, in TA buffer (10 mM, pH 7.6). Concentrated DNA was purified by electrophoresis using a low melt agarose gel (1.5%) in TAE running buffer. Bands in the gel were cut out, frozen overnight, and spun down at 10 000 g for 10 min. Supernatants were collected and used for sequencing. Clone sequences (44, 58, 53 and 62 for days 0, 1.5, 9 and 36, respectively) were obtained commercially from Macrogen (Seoul, South Korea) using T7F and SP6R primers. Each sequence was analysed by means of GenBank using BLAST (Altschul et al., 1997) as well as the Ribosomal Database Project - II (Cole et al., 2003) in order to identify the closest relative. Sequences which were identified as chimeric were discarded. A value of 95% 16S rDNA sequence identity was established as a conservative cut-off for assignment of genus-level phylogenetic affiliation (Gillis et al., 2001). The final sets of sequences have been submitted to GenBank (Accession numbers DQ110012-DQ110129). #### **Acknowledgements** This research was supported by Grant DE-FG02-97ER62482 from the US Department of Energy, Natural and Accelerated Bioremediation Program. X-ray diffraction and Mössbauer analyses were performed at W.R. Wiley Environmental and Molecular Sciences Laboratory, a national user facility sponsored by US Department of Energy's Office (DOE) Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the DOE by Battelle. #### References - Achtnich, C., Bak, F., and Conrad, R. (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fert Soils 19: 65-72. - Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. - Benz, M., Brune, A., and Schink, B. (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol **169:** 159-165. - Brock, T.D., and Gustafson, J. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 54-68. - Bruce, R.A., Achenback, L.A., and Coates, J.D. (1999) Reduction of (per) chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1: 319-329. - Bruggemann, J., Stephen, J.R., Chang, Y.J., Macnaughton, S.J., Kowalchuk, G.A., Kline, E., and White, D.C. (2000) Competitive PCR-DGGE analysis of bacterial mixtures: an internal standard and an appraisal of template enumeration accuracy. J Microbiol Methods 40: 111-123. - Buchholz-Cleven, B.E.E., Rattunde, B., and Straub, K.L. (1997) Screening for genetic diversity of isolates of anaerobic Fe(III) -oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20: 301-309. - Caldwell, M.E., Tanner, R.S., and Suflita, J.M. (1999) Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic conditions: implications for bioremediation. Anaerobe 5: 595-603. - Chapelle, F.H. (2001) Ground-water Microbiology and Geochemistry. New York, NY, USA: John Wiley & Sons. - Chaudhuri, S.K., Lack, J.G., and Coates, J.D. (2001) Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol 67: 2844-2848. - Coates, J.D., Phillips, E.J.P., Lonergan, D.J., Jenter, H., and Lovley, D.R. (1996) Isolation of Geobacter species from a variety of sedimentary environments. Appl Environ Microbiol 62: 1531-1536. - Coates, J.D., Chakraborty, R., Lack, J., O'Connor, S.M., Cole, K.A., Bender, K.S., and Achenbach, L.A. (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two novel organisms. Nature 411: 1039- - Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., et al. (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442-443. - Cooper, D.C., Picardal, F., Rivera, J., and Talbot, C. (2000) Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200. Environ Sci Technol 34: 100-106. - Cooper, D.A., Picardal, F.W., Schimmelmann, A., and Colby, A.J. (2003) Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 69: 3517-3525. - Cornell, R.M., and Schwertmann, U. (1996) The Iron Oxides. New York, NY, USA: VCH. - Cummings, D.E., Jr, Spring, S., and Rosenzweig, R.F. (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171: 183–188. - Davison, W. (1993) Iron and manganese in lakes. Earth-Sci Rev 34: 119-163. - Davison, W., and Seed, G. (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim Cosmochim Acta 47: 67-79. - DiChristina, T.J. (1992) Effects of nitrate on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol 174: 1891-1896. - Emerson, D. (2000) Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. In Environmental Metal-Microbe Interactions. Lovley, D.R. (ed.). Washington, DC, USA: American Society for Microbiology Press, pp. 31-52. - Emerson, D., and Weiss, J.V. (2004) Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol J 21: 405-414. - Finneran, K.T., Housewright, M.E., and Lovley, D.R. (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. *Environ Microbiol* **4:** 510–516. - Gillis, M., Vandamme, P., DeVos, P., Swings, J., and Kersters, K. (2001) Polyphasic taxonomy. In *Bergey's Manual of Systematic Bacteriology*. Boone, D.R., and Castenholz, R.W. (eds). New York, NY, USA: Springer, pp. 43–48. - Hansen, H.C.B., Koch, C.B., Nancke-Krogh, H., Borggaard, O.K., and Sorensen, J. (1996) Abiotic nitrate reduction to ammonium: key role of green rust. *Environ Sci Technol* 30: 2053–2056. - Hansen, H.C.B., Guldberg, S., Erbs, M., and Koch, C.B. (2001) Kinetics of nitrate reduction by green rusts effects of interlayer anion and Fe(II):Fe(III) ratio. *Appl Clay Sci* **18**: 81–91. - Hauck, S., Benz, M., Brune, A., and B.S. (2001) Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiol Ecol 37: 127–134. - Jackson, C.R., Harper, J.P., Willoughby, D., Roden, E.E., and Churchill, P.F. (1997) A simple, efficient method for the separation of humic substances and DNA from environmental samples. *Appl Environ Microbiol* 63: 4993– 4995. - Johnson, D.B., McGinness, S., and Ghauri, M.A. (1993) Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol Rev 11: 63–70. - Jones, J.G., Gardener, S., and Simon, B.B. (1983) Bacterial reduction of ferric iron in a stratified eutrophic lake. *J Gen Microbiol* 129: 131–139. - Kemp, P.R., Lee, S., and Laroche, J. (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol 59: 2594–2601. - Kluber, H.D., and Conrad, R. (1998) Effects of nitrate, nitrite, NO, and N2O on methanogenesis and other redox processes in anoxic rice soil. FEMS Microbiol Ecol 25: 301– 318. - Kukkadapu, R.K., Zachara, J.M., Smith, S.C., Fredrickson, J.K., and Liu, C. (2001) Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. *Geochim Cosmochim Acta* 65: 2913–2924. - Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., and Kennedy, D.W. (2004) Biotransformation of two-line silicaferrihydrite by a dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. *Geochim Cosmochim Acta* 68: 2799–2814. - Lack, J.G., Chaudhuri, S.K., Kelly, S.D., Kemner, K.M., O'Connor, S.M., and Coates, J.D. (2002) Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl Environ Microbiol 68: 2704–2710. - Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn (IV) reduction. *Microbiol Rev* 55: 259–287. - Lovley, D.R. (2000) Fe(III) and Mn(IV) reduction. In Environmental Metal-Microbe Interactions. Lovley, D.R. (ed.). Washington, DC, USA: American Society for Microbiology Press, pp. 3–30. - Lovley, D.R. (2002) Fe(III)- and Mn(IV)-reducing prokaryotes. In *The Prokaryotes*. Stackebrandt, E. (ed.). NY, USA: Springer-Verlag [www document]. URL http://et.springer-ny.com:8080/prokPUB/index.htm. - Lovley, D.R., and Phillips, E.J.P. (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. *Appl Environ Microbiol* 54: 1472–1480. - Lovley, D.R., and Anderson, R.T. (2000) The influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. J Hydrol 8: 77–88. - Mahne, I., and Tiedje, J. (1995) Criteria and methodology for identifying respiratory denitrifiers. *Appl Environ Microbiol* **61:** 1110–1115. - Medlin, L., Elwood, H.J., Stickel, S., and Sogin, M.L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. *Gene* **71**: 491–499. - Millero, F.J., Sotolongo, S., and Izaguirre, M. (1987) The oxidation kinetics of Fe(II) in seawater. *Geochim Cosmochim Acta* **51:** 793–801. - Moran, M.A., Torsvik, V.L., Torsvik, T., and Hodson, R.E. (1993) Direct extraction and purification of rRNA for ecological studies. *Appl Environ Microbiol* **59**: 915–918. - Muyzer, G., and Ramsing, N.B. (1995) Molecular methods to study the organization of microbial communities. *Water Sci Technol* **32:** 1–9. - Muyzer, G., Dewaal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl Environ Microbiol* 59: 695–700. - Muyzer, G., Hottentrager, S., Teske, A., and Wawer, C. (1995) Denaturing gel electrophoresis of PCR-amplified 16S rDNA a new molecular approach to analyse the genetic diversity of microbial communities. In *Molecular Microbial Ecology Manual*. Akkermans, D.L., vanElsas, J.D., and deBruijn, F.J. (eds). Dordrecht, the Netherlands: Kluwer, pp. 3.4.4.1–3.4.4.22. - Nielsen, J.L., and Nielsen, P.H. (1998a) Microbial nitratedependent oxidation of ferrous iron in activated sludge. *Environ Sci Technol* 32: 3556–3561. - Nielsen, J.L., and Nielsen, P.H. (1998b) Microbial Fe(II)-oxidation by nitrate in activated sludge. *Water Sci Technol* **37:** 406–406. - Obuekwe, C.O., Westlake, D.W.S., and Cook, F.D. (1981) Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. *Can J Microbiol* **27**: 692–697. - Ratering, S., and Schnell, S. (2000) Nitrate-dependent iron (II) oxidation in paddy soil. *Environ Microbiol* **3:** 100–109. - Roden, E.E., and Lovley, D.R. (1993) Evaluation of <sup>55</sup>Fe as a tracer of Fe(III) reduction in aquatic sediments. *Geomicrobiol J* **11:** 49–56. - Roden, E.E., and Wetzel, R.G. (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. *Limnol Oceanogr* 41: 1733–1748. - Roden, E.E., and Urrutia, M.M. (2002) Influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides. *Geomicrobiol J* **19:** 209–251. - Roden, E.E., Sobolev, D., Glazer, B., and Luther, G.W. (2004) Potential for microscale bacterial Fe redox cycling at the aerobic–anaerobic interface. *Geomicrobiol J* 21: 379–391. - Schwertmann, U., and Cornell, R.M. (1991) Iron Oxides in the Laboratory. New York, NY, USA: Weinheim. - Senko, J.M., and Stolz, J.F. (2001) Evidence for irondependent nitrate respiration in the dissimilatory ironreducing bacterium Geobacter metallireducens. Appl Environ Microbiol 67: 3750-3752. - Senn, D.B., and Hemond, H.F. (2002) Nitrate controls on iron and aresenic in an urban lake. Science 296: 2373- - Shelobolina, E.S., Gaw-VanPraagh, C., and Lovley, D.R. (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20: 143-156. - Singer, P.C., and Stumm, W. (1972) Acid mine drainage the rate limiting step. Science 167: 1121-1123. - Sorensen, J. (1982) Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43: 319-324. - Stookey, L.L. (1970) Ferrozine a new spectrophotometric reagent for iron. Anal Chem 42: 779-781. - Straub, K.L., Benz, M., Schink, B., and Widdel, F. (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62: 1458-1460. - Straub, K.L., and Buchholz-Cleven, B.E.E. (1998) Enumeration and detection of anaerobic ferrous-iron oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl Environ Microbiol 64: 4846-4856. - Straub, K.L., Benz, M., and Schink, B. (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34: 181-186. - Straub, K.L., Schonhuber, W.A., Buchholz-Cleven, B.E.E., and Schink, B. (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygenindependent iron cycling. Geomicrobiol J 21: 371-378. - Stumm, W., and Sulzberger, B. (1992) The cycling of iron in natural environments: considerations based on laboratory - studies of heterogeneous redox processes. Geochim Cosmochim Acta 56: 3233-3257. - VanBreemen, N. (1988) Long-term chemical, mineralogical and morphological effects of iron-redox processes in periodically flooded soils. In Iron in Soils and Clay Minerals. Stucki, J.W., Goodman, B.A., and Schwertmann, U. (eds) Boston: D. Reidel Publishing, pp. 811-823. - VonWintzingerode, F., Goebel, U.B., and Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21: 213-229. - Wagner, R. (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161: 100-109. - Weber, K.A. (2002) Microbial coupling between nitrogen and iron cycles. Potential implications for nitrate and iron biogeochemistry and metal mobility in sedimentary environments. PhD Dissertation. University of Alabama, Tuscaloosa, AL, USA. - Weber, K.A., Picardal, F.W., and Roden, E.E. (2001) Microbially-catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ Sci Technol 35: 1644-1650. - Wetzel, R.G., and Likens, G.E. (1991) Limnological Analyses. New York, NY, USA: Springer-Verlag. - Woomer, P.L. (1994) Most probable number counts. In Methods of Soil Analysis Part 2 – Microbiological and Biochemical Properties. Bigham, J.M. (ed.). Madison, WI, USA: Soil Science Society of America, pp. 59-79. - Zachara, J.M., Fredrickson, J.K., Smith, S.C., and Gassman, P.L. (2001) Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim Cosmochim Acta 65: 75-93. - Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol **62:** 316-322.