
Analog and Mixed Signal Modelling with SystemC-AMS
Alain Vachoux, EPFL Lausanne

Christoph Grimm, University Frankfurt
Karsten Einwich Fraunhofer, IIS/EAS Dresden

Abstract
SystemC will become more and more important for the design of
digital circuits from the specification down to the RT-Level.
Complex systems often contain analog components. This paper
introduces concepts for the extension of the SystemC
methodology for the specification and design of analog and
mixed signal systems. The concepts will be illustrated on a
telecommunication system including digital hard- and software,
analog filter and an analog environment.

1. Motivation
SystemC supports a wide range of Models of Computation
(MoC) and is very well suited for the design and refinement of
HW/SW-systems from functional down to register transfer level.
However, for a broad range of applications the digital parts and
algorithms interact with analog parts and the continuous-time
environment. Due to the complexity of these interactions and the
importance of the analog parts in the global system's behavior, it
is essential to include the analog parts in the design process of an
Analog and Mixed Signal system.

Simulation performance is therefore very crucial - especially for
the analog parts that usually require more detailed models than
the digital parts. Thus, different and specialized analog
simulators must be introduced to permit the use of the most
efficient simulator for the considered application and level of
abstraction. In this paper, we describe a design methodology
based on analog and mixed-signal extensions of SystemC, .a.k.a.
SystemC-AMS. We also illustrate the methodology with a signal
processing dominated application example.

2. SystemC Overview
SystemC is a design language for discrete-time (digital) systems.
This language is an application of the object oriented
programming language C++ for system design, so SystemC
descriptions can be compiled, executed and debugged using
standard C++ tools. In comparison to languages like VHDL or
Verilog, SystemC supports an arbitrary number of Models of
Computation (MoC) which allows an efficient development of
executable specifications at high abstraction levels and an order
of magnitude faster simulation for abstract models.

The SystemC 2.0 [1] methodology combines features of existing
HDL’s, object oriented techniques and new methodologies for
the design and refinement of digital hardware and software
systems. This methodology is strongly inspired by the
communication model introduced by Gajski [6]. In this
methodology, modules, which consists of other modules or
algorithms (sequential assignments) implemented in methods,
communicates via channels. A set of methods for communication
is specified in an interface. These methods are implemented in a

channel. Modules can call methods of a channel, and events in a
channel can activate methods in a module connected to the
channel. This concept is generic enough to describe systems
using various models of computation, including static and
dynamic multirate dataflow networks, Kahn process networks,
communicating sequential processes, and discrete events (the
MoC of Verilog and VHDL). We call such systems discrete
systems. Predefined description styles allow, e.g. at RT-level, a
description similar to what can be done in VHDL or Verilog.
However due to the generic concept those models can be easily
connected to models described in other styles (like dataflow or
abstract software models) or can be re-used in another context.

Numerous tools supporting SystemC from the specification level
down to register transfer level (RTL) are now available on the
market and SystemC RTL descriptions can be synthesized. Thus
a seamless design flow from the early design stages to the circuit
level is becoming available.

3. SystemC-AMS Methodology
SystemC is used for system-level design tasks, such as the
modeling and refinement of hardware/software – systems. In
such a context, analog models are used most notably for the
following tasks:

Executable Specification: Analog models are often used as an
executable specification of signal processing functions.
Currently, interactive tools with a graphical interface such as
Matlab/Simulink are used for such tasks.

Behavioral Modeling: In the design of analog systems, there is
always a large “bottom-up” part. Behavioral modelling, or
macromodelling, of analog netlists allows us the simulation of
analog circuits in a reasonable time.

Co-Simulation with Environment: On system level, the analog
(continuous-time) environment is co-simulated with the
embedded system. This allows a rough validation of an
executable specification. Furthermore, many designs can be only
validated with such a co-simulation.

In difference to digital systems, analog systems often combine
different physical domains and are very application-specific.
Therefore, concrete applications must be considered.

In telecommunication and multimedia applications, the modeling
of signal processing functions is dominant. These systems are
mostly oversampled using constant time steps. The system is
modeled by a block diagram with directed signal flow. The
blocks are described by linear transfer functions and static non-
linear functions. Often, such a system level description is
combined with linear networks used for (macro)modeling the
system environment. For RF applications, the ability to simulate
the baseband behaviour is required.

In the automotive domain, analog and mixed-signal systems are
often non-linear systems, and usually embrace multiple physical
domains (electrical, mechanical, fluidic, etc.). In difference to
telecommunication and multimedia applications, control systems
in the automotive domain often exhibit very different time
constants (“stiff systems”). Nevertheless, executable
specifications and executable prototypes are also modeled as
block diagrams with directed signal flow.

Although concrete requirements from the above mentioned
application domains must be considered, SystemC-AMS must
also be flexible and generic in order to support modeling,
simulation and design in new application domains [4][5].
Furthermore, the requirements in the discussed application
domains may seem partially contradictory. Rather simple block
diagrams connected with directed signal flow and some external
components seem to be sufficient for many applications on a
high level of abstraction. However, some requirements can only
be fulfilled by solutions which are specific for each application
and level of abstraction considered. For example, a designer
might want to use a dedicated circuit simulator, such as SPICE,
for electrical parts and a dedicated simulator for mechanical
systems for the precise simulation of mechanical components.

This situation can be handled in an open and layered approach
such as the one offered by SystemC-AMS. These extensions to
SystemC are used for the simulation of executable specifications,
implemented as behavioral models, and the environment as far as
possible. Furthermore, a synchronization mechanism permits the
easy integration of additional simulators or solvers. These
additional solvers can be specific for - maybe new - applications
and levels of abstractions that are not covered by the “built-in”
solvers (Figure 1).

SystemC

Synchronization layer

Simulink,
MatrixX, ...

SystemC-AMS
„Built-in“

Saber,
Spice, ...

Piecewise
linear

simulator,...

Other
C++ Solvers

Figure: 1 Illustrates the discussed scenario.

SystemC-AMS must define clear interfaces between different
layers, on which users or programmers can describe their models
or add features to the simulator, depending on their application.

On top of the existing standard SystemC kernel, a
synchronization layer provides methods to synchronize:

• Analog solvers and the discrete kernel of SystemC.
• Different continuous-time solvers/MoCs.

For coupling analog solvers and the discrete kernel, the
following approach is used. Before the first delta cycle of a time

step is executed, all analog simulators are executed, reading the
“old” discrete values and producing updated output signals,
which are then used by the digital processes. Although this
synchronization scheme is simple, it fits the requirements of
system level better than more complex but much slower schemes
found for example in VHDL-AMS.

The synchronization between analog solvers is handled via an
abstract interface, which is implemented in the synchronization
layer. The synchronization layer determines the points in time, at
which analog and digital simulation are synchronized, and the
order in which the analog solvers are executed. For the first
prototype the synchronization is realized by static dataflow.
Again, this synchronization is simple and fast. Note that one can
also realize this interface by another synchronization scheme,
since all communication and synchronization between analog
solvers must only use the abstract interface methods.

On top of the synchronization layer, different analog solvers
(solver layer) compute the behavior of analog blocks. Analog
solvers are accessed from the upper layer via an interface, for
example differential or algebraic equations in a machine-readable
form, such as in a nodal matrix representation. A first prototype
implements a solver for linear differential equations. Together
with static nonlinear functions (which require no solver), this is
sufficient for system level simulations, and results in a faster
simulation than a nonlinear solver.

The view layer provides convenient user interfaces for the analog
solvers. The view layer converts user views, for example netlists
that are mapped to a set of differential or algebraic equations in
the solver layer. The interaction of solver- and view layer can be
compared to a model/view architecture, where one object
provides an abstract data structure, and other objects provide
graphical views of the data structure.

4. Application Example
As an illustration of modelling with SystemC-AMS, a signal
processing dominated application is used. Such kind of
application usually includes analog, digital filter, some analog
linear elements, digital control algorithm and is characterized by
over sampling. Thus on system level several description styles
has to be combined.

Figure: 2 Simplified block diagram of the application
example

Figure 2 shows a strong simplified system view of a so-called
Subscriber Line Interface and Codec Filter (SLICOFI) system

DSP
algorithm

Software

ControllerIn
te

rfa
ce

s

Σ∆ pofi

Σ∆ prefi

hook
KV2W

Control

KIT

Digital Circuit Mixed Signal Circuit High voltage driver

Protection net

Subscriber

Dataflow

Cycle based / event driven Programming language

Linear networks
(results in linear

DAE's)

*
* * * * *

*

* Modules with frequency
domain behavior

Embedded linear DAE's

[7]. Such systems establish the connection between the analog
subscriber line and the digital (e.g. PCM) transmission network.
This system is realized by different IC’s (chip-set) and external
(analog) components. The chip-set includes a high-voltage line
driver, analog filters, A/D- and D/A-converters, digital hardware
filters, DSP-algorithms, control algorithms and interface
algorithms. The new design challenge for such systems is data
transmission in parallel with voice (ADSL).

During system design the external components and the
environment, consisting of the subscriber and the subscriber-line,
will be considered as linear analog networks. The high-voltage
driver is modeled by unidirectional blocks (without feedback
from the previous block). Thus, the static dataflow (SDF) Model
of Computation can be used for block scheduling. Dynamics (e.g.
poles and zeros of the amplifier) are modeled by using embedded
linear DAE’s. Nonlinearities may be included as static or as an
black box model identified by measurements or circuit
simulation. The analog filter (e.g. pre- and post-filter), D/A- and
A/D-converter are modeled similarly. For the digital filter and
DSP-algorithm dataflow blocks are used also. The control
algorithm software is embedded in an event-driven digital model
using a bus functional model. The interfaces are described at RT-
Level.

Usually the design of such a system starts in the frequency
domain as the frequency response. Small-signal signal to noise
ratio estimations are also very important.

In the following, SystemC-AMS models for some blocks using a
prototype implementation of the extensions are given. The sca_
prefix and boldface words are used to denote AMS extensions.
This prototype implementation is optimized for signal processing
dominated applications and uses the static dataflow model of
computation with constant time steps for synchronization. Non-
linear static behavior, linear dynamic equations can be modeled
using representations like transfer functions or state space
equations. Additionally, a description of a conservative linear
network consisting of pre-defined elements like resistors,
capacitors and controlled sources can be described. Such a
network is embedded in a dataflow block. Due to the high over
sampling rates of the considered systems and the constant time
steps, very simple and thus fast integration and synchronization
algorithms can be used. For each dataflow block an optional
frequency domain implementation can be added. For the network
elements this implementations are predefined. This way the
system can be modeled and simulated both in the frequency
domain and the time domain.

Figure 3 shows the description of a analog post-filter whose
cutoff frequency can be selected by a control signal which is
generated in the discrete event (classical SystemC) domain. A
frequency domain implementation for the filter block is also
given.

pofi_pcb

ADSL_LITE

OUTPUTINPUT

(discrete event control port)

(static dataflow) (static dataflow)

SCA_MODULE(pofi_pcb),sca_sdf_synchronization,
 sca_ac_domain_view,
 sca_behavioral_view
{
 sca_sdf_in<double> INPUT; //dataflow inport
 sca_de2sdf_in<bool> ADSL_LITE; //de to df inport
 sca_sdf_out<double> OUTPUT; //dataflow outp.
 double FG0, FG1, K, h; //parameters
 SCA_DAE_ID ltf_id0, ltf_id1;
 sca_vector<double> A0,A1, B0,B1, S;

 void sca_init() // initialization
{
 double wpre0; double wpre1;
 wpre0=2.0*M_PI*FG0; wpre1=2.0*M_PI*FG1;
 A0(0)=1.0; A1(0)=1.0;
 A0(1)=1.41/wpre0; A1(1)=1.41/wpre1;
 A0(2)=1.0/wpre0/wpre0; A1(2)=1.0/wpre1/wpre1;
 B0(0)=K; B1(0)=K;
}

 void sca_sig_proc() //time domain
 {
 if(ADSL_LITE)
 OUTPUT=LTF(A1,B1,S,ltf_id1,INPUT);
 else
 OUTPUT=LTF(A0,B0,S,ltf_id0,INPUT);
 }

 void sca_ac_domain() //frequency domain
 {
 if(ADSL_LITE)
 SCA_AC(OUTPUT)=
 LTF(A1,B1,S,ltf_id1,SCA_AC(INPUT));
 else
 SCA_AC(OUTPUT)=
 LTF(A0,B0,S,ltf_id0,SCA_AC(INPUT));
 }
 SCA_CTOR(pofi_pcb){}
};

Figure: 3 Description of an analog switched post-filter

Figure 4 shows the description of a linear network which can be
switched by a control signal. An input voltage is provided by a
dataflow block and a current is generated to a dataflow outport.

rp1 rp2

cp

vbslic

sw

con

ron

roff

lp

i2sdf

vtr

itr

hook

linear_net

SCA_MODULE(linear_net),sca_sdf_synchronization,
 sca_linear_netlist_view
{
 sca_sdf_in<double> vtr; //data flow inport
 sc_in<bool> hook; //discrete event inport
 sca_sdf_out<double> itr; //dataflow outport

 sca_node w1, w2, w3, w4, w5, w6, w7;
 sca_reference_node gnd;

H s() K

1 1 41,

2πFG()
2

------------------------s2 1
2πFG
----------------s+ +

---=

 sca_r *rp1, *rp2, *roff, *ron;
 sca_c *cp, *con;
 sca_l *lp;
 sca_sw_tog *sw;
 sca_i2sdf *i2sdf;

 SCA_CTOR(linear_net) {
 vbslic =new sca_vsdf("vbslic",w1,gnd,vtr);
 rp1 =new sca_r("rp1",w4,w2,60.0);
 rp2 =new sca_r("rp2",w2,w3,40.0);
 cp =new sca_c("cp",w2,gnd,1e-12);
 lp =new sca_l("lp",w3,w4,1e-3);
 sw =new sca_sw_tog(“sw”,w4,w5,w6,hook);
 roff =new sca_r(“roff”,w5,gnd,600.0);
 ron =new sca_r(“ron”,w5,w7,1e3);
 con =new sca_c(“con”,w7,gnd,1e-6);
 i2sdf =new sca_i2sdf("i2sdf",w1,w4,itr);
 }};

Figure: 4 Description of a linear (conservative) net

Figure 5 gives an example for an hierarchical description which
embraces multiple Models of Computations.

Control

Kit

Kv2w

C1

C2

kit off_it

kv2w

it

it=kit*itr + off_it

vtr=kv2w*v2w

v2w

vtr

itr

rp1rp2

cp

vbslic

sw

con

ron

roff

lp

i2sdf

vtr

itr

hook

linear_net

hook

slic

discrete event

static dataflow

embedded analog solver

SC_MODULE(slic)
{
 sca_sdf_in<double> V2W; //dataflow outport
 sca_sdf_out<double> IT; //dataflow inport
 //discrete event (control) inports
 sc_in<three_level> C1, C2;
 sc_in<bool> hook;

 //discrete event signals
 sc_signal<double> kv2w_s, off_s, kit_s;
 //static dataflow signals
 sca_sdf_signal<double> itr, vtr;
 //discrete event primitive
 slic_control *control;
 kit *kit1; //dataflow primitive
 kv2w *kv2w1; //dataflow primitive
 //dataflow block with embedded linear net
 linear_net *front_end;

SC_CTOR(slic) //netlist
{
 control=new slic_control("control");
 control->c1(C1);
 control->c2(C2);
 control->KV2W(kv2w_s);
 control->OFF_DC(off_s);
 control->KIT(kit_s);
 kit1=new kit("kit1");
 kit1->inp(itr);
 kit1->outp(IT);

 kit1->gain_control(kit_s);
 kv2w1=new kv2w("kv2w1");
 kv2w1->inp(V2W);
 kv2w1->outp(vtr);
 kv2w1->gain_control(kv2w_s);
 kv2w1->off(off_s);
 front_end= new linear_net(“front_end”);
 front_end->vtr(V2W);
 front_end->itr(itr);
 front_end->hook(hook);
 }};

Figure: 5 Description of a hierarchical block including
different Modles of Computation

5. Conclusion
In this paper we presented the main aspects of a first version of
the SystemC-AMS language and model examples using this
language. The AMS extensions are first designed to efficiently
support signal processing dominated applications without the
need to use sophisticated continuous-time simulators. Also, the
synchronization with the discrete-time kernel of SystemC is kept
as simple as possible. Future versions of the SystemC-AMS
language will include better support for conservative systems and
systems with arbitrary nonlinear behaviors and a more generic
synchronization layer.

6. REFERENCES
[1] An Introduction to System-Level Modeling in SystemC 2.0.

Technical report of the Open SystemC Initiative, 2001.
http://www.systemc.org/technical_papers.html

[2] Karsten Einwich, Christoph Clauss, Gerhard Noessing,
Peter Schwarz, and Herbert Zojer: “SystemC Extensions for
Mixed-Signal System Design”. Proc. Forum on Design
Languages (FDL'01), Lyon, France, September 2001.

[3] Christoph Grimm, Peter Oehler, Christian Meise, Klaus
Waldschmidt, and Wolfgang Fey. “AnalogSL: A Library for
Modeling Analog Power Drivers with C++. In Proceedings
of the Forum on Design Languages”, Lyon, France,
September 2001.

[4] K. Einwich, Ch. Grimm, A. Vachoux, N. Martinez-Madrid,
F. R. Moreno, Ch. Meise: “Analog Mixed Signal Extensions
for SystemC”. White paper of the OSCI SystemC-AMS
Working Group.

[5] G. Nössing, K. Einwich, C. Clauss, P. Schwarz: “SystemC
and Mixed-Signal – Simulation Concepts”, in Proc. 4th
European SystemC Users Group Meeting, Copenhagen,
Denmark, October 2001.

[6] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao:
“SpecC Specification Language and Methodology”, Kluwer
Academic Publisher 2000

[7] B. Zojer, R. Koban, J. Pichler, G. Paoli: “A Broadband
High-Voltage SLIC for a Splitter- and Transformerless
Combined ADSL-Lite/POTS Linecard”, IEEE J. Solid-State
Circuits, vol. 35, pp 1976-1987, Dec. 2000.

