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Asilomar — The Cradle of Full-Duplex Wireless
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2007 T. Riihonen, R. Wichman, and J. Hämäläinen: “Co-phasing full-duplex relay link with
non-ideal feedback information” was unsuccessful, presented later at IEEE ISWCS 2008

2008 T. Riihonen, S. Werner, J. Cousseau, and R. Wichman: “Design of co-phasing allpass
filters for full-duplex OFDM relays”

2009 T. Riihonen, S. Werner, and R. Wichman: “Spatial loop interference suppression in
full-duplex MIMO relays”

2010 M. Duarte and A. Sabharwal: “Full-duplex wireless communications using off-the-shelf
radios: Feasibility and first results”

++++ P. Lioliou, M. Viberg, M. Coldrey, and F. Athley: “Self-interference suppression in full-duplex
MIMO relays”

++++ T. Riihonen, S. Werner, and R. Wichman: “Residual self-interference in full-duplex MIMO
relays after null-space projection and cancellation”

2011 B. P. Day, D. W. Bliss, A. R. Margetts, and P. Schniter: “Full-duplex bidirectional MIMO:
Achievable rates under limited dynamic range”

++++ E. Everett, M. Duarte, C. Dick, and A. Sabharwal: “Empowering full-duplex wireless
communication by exploiting directional diversity”

++++ T. Riihonen, S. Werner, and R. Wichman: “Transmit power optimization for multiantenna
decode-and-forward relays with loopback self-interference from full-duplex operation”

2012 Two special sessions and ten papers! The ultimate breakthrough for this research topic?



Full-Duplex Wireless: What? Why? When?
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• “Full-duplex” wireless communication

= systems where some node(s) may transmit (Tx) and
receive (Rx) simultaneously on a single frequency band

• Progressive physical/link-layer frequency-reuse concept

= up to double spectral efficiency at system level, if the
significant technical problem of self-interference is tackled

• Temporal symmetry is needed to make the most of full duplex

= Tx and Rx should use the band for the same amount of time
− (a)symmetry of traffic pattern, i.e.,

requested rates in the two simultaneous directions
− (a)symmetry of channel quality, i.e.,

achieved rates in the two simultaneous directions



Full-Duplex Communication Scenarios

Taneli Riihonen Full-Duplex MIMO-OFDM Transceivers – 5 / 36

Source Destination

Downlink user Uplink user

Relay

Terminal 1 Terminal 2

Access point

1) Multihop relay link
• Symmetric traffic
• Asymmetric channels
• Direct link may be useful

2) Bidirectional communication
link between two terminals

• Asymmetric traffic (maybe)
• Symmetric channels (roughly)

3) Simultaneous down- and uplink
for two half-duplex users

• Asymmetric traffic
• Asymmetric channels
• Inter-user interference!



Generic Full-Duplex MIMO Transceivers
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Full-duplex transceiver

Full-duplex transceiver Full-duplex transceiver

Full-duplex transceiver

The basic building block
for more complex networks

• The benefits go beyond
the physical layer!

• Will single-array
full-duplex transceivers
be viable some day?

In this work: OFDM signal

+ limited Rx dynamic range
(= realistic A/D conversion)

⊲ b-bit quantization
⊲ adaptive gain control

+ analog- vs. digital-domain
self-interference cancellation



Main Practical Problem: Limited Dynamic Range

Taneli Riihonen Full-Duplex MIMO-OFDM Transceivers – 7 / 36

multipath
self-interference

channel

ADC DAC

decoder encoder

OFDM
demodulator

OFDM
modulator

central
processing

unit

• Self-interference may be much stronger than the signal of interest
• Severe risk of saturating analog-to-digital converters (ADCs)

⊲ Quantization noise due to limited resolution
⊲ Clipping noise which is pronounced with OFDM
⊲ Bias in adaptive gain control (AGC) balancing above effects



Digital Cancellation (DC)
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multipath
self-interference

channel

digital
filter

ADC DAC
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demodulator
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central
processing

unit

• Interference cancellation is a straightforward task in digital domain
⊲ The response of a digital cancellation filter can be adapted

to match the frequency-selective self-interference channel
• But nothing can be done at this stage anymore if the signal of

interest is already drowned in clipping-plus-quantization noise



Example on Quantization Noise (b = 4)
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Signal of interest
Interference signal
Sum signal

• ∼1-bit resolution
for the signal of interest

before ADC

after ADC

after digital
cancellation

and
scaling

• ∼3-bit resolution
for the signal of interest



Example on Clipping Noise (b = 4)
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Signal of interest
Interference signal
Sum signal

• ∼2-bit clipped resolution
for the signal of interest

before ADC

after ADC

after digital
cancellation

and
scaling

• ∼3-bit resolution
for the signal of interest



Analog Cancellation (AC)
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filter
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modulator

central
processing

unit

• It would be desirable to eliminate interference before ADCs
• But it is difficult and expensive to adapt the response of an analog

filter to match the time- and frequency-selective MIMO channel
⊲ Typical implementation, simple phase shift and amplification

in each branch, leaves significant residual interference



Combined Analog+Digital Cancellation (AC+DC)
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• The obvious combination of analog- and digital-domain processing
⊲ If analog cancellation could sufficiently suppress

the self-interference such that ADC saturation is avoided,
⊲ then digital cancellation would be able to efficiently eliminate

the remaining self-interference



Hybrid Analog/Digital Cancellation (AC/DC)
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• Smart design à la Duarte and Sabharwal (Asilomar 2010)

⊲ Pros: Circumvents the drawbacks of both AC and DC
⊲ Cons: Extra transmitter chain per each receive antenna

• Channel estimation errors and Tx nonlinearities limit performance



System Model
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Transmitted Signals
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H[k]

Ca[k]

Cd[k]

ADC DAC

xd[i]

xa[i]

OFDM
demodulator

OFDM
modulator

• The full-duplex transceiver tries to receive
the signal of interest from a distant transmitter

• while simultaneously transmitting signal x[i] ∈ CNt×1

to its own designated destination
⊲ Digital-to-analog converters (DACs) are now ideal: xa[i] ≃ xd[i]

• Gaussian-like OFDM signals are assumed throughout this study



Received Signals
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H[k]

Ca[k]

Cd[k]

ADC

x[i]
ya[i]

ŷa[i] za[i]

OFDM
demodulator

OFDM
modulator

• Received analog composite signal: ya[i] = ŷa[i] + za[i] ∈ CNr×1

⊲ the signal of interest is given by ŷa[i] ∈ CNr×1

and PS = E{|{ŷa[i]}m|2} denotes its power at the mth antenna
⊲ interference signal is given by za[i] =

∑∞
k=0 H[k]x[i− k] ∈ CNr×1

and PI = E{|{za[i]}m|2} denotes its power at the mth antenna
• Multipath self-interference channel: H[k] ∈ C

Nr×Nt , k = 0, 1, . . .



Analog Cancellation (AC)
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Ca[k]
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ADC
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demodulator

OFDM
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• After analog cancellation: ỹa[i] = ŷa[i] + z̃a[i]
⊲ the signal of interest ŷa[i] is not affected
⊲ residual interference signal becomes
z̃a[i] =

∑∞
k=0(H[k] +Ca[k])x[i− k]

• Analog cancellation filter: Ca[k] ∈ CNr×Nt , k = 0, 1, . . .
⊲ for example {Ca[k]}m,n =

{

−{H[k]}m,n, if k = argmaxk′ |{H[k′]}m,n|2

0, otherwise



Analog-to-Digital Conversion (ADC)
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H[k]

Ca[k]

Cd[k]

ADC

ỹa[i]

yd[i]

OFDM
demodulator

OFDM
modulator

• 2×Nr ADCs: Re({yd[i]}m) = Q(
√
gm Re({ỹa[i]}m))

Im({yd[i]}m) = Q(
√
gm Im({ỹa[i]}m))

⊲ AGC tunes variable gain amplifier (VGA) setting gm to keep
signal level within the fixed range of quantization block Q(·)

• The theory of non-linear memoryless devices: yd[i] = Aỹa[i] + n[i]
⊲ clipping-plus-quantization noise power is PN = E{|{n[i]}m|2}



Digital Cancellation (DC)
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• After digital cancellation: ỹd[i] = Aŷa[i] + z̃d[i] + n[i]
⊲ interference signal is transformed from zd[i] = Az̃a[i] to
z̃d[i] =

∑∞
k=0(A(H[k] +Ca[k]) +Cd[k])x[i− k]

⊲ clipping-plus-quantization noise term n[i] is not suppressed!
• Digital cancellation filter: Cd[k] ∈ CNr×Nt , k = 0, 1, . . .

⊲ ideally Cd[k] = −A(H[k] +Ca[k]) if there is no estimation error



Complete Signal Model
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ỹd[i]
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• After putting everything together:
ỹd[i] = Aŷa[i] +

∑∞
k=0(A(H[k] +Ca[k]) +Cd[k])x[i− k] + n[i]

• Powers of signal components at the mth antenna:
E{|{ỹd[i]}m|2} = α2PS + E{|{z̃d[i]}m|2}+ PN

where α = {A}m,m

• SINR can be formulated after calculating E{|{z̃d[i]}m|2}



Analytical Results
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Signal to Interference and Noise Ratio (SINR)
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• The ratio of desired signal power to residual interference and
clipping-plus-quantization noise power becomes

γ = ρ
PS

PI/∆a
+ρ/∆d+1

· PS

PI/∆a
where ρ = α2(PS+PI/∆a)

PN

⊲ interference suppression due to cancellation:
∆a = E{|{za[i]}m|2}

E{|{z̃a[i]}m|2} from AC

∆d = E{|{zd[i]}m|2}
E{|{z̃d[i]}m|2} from DC

⊲ signal-to-interference ratio (SIR):
PS

PI
without cancellation

∆a
PS

PI
after AC

∆a∆d
PS

PI
after DC

• A/D conversion affects SINR only through ρ = ρ(α, PN, PS + PI/∆a)

⊲ γ → ∆a∆d
PS

PI
if dynamic range is not the limiting factor (ρ → ∞)



SNR with Limited ADC Resolution
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• The ratio of signal power to clipping-plus-quantization noise power
after ADC, i.e., dynamic range: ρ = α2(PS+PI/∆a)

PN
= α2p

gPN

⊲ AGC tunes VGA setting g such that normalized input power
to the quantization block is constantly p = g (PS + PI/∆a)

• SINR is monotonically increasing in terms of dynamic range ρ:

γ = ρ
PS

PI/∆a
+ρ/∆d+1

· PS

PI/∆a
≤ ∆a∆d

PS

PI

⊲ Thus, system design should always aim at maximizing ρ

irrespective of PS, PI, ∆a and ∆d (as they do not affect ρ)
⊲ Signal type, ADC properties and p define ρ via α2/g and PN

− OFDM transmission
− Uniform quantization
− ADC resolution
− AGC bias



Dynamic Range for Uniform Quantization

Taneli Riihonen Full-Duplex MIMO-OFDM Transceivers – 24 / 36

• Input–output relation for uniform b-bit quantization (Q = 2b):

Q(y) =
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where Φ(·) is the CDF of the standard normal distribution

• ρ = ρ(b, p): The ADC affects achieved dynamic range (and SINR)
only through its resolution and VGA setting (or AGC bias)



Numerical Results
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Dynamic Range vs. VGA Setting
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• Dynamic range can be
maximized by proper AGC:

ρ∗(b) = maxp′ ρ(b, p′)

⊲ results in maximal SINR
with any PS, PI, ∆a and ∆d

• Optimal VGA setting yields

p = p∗(b) = argmaxp′ ρ(b, p′)

• AGC bias:

⊲ when p < p∗(b),
quantization dominates

⊲ when p > p∗(b),
clipping dominates −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

0
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80

90

100

p [dB]

ρ
[d

B
]

b = 12

ρ in terms ofp
ρ∗ for b = 12



Optimal VGA Setting vs. ADC Resolution
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• ρ∗(b) increases in terms of b

⊲ Higher ADC resolution
allows to trade off
quantization noise level
for lower clipping probability

• p∗(b) decreases in terms of b

⊲ AGC should be designed
by choosing VGA setting
based on ADC resolution

⊲ Constant VGA setting
would inevitably result in
significant AGC bias and
loss of dynamic range −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
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Dynamic Range vs. ADC Resolution
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ρ
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B
]

6.02 · b+ 1.76
5.54 · b− 3.26
ρ∗ (numerical optimization)
ρ whenp = −15dB
ρ whenp = −10dB

• Least-squares fit at b = 1, 2, . . . , 20 shows almost linear relation:

ρ∗(b) ≃ 5.54 · b− 3.26 [dB]

• The classic rule-of-thumb, 6.02 · b+ 1.76 [dB], is too optimistic

⊲ Not intended for OFDM signals, e.g., clipping neglected



Loss of Dynamic Range from AGC Bias
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• The loss of dynamic range due to AGC bias is increased
when the ADC resolution is increased

⊲ AGC bias may eat away the benefit of using better ADC
• Low VGA setting is a safe choice: linear loss in terms of AGC bias
• Too high VGA setting causes ADC saturation due to clipping



SINR vs. Dynamic Range (1)
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• Signal to interference
and noise ratio (SINR)
versus dynamic range ρ:

γ = ρ
PS

PI/∆a
+ρ/∆d+1

· PS

PI/∆a

• On the right: Example when

⊲ SIR before AC PS

PI
= −50dB

• Tight bounds if ∆a
PS

PI
< 1:

γ ≤ ρ
PS

PI/∆a
+1

· PS

PI/∆a
≤ ρ · PS

PI/∆a

γ ≤ ρ
ρ/∆d+1 · PS

PI/∆a
≤ ∆d · PS

PI/∆a
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∆a → ∞

∆a = 25dB, ∆d → ∞

∆a = 25dB, ∆d = 50dB
∆a = 25dB, ∆d = 0dB

• Thus, γ ≈ min{ρ,∆d} ·∆a
PS
PI

is a good approximation
in practical situations with limited dynamic range (imperfect AC)



SINR vs. Dynamic Range (2)
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• Signal to interference
and noise ratio (SINR)
versus dynamic range ρ:

γ = ρ
PS

PI/∆a
+ρ/∆d+1

· PS

PI/∆a

• On the right: Example when

⊲ SIR before AC PS

PI
= −50dB

• Tight bounds if ∆a
PS

PI
> 1:

γ ≤ ρ
PS

PI/∆a
+ρ/∆d

· PS

PI/∆a
≤ ρ

γ ≤ ρ
PS

PI/∆a
+ρ/∆d

· PS

PI/∆a
≤ ∆d · PS

PI/∆a
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∆a → ∞

∆a = 50dB, ∆d → ∞

∆a = 50dB, ∆d = 25dB
∆a = 50dB, ∆d = 0dB

• Thus, γ ≈ min{ρ,∆a∆d
PS
PI
} is a good approximation

when analog cancellation works almost perfectly



SINR vs. Digital Cancellation
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• Signal to interference
and noise ratio (SINR)
versus digital suppression ∆d:

γ = ρ
PS

PI/∆a
+ρ/∆d+1

· PS

PI/∆a

• On the right: Example when

⊲ dynamic range ρ = 60dB,
e.g., 12-bit ADC resolution
with small AGC bias
(3dB loss of dynamic range)
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= −60dB,−50dB, . . . , 40dB

• SINR increases linearly in terms of digital suppression
until performance is limited by the ADC dynamic range
or imperfect analog cancellation



Suppression Requirements
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• Minimal digital suppression
needed to achieve γ ≥ γt:

∆d ≥ ρ
PS

PI/∆a
( ρ
γt

−1)−1

• On the right: Example when

⊲ dynamic range ρ = 60dB
⊲ target SINR γt = 25dB

• Digital cancellation is efficient
if target SINR γt ≪ ρ (obviously)
and SIR after AC ∆a

PS

PI
≥ γt

ρ

• Then requirement for combined
analog and digital suppression
becomes simply ∆a∆d ≥ γt

PS/PI
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Conclusion
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Conclusion
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• Wireless full-duplex: A progressive frequency-reuse concept!

⊲ Generic MIMO-OFDM transceivers considered herein

• Challenging implementation: strong self-interference combined
with limited dynamic range, i.e., practical A/D conversion

⊲ Residual self-interference due to non-ideal cancellation
⊲ Quantization noise due to limited b-bit ADC resolution
⊲ Clipping noise due to high peak-to-average power ratio

• Analytical expressions for desired signal power to residual
interference and clipping-plus-quantization noise power ratio

⊲ Optimal adaptive gain control for maximal dynamic range
⊲ Bias in variable gain amplifier setting
⊲ Analog vs. digital cancellation
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