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ABSTRACT. Objective. Humans have a limited ability to

accurately and continuously analyse large amount of data. In

recent times, there has been a rapid growth in patient monitoring

and medical data analysis using smart monitoring systems. Fuzzy

logic-based expert systems, which can mimic human thought

processes in complex circumstances, have indicated potential to

improve clinicians’ performance and accurately execute

repetitive tasks to which humans are ill-suited. The main goal

of this study is to develop a clinically useful diagnostic alarm

system based on fuzzy logic for detecting critical events during

anaesthesia administration. Method. The proposed diagnostic

alarm system called fuzzy logic monitoring system (FLMS) is

presented. New diagnostic rules and membership functions

(MFs) are developed. In addition, fuzzy inference system (FIS),

adaptive neuro fuzzy inference system (ANFIS), and clustering

techniques are explored for developing the FLMS’ diagnostic

modules. The performance of FLMS which is based on fuzzy

logic expert diagnostic systems is validated through a series of off-

line tests. The training and testing data set are selected randomly

from 30 sets of patients’ data. Results. The accuracy of

diagnoses generated by the FLMS was validated by comparing

the diagnostic information with the one provided by an

anaesthetist for each patient. Kappa-analysis was used for

measuring the level of agreement between the anaesthetist’s

and FLMS’s diagnoses. When detecting hypovolaemia, a

substantial level of agreement was observed between FLMS and

the human expert (the anaesthetist) during surgical

procedures. Conclusion. The diagnostic alarm system FLMS

demonstrated that evidence-based expert diagnostic systems can

diagnose hypovolaemia, with a substantial degree of accuracy, in

anaesthetized patients and could be useful in delivering decision

support to anaesthetists.

KEY WORDS. patient monitoring systems, fuzzy logic, anaesthesia

monitoring, hypovolaemia diagnosis, ANFIS.

INTRODUCTION

Over the past two decades, computers have played an
important part in research related to clinical decision-
making process. Over the next two decades, computers
would be capable of delivering significant assistance to
healthcare professionals and patient monitoring. In the
1960’s, Szolovits et al. [1] and Shortliffe et al. [2] suggested
a coherent summary of computer-aided decision making
in medicine. Anaesthetists are typically required to mon-
itor displays over extended periods, and to execute overt
detection responses to the appearance of low probability
critical signals. Although signals are usually perceivable to
the alerted observers, there is still possibility of being
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missed in the operating environment [3]. Hence, expert
systems have the potential to improve clinicians’ perfor-
mance by accurately executing repetitive tasks for which
humans are ill-suited, such as physiological parameter
analysis and surveillance. Additionally, expert systems can
be employed to standardize clinical guidelines and deliver
assistance to the clinicians [4, 5]. Human errors in
anaesthesia account for more than 80% of the preventable
mishaps [6]. Computers have the capability to monitor
large volumes of diverse data rapidly, whereas humans are
only able to monitor a maximum of seven different
parameters at a time [7]. Van den Eijkel et al. [8] suggested
that such limitations could be overcome by using a
knowledge-based anaesthesia monitor (expert system)
which is an evidence/knowledge-based system that anal-
yses the data and presents the results to the anaesthetist;
this could potentially prevent such mishaps.

Decision support systems in anaesthesia monitoring

Decision Support Systems (DSS) are designed to integrate
information from a patient monitoring system, which is
computerised medical knowledge base, and an inference
engine to generate case-specific and situation-specific
advices [9, 10]. The DSS could also help anaesthetists to
make decisions in complex situations where continuous
monitoring of highly critical physiological parameters
such as heart rate (HR), blood pressure (BP), end-tidal
carbon-dioxide (ETCO2) and systolic arterial pressure
(SAP) require immediate response [11].

The challenge is to develop a computer application that
would be able to accumulate all information in a variable,
or several variables, over time, and identify when the
trend in observations has changed. In recent years, there
has been rapid growth in patient monitoring approach
using DSS, smart alarm monitoring systems, expert sys-
tems, computer-aided protocols and fuzzy logic systems
[4, 12–15].

Background review

Computer programs employing fuzzy logic are intended
to imitate human thought processes in complex circum-
stances, but to function at greater speed [16]. Fuzzy logic-
based expert systems have been developed in many areas
of patient monitoring. Investigation towards control of
anaesthetic gases and BP by Sieber et al. [17] indicated that
accurate control of mean alveolar concentration of iso-
flurane can be performed by a system that altered the gas
flow rates. Carregal et al. [18] reported that postoperative
pain control resulting in the patient’s target analgesia level

achieved a positive result as much as 77% of the time, and
there are many more such examples [19].

Fuzzy logic based systems

Lowe [20] developed a system called SENTINEL which
could identify faults and assist clinicians in diagnosing of
anaesthetic patients. It detects pathological events during
anaesthesia by on-line analysing physiological signals.
Moreover, fuzzy pattern matching technique which is
known as fuzzy trend templates was employed to detect
vaguely specified patterns in multiple physiological data
streams. As an expert system, SENTINEL incorporated
the knowledge of many consultant anaesthetists and
achieved sensitivity and specificity accuracy of above 90%
in the diagnosis of seven common or serious conditions
that can arise during anaesthesia.

Lowe and Harrison [21] developed a fuzzy logic based
algorithm for detecting a rare pathological condition
called malignant hyperpyrexia (MH). In this study, rule-
based diagnoses were performed to detect the changes in
the patterns of symptoms. In an offline validation of the
algorithm, the system detected MH 9 min before the
anaesthetist. These investigations demonstrate how expert
systems can be employed to facilitate and enhance
anaesthetists’ performance in the clinical environment,
thus improving patient safety.

Esmaeili et al. [22] designed a fuzzy rule based system
which integrates main features of an electroencephalo-
gram (EEG) to quantitatively estimate the depth of
anaesthesia (DoA). The experimental data was divided
into four well-defined anaesthetic states: awake, moderate
anaesthesia, surgical anaesthesia, and isoelectric (deeply
unconscious). Statistical analysis of the selected EEG fea-
tures was used to design the membership functions (MFs)
of the fuzzy logic system. Training data was employed
in an adaptive network-based fuzzy inference system
(ANFIS) to classify partitions based on the level of DoA.
Moreover, a fuzzy inference system (FIS) and designed
output MFs were employed to extract efficient fuzzy
IF–THEN rules for this system. The fuzzy rule-base index
(FRI) was used to calibrate the rules between 0 (isoelec-
tric) and 100 (fully awake). The main focus of the study
was to simplify the mutual knowledge exchange between
the human expert and the machine, and achieve
enhancement in both the interpretability of the results and
the performance of the system.

Mahfouf et al. [19] developed a Mamdani type of fuzzy
model using anaesthetists’ knowledge described by fuzzy
IF–THEN rules. Clinical data was used to construct the
patient model. An ANFIS was then used to train fuzzy
Takagi–Sugeno–Kang (TSK) models so as to describe
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different signals. A stimulus model was used to establish
the effects of surgical stimulus on HR and SAP according
to the level of analgesia used to model different signals.

Harrison and Connor [23] developed an anaesthesia
alarm system that detects the changes in SAP and states
that a decrease in SAP of 10 mmHg from a previous value
of 70 mmHg has a greater clinical significance than a
decrease of 10 mmHg from 150 mmHg. They processed
SAP data to create a mathematically straight forward sta-
tistical tool for sampling intervals up to 5 min. Using
Pythagoras’s theorem, they combined the value for the
standard deviation of SAP and the standard deviation of
the change in SAP, so instead of alarms being set in
mmHg, they would be set in standard deviations. This
technique was developed further using principal compo-
nent analysis to isolate uncommon deviations from nor-
mal, clinically unimportant, physiological variations. This
may turn out to be clinically useful.

Otero et al. [24] developed a multivariable fuzzy tem-
poral profile (MFTP) model, a formal model for
describing certain monitoring criteria as a set of mor-
phologies defined over the temporal evolution of the
patient’s physiological variables and a set of relations
between them. The MFTP model represents these mor-
phologies through a network of fuzzy constraints and a
knowledge acquisition tool, TRACE, with which clinical
staff can design and edit alarms based on the MFTP
model. Results show that sixteen alarms were designed
using 196 h (78 patients) of data in which among 912
triggered alarms only 7% were false positives.

Belal et al. [25] developed an open loop feedback
intelligent system for neonatal intensive care manage-
ment. The system collects 18 parameters from the bed-
side monitor and ventilator using a medical information
bus (MIB) system. The validation process compared the
recommendations triggered by the system with the user
feedback (agree, disagree, wait). The clinician agreed
with 91% of the system’s ventilation decisions, 94% of
oxygenation decisions. The overall percentage of the
agreement between the system and the clinician was
93%.

Most of the reviewed expert systems demonstrated a
significant improvement in the diagnosis systems which
can facilitate practitioners’ performances in the clinical
environment. However, using only off-line data with a set
of conditions may cause some degradation and errors in
these systems for on-line applications. Furthermore, due
to their broad-spectrum applications, these systems may
generate lots of false alarms when dealing with a specific
pathological event such as hypovolaemia. In addition,
some of these methods suffer from lack of user-friendly
display which is normally requested by clinicians. The
display modules of the reviewed systems are designed to

encompass the broader case scenarios which require more
complexity.

That is, the objective of the current research is to im-
prove the previously designed systems. The proposed
FLMS is evaluated both with off-line and on-line data
collected from 30 patients during surgery. It can be real-
ized by a user-friendly display for a specific clinical event,
such as hypovolaemia, and it can reduce the number of
false alarms significantly. Moreover, it is aimed to reduce
the system complexity by imposing limited number of
rules specifically related to hypovolaemia. For example,
seven fuzzy rules are introduced to not only detect the
on-set of hypovolaemia but also classify this event as
severe, moderate, and mild.

Hypovolaemia

Hypovolaemia refers to a surgical condition in which
rapid fluid loss results in multiple organ failure due to
decrease in volume of blood plasma. Harrison and Con-
nor [26] have described the heuristic relationships patterns
for some common critical states which might arise during
anaesthesia administration (hypovolaemia). These heuris-
tic relationships (refer Table 1) combine the transforma-
tion in observable physiological variables like BP, HR and
pulse volume (PV) to reveal the patterns for clinical
pathological states. For instance the heuristic relationship
for absolute hypovolaemia is identified by an increase in
HR and decrease in BP and decrease in PV. The fol-
lowing sections give an insight to the development stages
of the proposed FLMS system which include data col-
lection, data conversion, design and structure of the
proposed system.

FUZZY LOGIC MONITORING SYSTEM DEVELOPMENT

Fuzzy logic is generally an effective tool for describing the
characteristics of a system that is complex or too difficult
to be defined by a precise mathematical analysis. The
theory behind fuzzy logic is based on approximate rea-
soning which plays a major role in the human thought
process. The aim of fuzzy logic is to build a flexible
information processing system which provides soft deci-
sion strategy resembling human decision making. It
delivers a remarkably simple way to draw definite con-
clusions from vague, ambiguous, or imprecise informa-
tion. In a sense, it resembles human decision making with
its ability to work with approximate data yet find precise
solutions [27]. In the following section the experimental
data used to develop and evaluate the proposed fuzzy logic
based system is explained.
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Data collection and data conversion

The physiological data was downloaded from the S/5
Datex-Ohmeda (GE, Datex-Ohmeda, Helsinki, Finland)
anaesthesia monitor for patients undergoing major sur-
gery. The data was collated with informed consent from
30 patients in the Auckland City Hospital operating
theatre suite in New Zealand, with the respective local
ethical approvals obtained. A software program called
‘‘S/5 Collect from GE Healthcare Ltd.’’ was employed for
data acquisition.

However, the S/5 Collect software application can
only collect data from S/5 monitor and download it into
the data collection computer. The data has then to be
saved into a digital data file, in DOF format, which can be
used for offline analysis. There is no provision for relaying
data to any other device or application. Therefore, it
cannot be used for real time data collection and testing.
The data collection methodology had to be changed
when the hospital’s anaesthesia data logging system
(IDAS; SaferSleep Ltd) was introduced which occupied
the only available serial port. Part of the collated data
using S/5 Collect, was utilized for offline testing of this
project as indicated in the setup shown in Figure 1.

DOMonitor.Net [28] is a JAVA.NET-based data col-
lection application. Originally, it was used to acquire data
from the S/5 monitor, save captured data to a digital file,
and simultaneously relay the data over another serial port.
The digital file saved by the application can be used for
offline analysis. DOMonitor had to be modified so that
the acquired data could be relayed for real-time analysis.
This application served as a very handy tool for testing as it
performed the tasks simultaneously; this streamlined the
whole process. It acquires data from the S/5 monitor and
relays it to IDAS over another serial port, and also
transmits the required signals over a transmission control
protocol (TCP) port. It saves the selected waveform data
to a readable digital file that can be accessed in offline
mode for retrospective analysis.

Design and structure of the proposed FLMS

Figure 2 shows the building blocks of the proposed
FLMS; it consists of the following nine sections:

1. Raw Data—The input patient data which contains
noise.

2. Filtering—A combination of lowpass, highpass and
variance based filters applied to the raw data for
smoothing/filtering purposes.

3. Filtered Data—The filter output used by the FLMS for
analysis and diagnosis purposes.

4. Clustering—Clustering of numerical data forms the
basis of many classification and system modelling algo-
rithms. The purpose of clustering is to identify natural
grouping of data from a large data set to produce a
concise representation of a system’s behaviour. Matlab’s
fuzzy logic toolbox allows finding the clusters in the
input–output training data (patients’ training data). Two
types of clustering techniques can be adopted, subtrac-
tive and fuzzy c-means (FCM) clustering. The clustering

Fig. 1. Operating theatre setup with Datex S/5 monitor and IDAS
system.

Fig. 2. Building blocks of the proposed FLMS.

Table 1. The limits of normalized parameters for mild, moderate
and severe Hypovolaemia

Hypovolaemia Mild Moderate Severe

Heart rate (HR) 1.75–3 3–5 5 & >

Blood pressure (BP) 2.75–5 5–6 6 & >

Pulse volume (PV) 4–6 6–8 8 & >
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stage of the proposed system employs FCM algorithm to
provide information about the cluster centres as well as
assigning membership grades for each cluster.

5. Fuzzy inference system (FIS)—Using the clustered
information obtained in the previous section, a
Sugeno-type FIS structure was created for training the
data through an ANFIS.

6. Adaptive neuro-fuzzy inference system (ANFIS)—An
ANFIS was used to train fuzzy model for the classifi-
cation of the patient data. Sugeno model is used for
training and testing of the ANFIS and Mamdani model
is used for testing of the FLMS.

7. Membership functions (MFs)—The selection of the
MF’s limits, which is one of the important part of the
system, was set after analysing the clustered data and
ANFIS outputs. Three membership functions were set
for each input as mild, moderate, and severe to gen-
erate a total of nine (3 9 3) MFs for three inputs of
HR, BP and PV. Mild, moderate and severe refer to
different degrees of abnormally high values of these
parameters. The limits and range values of each MFs
were set accordingly to map the corresponding input
to the desired output space.

8. Rules—The rules were created using all nine MFs to
map the best output to each input and include all
possible levels of hypovolaemia which were detected
throughout the training sessions. The rules partition
themselves according to the fuzzy qualities associated
with each clusters.

9. Warning/Alert—The FLMS generates warnings or
alerts as an output when the hypovolaemia level is
mild, moderate, or severe.

The following section explains the details of the pro-
posed FLMS with three conditions and seven rules.

The FLMS flowchart

The filtered data was divided into 5-min intervals and
used as batches in the FLMS for testing. For some patients
the 5-min interval was increased to 10 or 15 min,
depending on the data quality. Figure 3 shows the FLMS
flowchart imposing the following three main conditions:

1. Three inputs: The system checks for the detection of
HR, BP and PV as the acceptable inputs.

2. 3 9 3 MFs: As discussed in the previous section a total of
nine MFs were set for HR, BP and PV parameters. Any
value below the mild would be considered as normal.

3. Seven Rules: The rules were set using the training data set
with their MFs. Sugino type of fuzzy model was selected
considering anaesthetists’ knowledge as described by

fuzzy IF–THEN rules and the training data set were used
to construct the rules and patient model as follows.

I. If (ECG-HR is mild) and (BP is mild) and (PV is mild)
then (HYPOVOLAEMIA is mild).

II. If (ECG-HR is moderate) and (BP is moderate) and
(PV is moderate) then (HYPOVOLAEMIA is mod-
erate).

III. If (ECG-HR is severe) and (BP is severe) and (PV is
severe) then (HYPOVOLAEMIA is severe).

IV. If (ECG-HR is mild) and (BP is mild) and (PV is
moderate) then (HYPOVOLAEMIA is moderate).

V. If (ECG-HR is mild) and (BP is moderate) then
(HYPOVOLAEMIA is mild).

VI. If (ECG-HR is mild) and (BP is mild) and (PV is
severe) then (HYPOVOLAEMIA is moderate).

VII. If (ECG-HR is mild) and (BP is severe) and (PV is
moderate) then (HYPOVOLAEMIA is moderate).

While it is possible to use more rules than the above-
mentioned seven rules, it was found that adding more
rules will increase the number of false alarms (false posi-
tives and false negative). If all three conditions that are
related to inputs, MFs and rules become true and that at
least one of the seven rules is satisfied, then the system

Fig. 3. Flow chart of the proposed FLMS.
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generates a warning according to the level of Hypovola-
emia. Otherwise, a normal situation is inferred.

Next section presents details of the FLMS’s diagnosis
features and the criteria used to obtain the critical values
for detecting changes in the parameters.

Diagnosis features of the proposed FLMS

The filtered data used for offline simulation and analysed
retrospectively by revisiting all available patient informa-
tion for each record. The FLMS can be used in real-time
with some modifications in the data analysis to overcome
any possible delay in diagnosis of Hypovolaemia. The data
from 30 patients were divided into sub intervals of 5 min,
and every three intervals were re-combined to a 15-min
time slot. Epochs of 15-min durations were used for
offline analysis to match the anaesthetist’s diagnosis which
is made at 15-min intervals.

The FLMS’s offline version is capable of reading the
given patient data files. It can analyse data and generate
alarms for the complete data set obtained from the patient
files. The output of the FLMS has been classified into
three categories: mild, moderate, and severe based on the
following limits and conditions:

• The limits of MFs were set so that the system can detect
changes in the input parameters, rather than the crisp
numerical values.

• The mean-removed values of each 5-min time interval
data (HR, BP and PV) were calculated. The standard
deviation (SD) of each parameter (HR, BP and PV) for
the whole data set was also calculated.

• The normalization of each parameter for every 5-min
interval was performed by dividing the mean-removed
data by its SD. For example, the normalized HR for every
5-min interval was calculated by dividing the mean-
removed values by the SD of the whole HR data.

HR value�mean HR valuej=SDj

• The normalised value was used to obtain the changes in
parameters rather than the crisp numerical values. The
limits of each normalised parameter for mild, moderate
and severe hypovolaemia are indicated in Table 1. For

example if the normalised HR is greater than five and the
normalised BP is greater than six and the normalised PV is
greater than eight then the hypovolaemia is severe.

• Normal conditions for the system will be when the
normalised HR is less than 1.75, the normalised BP is
less than 2.75 and the normalised PV is less than four.

Following section discusses the validation of results of
the proposed FLMS using kappa analysis and comparing
the results with other monitoring systems.

VALIDATION AND TESTING

Diagnostic speed and accuracy may vary between anaes-
thetists, the authenticity of the diagnosis depending on
their skills and experience. For evaluating the diagnostic
performance of the FLMS, Kappa analysis [29] was used to
measure the level of agreement its diagnosis with the one
presented by an expert anaesthetist. Kappa is used as the
measure of how accurately FLMS can mimic anaesthetists’
performance. The value of Kappa presented in Table 2
indicates the level of agreement/disagreement between
the expert and FLMS.

The diagnostic performance of FLMS was verified
through a series of offline (retrospective) trials using the data
from 30 patients in a simulation environment. Real-time
trials are required to complete the validation and fine-
tuning of the system.

FLMS was trained with data from 15 patients and tested
with data from the remaining 15 patients each with
15-min epochs. The training and testing data sets were
selected randomly form the whole 30 sets of patient’s data.
Table 2 summarizes the Kappa analysis results for FLMS’s
performance and compare it with RT-SAAM. In this
table, Po, Ppos, and Pneg are overall, positive, and negative
agreements, respectively. SE represents the standard error
and CI95% is 95% confidence intervals for Kappa.

The results show that the developed diagnostic system
(FLMS) is capable of diagnosing the pathological events with
a substantial level of agreement with the anaesthetist. The
level of disagreement needs further analysis as it is possible
that FLMS was correct and the anaesthetist was wrong.

Table 2. Comparing Kappa results of FLMS and RT-SAAM [30]

System Overall

Agreement

Positive

Agreement

Negative

Agreement

Agreement by

Chance

Standard

Error

95% Confidence

Intervals for K

Kappa

Value

Po Ppos Pneg Pe SE CI95% K

FLMS 0.89 0.80 0.92 0.59 0.06 0.85 and 0.61 0.73

RT-SAAM [30] 0.81 0.83 0.79 0.50 0.06 0.73 and 0.51 0.62
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Table 2 also compares the Kappa analysis results for the
proposed system and RT-SAAM. The Kappa value of
FLMS and RT-SAAM is 73 and 62%, respectively. It
shows a significant improvement in the performance of
the proposed FLMS and a higher level of agreement with
the anaesthetist in comparison with the previously
developed RT-SAAM [30].

Table 3 summarizes the methods, parameters used, diag-
nostic events, and the results of six fuzzy-based expert systems
as reviewed in the introduction [20, 21, 23–25, 30] with the
ones for thedevelopeddiagnostic system (FLMS).The results
demonstrate a significant improvement in the proposed
system particularly in terms of the level of agreement with
anaesthetist in diagnosing the on-set of hypovolaemia as well
as classifying its level to severe, moderate, and mild.

Moreover, the FLMS performance in relation to the
computational power and the execution time is superior
in comparison with some of the existing systems
employed for fault detection and diagnosis in anaesthesia
[20]. The FLMS was trialed with 15 patients’ data with
the average duration of 5 h. In total the system was trialed
with approximately 75 h data. Training time for the
FLMS was approximately 10 s and the testing time was
approximately 5 s for each patient’s data set. The fol-

lowing section discusses the result achieved by the system
with some recommendations in order to make the system
more clinically useful in future.

DISCUSSION

The proposed FLMS system achieved the overall agree-
ment of 89% with anaesthetist in offline mode. The FLMS
has been developed using three MFs and seven rules to
diagnose hypovolaemia through detecting changes in the
physiological parameters with respect to their SD limits. It is
expected that the proposed optimally designed alarm system
generates warning within a short interval in order to pro-
vide the opportunity for clinicians to take appropriate
action before a critical pathological event occurs. On the
other hand, the system should limit its false alarms. To fulfil
these criteria, the system needs to detect trends as well as
monitor thresholds in order to alert anaesthetists before the
dependent variable reaches a critical level. Several trend
detecting alarm systems have been designed to deactivate
the alarms if the adverse condition persists. Moreover,
including more input parameters would improve online
detection of other anaesthesia related events.

Table 3. Summary of six fuzzy-based systems and the proposed FLMS

Study Technique/method used Parameters used Diagnostic events Study results

Lowe [20] SENTINEL monitoring

system,

that helps in FDD

HR, SAP, MAP,

ETCO2, RR, BP, PV,

SPO2

Seven different

physiological

events

Sensitivity and specificity

above 90%

Lowe and

Harrison [21]

Fuzzy logic based

algorithm

SBP, HR, ETCO2 Malignant

hyperpyrexia

(MH)

Detected MH 9 min

before the anaesthetist’s

diagnosis

Belal et al. [25] An open loop feedback

intelligent system

18 parameters Ventilation

and oxygenation

management

system

Clinician agreed with

system’s ventilation of

91% and oxygenation

of 93%

Otero

et al. [24]

A multivariable fuzzy

temporal profile model

HR, BP, RR, SpO2 Addressing the

flaws and

limitations of

threshold alarms

Out of 912 alarm triggered,

only 7% were false

positives

Harrison and

Connor [23]

An anaesthesia alarm

system based on principal

component analysis

SAP Detects the

changes in SAP

The system output is more

clinically useful

Bhupendra

et al. [30]

RT-SAAM using fuzzy,

probabilistic and

SPV modules

HR, SAP, MAP,

ETCO2, RR, BP, PV

Two

physiological

events

Substantial to fair level

(K = 0.62) of agreement

with anaesthetist

FLMS Fuzzy rule based system,

FIS, ANFIS

BP, HR and PV Detection of

Hypovolaemia

Substantial to fair level

(K = 0.73) of agreement

with anaesthetist

Baig et al.: Anaesthesia monitoring using fuzzy logic 345



The FLMS was trialled with offline data using 30 patients
data divided into sub-intervals of 5 min for each record. In
comparison with the anaesthetists who normally check the
Hyphovolaemia every 15 min, the allocated 5-min delay in
triggering the FLMS alarm was found to be acceptable.
However, as a future work it would be possible to consider
the overlapping windows for patient’s data to achieve a
faster response.

CONCLUSION

The developed diagnostic alarm system has indicated that
evidence based expert diagnostic systems can accurately
diagnose hypovolaemic events in anaesthetized patients
and can be useful in delivering of decision support to the
anaesthetists. The complete validation of the system, as a
clinically useful diagnostic alarm system, can only be
verified after real-time trial. This system is ready to be
tested in the real-time setup, although it is likely that it
will need further refinement and enhancement with
additional features for routine clinical use. This system can
be considered as a clinically useful tool as verified by the
overall results, and when compared with other monitor-
ing systems.
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