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Abstract 
SystemC will become more and more important for the design of 
digital circuits from the specification down to the RT-Level. 
Complex systems often contain analog components. This paper 
introduces concepts for the extension of the SystemC 
methodology for the specification and design of analog and 
mixed signal systems. The concepts will be illustrated on a 
telecommunication system including digital hard- and software, 
analog filter and an analog environment. 

1. Motivation 
SystemC supports a wide range of Models of Computation 
(MoC) and is very well suited for the design and refinement of 
HW/SW-systems from functional down to register transfer level. 
However, for a broad range of applications the digital parts and 
algorithms interact with analog parts and the continuous-time 
environment. Due to the complexity of these interactions and the 
importance of the analog parts in the global system's behavior, it 
is essential to include the analog parts in the design process of an 
Analog and Mixed Signal system.  

Simulation performance is therefore very crucial - especially for 
the analog parts that usually require more detailed models than 
the digital parts. Thus, different and specialized analog 
simulators must be introduced to permit the use of the most 
efficient simulator for the considered application and level of 
abstraction. In this paper, we describe a design methodology 
based on analog and mixed-signal extensions of SystemC, .a.k.a. 
SystemC-AMS. We also illustrate the methodology with a signal 
processing dominated application example. 

2. SystemC Overview 
SystemC is a design language for discrete-time (digital) systems. 
This language is an application of the object oriented 
programming language C++ for system design, so SystemC 
descriptions can be compiled, executed and debugged using 
standard C++ tools. In comparison to languages like VHDL or 
Verilog, SystemC supports an arbitrary number of Models of 
Computation (MoC) which allows an efficient development of 
executable specifications at high abstraction levels and an order 
of magnitude faster simulation for abstract models. 

The SystemC 2.0 [1] methodology combines features of existing 
HDL’s, object oriented techniques and new methodologies for 
the design and refinement of digital hardware and software 
systems. This methodology is strongly inspired by the 
communication model introduced by Gajski [6]. In this 
methodology, modules, which consists of other modules or 
algorithms (sequential assignments) implemented in methods, 
communicates via channels. A set of methods for communication 
is specified in an interface. These methods are implemented in a 

channel. Modules can call methods of a channel, and events in a 
channel can activate methods in a module connected to the 
channel. This concept is generic enough to describe systems 
using various models of computation, including static and 
dynamic multirate dataflow networks, Kahn process networks, 
communicating sequential processes, and discrete events (the 
MoC of Verilog and VHDL). We call such systems discrete 
systems. Predefined description styles allow, e.g. at RT-level, a 
description similar to what can be done in VHDL or Verilog. 
However due to the generic concept those models can be easily 
connected to models described in other styles (like dataflow or 
abstract software models) or can be re-used in another context. 

Numerous tools supporting SystemC from the specification level 
down to register transfer level (RTL) are now available on the 
market and SystemC RTL descriptions can be synthesized. Thus 
a seamless design flow from the early design stages to the circuit 
level is becoming available. 

3. SystemC-AMS Methodology 
SystemC is used for system-level design tasks, such as the 
modeling and refinement of  hardware/software – systems. In 
such a context, analog models are used most notably for the 
following tasks: 

Executable Specification: Analog models are often used as an 
executable specification of signal processing functions. 
Currently, interactive tools with a graphical interface such as 
Matlab/Simulink are used for such tasks.  

Behavioral Modeling: In the design of analog systems, there is 
always a large “bottom-up” part. Behavioral modelling, or 
macromodelling, of analog netlists allows us the simulation of 
analog circuits in a reasonable time. 

Co-Simulation with Environment: On system level, the analog 
(continuous-time) environment is co-simulated with the  
embedded system. This allows a rough validation of an 
executable specification. Furthermore, many designs can be only 
validated with such a co-simulation. 

In difference to digital systems, analog systems often combine 
different physical domains and are very application-specific. 
Therefore, concrete applications must be considered. 

In telecommunication and multimedia applications, the modeling 
of signal processing functions is dominant. These systems are 
mostly oversampled using constant time steps. The system is 
modeled by a block diagram with directed signal flow. The 
blocks are described by linear transfer functions and static non-
linear functions. Often, such a system level description is 
combined with linear networks used for (macro)modeling the 
system environment. For RF applications, the ability to simulate 
the baseband behaviour is required.  



In the automotive domain, analog and mixed-signal systems are 
often non-linear systems, and usually embrace multiple physical 
domains (electrical, mechanical, fluidic, etc.). In difference to 
telecommunication and multimedia applications, control systems 
in the automotive domain often exhibit very different time 
constants (“stiff systems”). Nevertheless, executable 
specifications and executable prototypes are also modeled as 
block diagrams with directed signal flow.  

Although concrete requirements from the above mentioned 
application domains must be considered, SystemC-AMS must 
also be flexible and generic in order to support modeling, 
simulation and design in new application domains [4][5]. 
Furthermore, the requirements in the discussed application 
domains may seem partially contradictory. Rather simple block 
diagrams connected with directed signal flow and some external 
components seem to be sufficient for many applications on a 
high level of abstraction. However, some requirements can only 
be fulfilled by solutions which are specific for each application 
and level of abstraction considered. For example, a designer 
might want to use a dedicated circuit simulator, such as SPICE, 
for electrical parts and a dedicated simulator for mechanical 
systems for the precise simulation of mechanical components. 

This situation can be handled in an open and layered approach 
such as the one offered by SystemC-AMS. These extensions to 
SystemC are used for the simulation of executable specifications, 
implemented as behavioral models, and the environment as far as 
possible. Furthermore, a synchronization mechanism permits the 
easy integration of additional simulators or solvers. These 
additional solvers can be specific for - maybe new - applications 
and levels of abstractions that are not covered by the “built-in” 
solvers (Figure 1). 
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Figure:  1 Illustrates the discussed scenario. 

SystemC-AMS must define clear interfaces between different 
layers, on which users or programmers can describe their models 
or add features to the simulator, depending on their application. 

On top of the existing standard SystemC kernel, a 
synchronization layer provides methods to synchronize: 

• Analog solvers and the discrete kernel of SystemC. 
• Different continuous-time solvers/MoCs. 

For coupling analog solvers and the discrete kernel, the 
following approach is used. Before the first delta cycle of a time 

step is executed, all analog simulators are executed, reading the 
“old” discrete values and producing updated output signals, 
which are then used by the digital processes. Although this 
synchronization scheme is simple, it fits the requirements of 
system level better than more complex but much slower schemes 
found for example in VHDL-AMS. 

The synchronization between analog solvers is handled via an 
abstract interface, which is implemented in the synchronization 
layer. The synchronization layer determines the points in time, at 
which analog and digital simulation are synchronized, and the 
order in which the analog solvers are executed. For the first 
prototype the synchronization is realized by static dataflow. 
Again, this synchronization is simple and fast. Note that one can 
also realize this interface by another synchronization scheme, 
since all communication and synchronization between  analog 
solvers must only use the abstract interface methods. 

On top of the synchronization layer, different analog solvers 
(solver layer) compute the behavior of analog blocks. Analog 
solvers are accessed from the upper layer via an interface, for 
example differential or algebraic equations in a machine-readable 
form, such as in a nodal matrix representation. A first prototype 
implements a solver for linear differential equations. Together 
with static nonlinear functions (which require no solver), this is 
sufficient for system level simulations, and results in a faster 
simulation than a nonlinear solver. 

The view layer provides convenient user interfaces for the analog 
solvers. The view layer converts user views, for example netlists 
that are mapped to a set of differential or algebraic equations in 
the solver layer. The interaction of solver- and view layer can be 
compared to a model/view architecture, where one object 
provides an abstract data structure, and other objects provide 
graphical views of the data structure. 

4. Application Example 
As an illustration of modelling with SystemC-AMS, a signal 
processing dominated application is used. Such kind of 
application usually includes analog, digital filter, some analog 
linear elements, digital control algorithm and is characterized by 
over sampling. Thus on system level several description styles 
has to be combined. 

Figure:  2 Simplified block diagram of the application 
example 

Figure 2 shows a strong simplified system view of a so-called 
Subscriber Line Interface and Codec Filter (SLICOFI) system 
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[7]. Such systems establish the connection between the analog 
subscriber line and the digital (e.g. PCM) transmission network. 
This system is realized by different IC’s (chip-set) and external 
(analog) components. The chip-set includes a high-voltage line 
driver, analog filters, A/D- and D/A-converters, digital hardware 
filters, DSP-algorithms, control algorithms and interface 
algorithms. The new design challenge for such systems is data 
transmission in parallel with voice (ADSL). 

During system design the external components and the 
environment, consisting of the subscriber and the subscriber-line, 
will be considered as linear analog networks. The high-voltage 
driver is modeled by unidirectional blocks (without feedback 
from the previous block). Thus, the static dataflow (SDF) Model 
of Computation can be used for block scheduling. Dynamics (e.g. 
poles and zeros of the amplifier) are modeled by using embedded 
linear DAE’s. Nonlinearities may be included as static or as an 
black box model identified by measurements or circuit 
simulation. The analog filter (e.g. pre- and post-filter), D/A- and 
A/D-converter are modeled similarly. For the digital filter and 
DSP-algorithm dataflow blocks are used also. The control 
algorithm software is embedded in an event-driven digital model 
using a bus functional model. The interfaces are described at RT-
Level. 

Usually the design of such a system starts in the frequency 
domain as the frequency response. Small-signal signal to noise 
ratio estimations are also very important. 

In the following, SystemC-AMS models for some blocks using a 
prototype implementation of the extensions are given. The sca_ 
prefix and boldface words are used to denote AMS extensions. 
This prototype implementation is optimized for signal processing 
dominated applications and uses the static dataflow model of 
computation with constant time steps for synchronization. Non-
linear static behavior, linear dynamic equations can be modeled 
using representations like transfer functions or state space 
equations. Additionally, a description of a conservative linear 
network consisting of pre-defined elements like resistors, 
capacitors and controlled sources can be described. Such a 
network is embedded in a dataflow block. Due to the high over 
sampling rates of the considered systems and the constant time 
steps, very simple and thus fast integration and synchronization 
algorithms can be used. For each dataflow block an optional 
frequency domain implementation can be added. For the network 
elements this implementations are predefined. This way the 
system can be modeled and simulated both in the frequency 
domain and the time domain. 

Figure 3 shows the description of a analog post-filter whose 
cutoff frequency can be selected by a control signal which is 
generated in the discrete event (classical SystemC) domain. A 
frequency domain implementation for the filter block is also 
given. 
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SCA_MODULE(pofi_pcb),sca_sdf_synchronization, 
                     sca_ac_domain_view, 
                     sca_behavioral_view 
{ 
 sca_sdf_in<double>  INPUT;     //dataflow inport 
 sca_de2sdf_in<bool> ADSL_LITE; //de to df inport 
 sca_sdf_out<double> OUTPUT;    //dataflow outp. 
 double FG0, FG1, K, h;         //parameters 
 SCA_DAE_ID ltf_id0, ltf_id1; 
 sca_vector<double> A0,A1, B0,B1, S; 
  
 void sca_init() // initialization 
{ 
  double wpre0;          double wpre1; 
  wpre0=2.0*M_PI*FG0;    wpre1=2.0*M_PI*FG1; 
  A0(0)=1.0;            A1(0)=1.0; 
  A0(1)=1.41/wpre0;      A1(1)=1.41/wpre1; 
  A0(2)=1.0/wpre0/wpre0; A1(2)=1.0/wpre1/wpre1; 
  B0(0)=K;               B1(0)=K;   
} 
 
  void  sca_sig_proc() //time domain 
  { 
    if(ADSL_LITE)  
      OUTPUT=LTF(A1,B1,S,ltf_id1,INPUT); 
    else 
       OUTPUT=LTF(A0,B0,S,ltf_id0,INPUT); 
  } 
 
  void sca_ac_domain() //frequency domain 
  { 
   if(ADSL_LITE)  
      SCA_AC(OUTPUT)= 
              LTF(A1,B1,S,ltf_id1,SCA_AC(INPUT)); 
   else 
      SCA_AC(OUTPUT)= 
              LTF(A0,B0,S,ltf_id0,SCA_AC(INPUT)); 
  } 
  SCA_CTOR(pofi_pcb){} 
}; 

Figure:  3 Description of an analog switched post-filter 

Figure 4 shows the description of a linear network which can be 
switched by a control signal. An input voltage is provided by a 
dataflow block and a current is generated to a dataflow outport. 
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SCA_MODULE(linear_net),sca_sdf_synchronization, 
                       sca_linear_netlist_view 
{ 
 sca_sdf_in<double> vtr;  //data flow inport 
 sc_in<bool>        hook; //discrete event inport 
 sca_sdf_out<double> itr; //dataflow outport 
 
 sca_node w1, w2, w3, w4, w5, w6, w7; 
 sca_reference_node gnd; 
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 sca_r      *rp1, *rp2, *roff, *ron; 
 sca_c      *cp, *con; 
 sca_l      *lp; 
 sca_sw_tog *sw; 
 sca_i2sdf  *i2sdf; 
 
 SCA_CTOR(linear_net) { 
    vbslic =new sca_vsdf("vbslic",w1,gnd,vtr); 
    rp1    =new sca_r("rp1",w4,w2,60.0); 
    rp2    =new sca_r("rp2",w2,w3,40.0); 
    cp     =new sca_c("cp",w2,gnd,1e-12); 
    lp     =new sca_l("lp",w3,w4,1e-3); 
    sw     =new sca_sw_tog(“sw”,w4,w5,w6,hook); 
    roff   =new sca_r(“roff”,w5,gnd,600.0); 
    ron    =new sca_r(“ron”,w5,w7,1e3); 
    con    =new sca_c(“con”,w7,gnd,1e-6); 
    i2sdf  =new sca_i2sdf("i2sdf",w1,w4,itr); 
 }}; 

Figure:  4 Description of a linear (conservative) net 

Figure 5 gives an example for an hierarchical description which 
embraces multiple Models of Computations. 
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SC_MODULE(slic) 
{ 
    sca_sdf_in<double>  V2W;   //dataflow outport 
    sca_sdf_out<double> IT;    //dataflow inport 
    //discrete event (control) inports 
    sc_in<three_level> C1, C2; 
    sc_in<bool>        hook; 
 
    //discrete event signals 
    sc_signal<double> kv2w_s, off_s, kit_s; 
    //static dataflow signals 
    sca_sdf_signal<double> itr, vtr; 
    //discrete event primitive 
    slic_control *control;  
    kit          *kit1;      //dataflow primitive 
    kv2w         *kv2w1;     //dataflow primitive 
    //dataflow block with embedded linear net 
    linear_net   *front_end; 
  
SC_CTOR(slic)   //netlist  
{ 
     control=new slic_control("control"); 
        control->c1(C1); 
        control->c2(C2); 
        control->KV2W(kv2w_s); 
        control->OFF_DC(off_s); 
        control->KIT(kit_s); 
     kit1=new kit("kit1"); 
       kit1->inp(itr); 
       kit1->outp(IT); 

       kit1->gain_control(kit_s); 
     kv2w1=new kv2w("kv2w1"); 
       kv2w1->inp(V2W); 
       kv2w1->outp(vtr); 
       kv2w1->gain_control(kv2w_s); 
       kv2w1->off(off_s); 
     front_end= new linear_net(“front_end”); 
       front_end->vtr(V2W); 
       front_end->itr(itr); 
       front_end->hook(hook); 
 }}; 

Figure:  5 Description of a hierarchical block including 
different Modles of Computation 

5. Conclusion 
In this paper we presented the main aspects of a first version of 
the SystemC-AMS language and model examples using this 
language. The AMS extensions are first designed to efficiently 
support signal processing dominated applications without the 
need to use sophisticated continuous-time simulators. Also, the 
synchronization with the discrete-time kernel of SystemC is kept 
as simple as possible. Future versions of the SystemC-AMS 
language will include better support for conservative systems and 
systems with arbitrary nonlinear behaviors and a more generic 
synchronization layer. 
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