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Abstract— Emerging millimeter-wave (mmW) wireless sys-
tems require beamforming and multiple-input multiple-
output (MIMO) approaches in order to mitigate path loss,
obstructions, and attenuation of the communication channel.
Sharp mmW beams are essential for this purpose and must
support baseband bandwidths of at least 1 GHz to facilitate
higher system capacity. This paper explores a baseband multi-
beamforming method based on the spatial Fourier transform.
Approximate computing techniques are used to propose a low-
complexity fast algorithm with sparse factorizations that neatly
map to integer W/L ratios in CMOS current mirrors. The
resulting approximate fast Fourier transform (FFT) can thus
be efficiently realized using CMOS analog integrated circuits
to generate multiple, parallel mmW beams in both transmit
and receive modes. The paper proposes both 8- and 16-point
approximate-FFT algorithms together with circuit theory and
design information for 65-nm CMOS implementations. Post-
layout simulations of the 8-point circuit in Cadence Spectre
provide well-defined mmW beam shapes, a baseband bandwidth
of 2.7 GHz, a power consumption of 70 mW, and a dynamic range
>42.2 dB. Preliminary experimental results confirm the basic
functionality of the 8-beam circuit. Schematic-level analysis of the
16-beam I/Q version show worst-case and average side lobe levels
of −10.2 dB and −12.2 dB at 1 GHz bandwidth, and −9.1 dB
and −11.3 dB at 1.5 GHz bandwidth. The proposed multi-
beam architectures have the potential to reduce circuit area and
power requirements while meeting the bandwidth requirements
of emerging 5G baseband systems.
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I. INTRODUCTION

M ILLIMETER-WAVE (mmW) wireless communication

promises an unprecedented change in the wireless

industry. Major changes in business models and access capa-

bilities are expected as we move from today’s spectral scarcity

to fifth generation (5G) networks with a glut of spectrum.

The availability of spectrum above 6 GHz will motivate

novel mmW systems that support a huge number of Internet

of Things (IoT) devices and use several GHz of channel

bandwidth, which is orders of magnitude greater than today’s

cellular bandwidths and also far greater than WiGig IEEE

802.11ac/ad bandwidths [1]–[5]. Thus, the copious quantities

of spectral resources available in the 6-300 GHz range promise

exponential increases in capacity and data rates when com-

pared to all legacy cellular bands combined. On-chip mmW

antenna array processors are required to actually realize such

high data rates; i.e., in order to bring “Moore’s Law” to

wireless capacity [6].

A. Multi-Beam Arrays for mmW Channels

Radio propagation is much more directional at mmW com-

pared to today’s cellular bands, which impacts mmW trans-

ceiver design, power consumption, and system efficiency [7].

At mmW, most objects that are encountered by a radio

wave are much larger than its wavelength. Thus the mmW

bands are dominated by scattering and reflection from such

large objects (vehicles, people, buildings, etc.) as shown

in Fig. 1(a). The free-space path loss, which is proportional

to the square of frequency as predicted by the Friis formula,

can be compensated by increasing the antenna gain. Heavy

attenuation also occurs due to weather (water droplets from

rain) and fog/hail in the environment (see Fig. 1(b)). Such

attenuation can also be compensated by increasing antenna

gain; in particular, by using arrays that form sharp beams.

A mmW channel in an indoor or urban environment typi-

cally consists of multiple propagation paths due to scattering,

reflection, and wave-guiding effects that can be exploited for

MIMO communications even in the presence of obstructions

in the direct path or when communicating around corners.

Thus, the ability to form multiple sharp steerable beams that

are adapted under algorithmic control is absolutely essential
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Fig. 1. Examples of highly directional beam-like propagation in mmW wireless chennels, which can suffer from obstructions in dynamically changing mobile
environments.

for taking advantage of real-world mmW channels [5]–[9].

Specifically, mmW access points will need to create a large

number of sharp wide-bandwidth beams [10]–[12] operating

in both transmit and receive modes in order to achieve both

capacity and multiple access goals for real-world channels.

Thus, wideband multi-beamforming is necessary in order to

achieve the orders-of-magnitude increases in capacity, data

rate, and geographical penetration demanded by the explosive

growth in wireless applications [6], [13]–[17].

B. Channel Models and Multi-Beam Access Points

Highly directional propagation in mmW wireless channels

can obstruct sharp beams in dynamically changing mobile

environments. For example, human and vehicle motion can

result in a rapidly changing channel with blocking and

unblocking happening rapidly in an unpredictable manner.

An obstacle such as a person or motor vehicle in the direct

line-of-sight (LOS) of the wave can cause 40 dB or more

signal attenuation [6]. Fortunately, the ray-like propagation

characteristics at mmW enable reflection-based connections

to be maintained using highly directional antenna arrays even

when the LOS path is blocked. In the best case, the LOS

plus several non-LOS reflected paths between the transmit-

ter and receiver can increase system capacity for MIMO

communications. Electronically steerable multi-beam-capable

arrays are required to utilize these reflected paths in highly

dynamic mobile environments. Such arrays are thus of great

importance in order for base stations to provide simultaneous,

independent, and wideband mmW MIMO links to many

mobile transceivers.

C. Organization

Here we propose analog current-mode circuits that gen-

erate multiple beams by using approximate discrete Fourier

transforms (DFTs) for spatial filtering. The paper is organized

into seven sections. RF system considerations involved in 5G

systems are briefly discussed in Section II. Section III then

provides a basic introduction to spatial FFT-based multi-beam

architectures. Section IV describes the mathematical approach

for finding approximate DFT transforms and introduces the 8-

and 16-point approximate transforms and their sparse factor-

izations. Details of current-mode circuit design for achieving

8- and 16-beams are discussed in Section V. Detailed analysis

and preliminary experimental results of a circuit realization

of the 8-point version are presented in Section VI. These

results are compared with a baseline digital implementation

in Section VII. Section VIII concludes the paper.

II. REVIEW OF RF SYSTEM CONSIDERATIONS

Multi-beam systems are envisioned for 28-GHz 5G wireless

network base stations, mobile stations, micro base stations,

pico cells, and user equipment. For mobile 5G systems,

compact and energy-efficient highly integrated multi-beam

solutions are desirable to improve battery life and reduce

heat-dissipation problems while enabling directional agility.

The wide bandwidths of 5G systems present new challenges

in realizing fully integrated transceivers and make some cur-

rently favored transceiver architectures, such as passive mixer-

based receivers, not directly applicable [18].

As an example of such a solution, a recent work by

IBM [19] demonstrates fully integrated dual-polarization

16-element arrays for 28-GHz 5G applications. The transceiver

architecture presented in [19] is a 2-step sliding-IF half-duplex

architecture as shown in Fig. 3.

Unlike steerable beamformers using tunable delays at mmW

bands, the proposed multi-beam architecture operates in the

baseband while supporting up to 1.5 GHz of bandwidth per

beam. It utilizes the spatial frequency distribution of directed

mmW energy: each mmW beam has a unique spatial frequency

that remains intact through up-down conversion in the mixers.

Thus, the proposed baseband analog-FFT can realize multiple

far-field mmW beams for a variety of transceiver architectures

without requiring tunable mmW delay lines.

Aside from the beamforming method, the key RF compo-

nents in such a system are the low-noise amplifier (LNA) and

the power amplifier (PA). LNA design for antenna arrays has

been studied earlier [20]. These works have shown that array

sensitivity as a whole is impacted significantly by antenna

mutual coupling. For a given beamformer, an array active

reflection coefficient, Ŵact , can be calculated, and the LNA

is designed such that it is noise-matched to Ŵact . However,

when beamformer coefficients are not known at the time of

the design or when the same LNAs are simultaneously used

for forming more than one beam, [21] has found that noise

matching the LNA to the loaded reflection coefficient of the

array is more appropriate and results in lower sensitivity on

average than if designed for a specific value of Ŵact .

Antenna mutual coupling affects the transmitter as well.

Some of the transmitter power is lost in the coupled paths [22].

Similar to LNAs, the output network of PAs has to be

designed such that the inefficiency due to coupling loss and

the stand-alone PA efficiency are optimized. This optimization

is independent of beamformer operation and is performed

based on both electromagnetic properties of the antenna array,

which are obtained from array simulations or measurements,
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Fig. 2. (a) Receive-mode multi-beam system with down-converted analog basband beamforming; (b) transmit-mode multi-beam system using baseband
analog beamforming.

and the specific performance of the selected PA output

transistors. These system-level issues are not discussed further

in this paper. The remaining sections focus on a baseband

implementation of the FFT-based multi-beam beamformer

where issues associated with frequency dependent beam squint

is insignificant [23].

III. SPATIAL FFT-BASED MULTI-BEAM ARCHITECTURES

The DFT is described by an N×N linear transform (LT) that

splits N-samples of a signal into its frequency components.

Performing the DFT operation across the signals obtained

from a uniformly spaced linear antenna array produces an

orthogonal set of beams where each bin corresponds to a

particular direction, thus realizing a multi-beam beamformer.

Multiple broadband transmit/receive beams that are orthogonal

to each other in space are a critical need for emerging

wireless systems as well as defense applications in radar and

electronic warfare; as they achieve greater capacity by enabling

spatial diversity for MIMO [7]. The Fast Fourier Transforms

(FFTs) [24] are fast algorithms for efficiently computing

the DFT. They are essential for a tremendous number of

applications, such as wireless communications [25], [26], net-

working [27], sensor networks [28], [29], cognitive radio [30],

radar [31], imaging [32], [33], filtering [34], correlation [35],

and radio-astronomy [36]. Any type of FFT implementation

has computational error due to the use of finite precision

arithmetic to realize irrational matrix coefficients. Thus, it may

be possible to compute the spatial DFT operation faster

without losing much performance if we approximate the DFT

itself. Given this possibility, if we can find the simplest

possible approximate LT to replace a DFT with tolerable error,

we would be able to improve upon traditional FFTs in terms

of speed and hardware complexity. In particular, while the

DFT is mostly implemented digitally, the proposed simple

transforms may have efficient analog implementations. These

are likely to have power and layout area advantages over

digital implementations for broadband applications.

We propose to achieve such FFT-like performance by

LT approximation and fast algorithm factorizations that

compromise on accuracy [37]. We start with a maximum error

tolerance that must be met, and iterate over all the possible

matrix representations of the transform, mark those that are

within the desired error bound, and use the one that has the

simplest analog implementation. In particular, transforms with

small integer coefficients are desirable because they enable

straightforward current-mode implementations by changing

Fig. 3. A representative 28-GHz 5G half-duplex transceiver architecture
based on delay-and-sum beamforming [19].

the W/L (width/length) ratios of CMOS transistors to imple-

ment multiplication by the coefficients. Such current-mode

implementations are intrinsically fast because their bandwidth

is only limited by the poles of the current mirrors and not by

the maximum clock rate as for digital counterparts [38].

We propose approximate DFTs in which complex phasing

networks corresponding to twiddle factors in conventional

analog-FFT implementations [39] are replaced by simple

weights ±1, 0,± 1
2

that can be easily realized in both ana-

log and digital hardware. For example, while a digital cir-

cuit that implements the conventional twiddle factors with

a certain precision using fixed-point arithmetic would need

O(N log(N)) complex multipliers, the simplified weights can

be realized using only bit shifters. Similarly, current-mode,

current-mirror-based integrated circuit (IC) implementations

of the approximate algorithms would need only 2-4 well-

matched transistors for realizing each coefficient. The area and

power consumption of both these signal processing approaches

(digital and analog) scale with accuracy requirements [40].

This paper will show that analog implementations of the pro-

posed approximate DFT algorithms offer significantly lower

power and area consumption than digital ones for accuracy

levels and operating bandwidths that are appropriate for mmW

multi-beam 5G transceivers. Fig. 2 shows system configura-

tions for both transmit and receive modes that can produce

N simultaneous beams by using the proposed analog N-point

approximate-DFT (ADFT), where N ∈ {8, 16}.

IV. MATHEMATICAL BACKGROUND

A. Discrete Fourier Transform

The N-point DFT is characterized by a linear orthogonal

transformation matrix FN whose entries are [34]:

[FN ]k,n = ωnk
N ,
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where ωN = exp(−2π j/N) is the N th root of unity and j =√
−1. If N is even, the following relationship holds true:

[FN ]
k+ N

2 ,n = (−1)n [FN ]k,n , (1)

for k = 0, 1, . . . , N/2 − 1 and n = 0, 1, . . . , N , and

[FN ]k,n+ N
2

= (−1)k [FN ]k,n ,

for k = 0, 1, . . . , N and n = 0, 1, . . . , N/2 − 1. Therefore,

the DFT matrix can be written as follows [39]:

FN =
[

A0,0 A0,1

A1,0 A1,1

]
. (2)

Here the four blocks have size N/2 × N/2 and the entries

of the sub-matrices A0,1, A1,0, and A1,1 are identical to the

entries of A0,0 except for sign changes. If N is a multiple

of four, further symmetries are present in the terms of the

block A0,0. The entries of A0,0 satisfy:

[
A0,0

]
k+ N

4 ,n
= (− j)n

[
A0,0

]
k,n

, (3)

for k = 0, 1, . . . , N/4 − 1 and n = 0, 1, . . . , N , and

[
A0,0

]
k,n+ N

4
= (− j)k

[
A0,0

]
k,n

, (4)

for k = 0, 1, . . . , N and n = 0, 1, . . . , N/4−1. Therefore, the

sub-matrix A00 can also be split into sub-matrices in a similar

way as in (2).

The symmetries in (1)-(4) imply that the DFT matrix FN

contains only N/4 different complex numbers making analog

hardware implementation comparatively simple.

B. DFT Approximations

Because the DFT and its approximations are matrices,

we define the latter through a matrix mapping [41]–[44]:

f : C
N/4−1 → C

N × C
N

a �→ F̂N ,

where a =
[
a1 a2 . . . aN/4−1

]⊤
is an N/4-point complex

parameter vector and the entries of F̂N are given by:

[
F̂N

]
k,n

= (−1)p(− j)tank mod N/4,

where a0 = 1, p = n mod N/2 + k mod N/2 and t =
n mod N/4 + k mod N/4. Such mapping ascribes the DFT

symmetries in (3) and (4) to the resulting approximated DFT

matrices [39], [44].

Furthermore, the entries of parameter vector a are expected

to be simple to ensure the low-complexity cost of the resulting

approximations [43]. In fact, the set of dyadic rationals is a

suitable choice for the numerical domain of the parameter

vector a [44]. Thus, we require that an ∈ P2, where P =
{0,±1,±2,±1/2} is the selected low-complexity number

set [42], [43], [45]. Such low-complexity complex entries can

dramatically reduce the complexity of the resulting approxi-

mations. This is because the dyadic elements represent trivial

multiplications [39]; therefore, the derived approximation is

multiplierless by construction.

A good DFT approximation is expected to exhibit similarity

and proximity to the exact DFT matrix in some sense. As a

proximity measure, we adopt the following figure of merit:

d(a) =
∥∥∥F̂N − FN

∥∥∥
2

F
,

where ‖·‖F denotes the Frobenius norm [44].

Thus, by minimizing the above proximity measure, mean-

ingful DFT approximations can be derived. However, besides

matrix symmetries, DFT approximations are also expected to

satisfy the orthogonality property. Strict orthogonality can also

be relaxed in favor of near-orthogonality [46]. We can ensure

this property for the proposed class of DFT approximations

by searching for DFT approximations whose product F̂N F̂H

N is

close to a diagonal. Thus, orthogonality and near-orthogonality

can be quantified according to the deviation from diagonal

measure [42], [43], [46]:

φ(F̂N ) =

∥∥∥diag
(

F̂N F̂H

N

)∥∥∥
F∥∥∥F̂N F̂H

N

∥∥∥
F

, (5)

where the superscript H denotes the Hermitian conjugation.

As a criterion, candidate approximations, whose deviation

from orthogonality exceed 0.2, are considered unsuitable. The

value 0.2 stems from [47] as a reference model for good

approximations [42], [43], [45].

Additionally the inverse of F̂N is required to be well-defined

to allow perfect reconstruction. For such, it suffices that the

determinant is nonzero or far from zero.

Mathematically, this requires solving the following opti-

mization problem:

a∗ = arg min
a

d(a), (6)

subject to the following constraints:

1) the entries of a satisfy an ∈ {x + j y|x, y ∈ P}.
2) the inverse transformation is well-defined;

3) the inverse matrix must also be of low-complexity;

4) orthogonality or near-orthogonality must be satisfied

(cf. (5)).

The resulting approximation is furnished by f (a∗) = F̂∗
N .

Although the search space of (6) grows exponentially in

terms of N , we focus on the solution of (6) for particular

small blocklength transforms, namely N ∈ {8, 16}. For the

8- and 16-point DFT, the corresponding parameter vector

contains only one and three elements, respectively. Thus

for these cases the optimization problem can be solved by

means of exhaustive search. By solving the optimization

problem (6) for the 8- and 16-point approximations, the

following parameters are obtained, respectively: [1 − j ] and[
1 − j/2 1/2 − j/2 1/2 − j

]⊤
.

C. Fast Algorithms for Optimal DFT Approximations

Generally, fast algorithm techniques for discrete time trans-

forms aim at reducing the number of multiplication opera-

tions [39]. This is fundamentally because the multiplication

operations are prone to consume more hardware resources for

execution than addition and bit-shifting operations.

In the case of ADFTs, the approximate transforms are

natively multiplierless; thus their associated fast algorithms
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focus on reducing the number of additions and/or bit-shifting

operations.

1) 8-Point DFT Approximation: The 8-point DFT approx-

imation matrix resulting from the optimal solution in (6) is

f ([1 − j ]), given by:

F̂8 = 1

2

×

⎡
⎢⎢⎢⎢⎣

2 2 2 2 2 2 2 2
2 1− j −2 j −1− j −2 −1+ j 2 j 1+ j
2 −2 j −2 2 j 2 −2 j −2 2 j
2 −1− j 2 j 1− j −2 1+ j −2 j −1+ j
2 −2 2 −2 2 −2 2 −2
2 −1+ j −2 j 1+ j −2 1− j 2 j −1− j
2 2 j −2 −2 j 2 2 j −2 −2 j
2 1+ j 2 j −1+ j −2 −1− j −2 j 1− j

⎤
⎥⎥⎥⎥⎦

. (7)

Considering the factorization methods described in [34],

[39], [42], [43], the following matrix factorization is derived:

F̂ = P · A4 · D · A3 · A2 · A1 (8)

where

A1 =

⎡
⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 −1
1 −1

1 −1
1 −1

⎤
⎥⎥⎥⎦,

A2 =

⎡
⎢⎢⎣

1 1
1 1

1 −1
1 −1

1
1 1

1
1 −1

⎤
⎥⎥⎦,

A3 =

⎡
⎢⎢⎣

1 1
1 −1

1
1

1 1
1 1
1 −1

1 −1

⎤
⎥⎥⎦,

A4 =

⎡
⎢⎢⎣

1
1

1 −1
1 1

1 −1
−1 1

1 1
1 1

⎤
⎥⎥⎦,

D = diag([1, 1, 1, j, 1, j, j, 1]), and P =[
e0

∣∣ e4

∣∣ e2

∣∣ e5

∣∣ e1

∣∣ e7

∣∣ e3

∣∣ e6

]⊤
is a permutation matrix

whose columns ei , for i = 0, 1, . . . , 7 are vectors with

null entries expect for the i th component that is unity. This

particular factorization requires only 26 analog additions as

the total computational cost.

2) 16-Point DFT Approximation: The resulting 16-point

DFT approximation is f (
[
1 − j/2 1/2 − j/2 1/2 − j

]⊤
) and

can be written as follows:

F̂16 = 1

2

[
A0,0 A0,1

A1,0 A1,1

]
, (9)

where the equation can be derived, as shown at the top of the

next page.

The DFT approximation matrix F̂16 can be factorized as [39]

and [42]:

F̂16 = B1 · D · B2 · B3 · B4 · B5, (10)

where:

B5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

B4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

1 1
1 1

−1 1
−1 1

−1 1
−1 1

1
1 1

1 1
1 1

1
−1 1

−1 1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

−1 1
−1 1

1
1 2

1 2
2 −1

1 −2
1 2

1 2
2 −1

1 −2
1 1

1
1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 −1

1
1 2
1 −2

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 2
1 −2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1 1

−1 1
1 1

−2 −2
−1 1

1 1
1 1

2
1 −1

1 −1
−1 −1

−2 2
1 −1

−1 −1
−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

and D = 1/2 diag( 1, 1, 1, 1, 1, 1, 1, 1, 1, j, j, j, j, j, j, j ).

D. Adoption of DFT Approximates for Beamforming Systems

The most important concern for the use of the approximated

DFT algorithms in multi-beam systems is the increase in side-

lobe levels that occurs as an artifact of the approximation

process. As long as these increases are within an acceptable

level, the approximate algorithms become good candidates for

beamforming applications. Fig. 4 compares numerically simu-
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A0,0 =

⎡
⎢⎢⎢⎣

2 2 2 2 2 2 2 2
2 2−1i 1−1i 1−2i −2i −1−2i −1−1i −2−1i
2 1−1i −2i −1−1i −2 −1+1i +2i 1+1i
2 1−2i −1−1i −2+1i 2i 2+1i 1−1i −1−2i
2 −2i −2 +2i 2 −2i −2 +2i
2 −1−2i −1+1i 2+1i −2i −2+1i 1+1i 1−2i
2 −1−1i +2i 1−1i −2 1+1i −2i −1+1i
2 −2−1i 1+1i −1−2i 2i 1−2i −1+1i 2−1i

⎤
⎥⎥⎥⎦ , A0,1 =

⎡
⎢⎢⎢⎣

2 2 2 2 2 2 2 2
−2 −2+1i −1+1i −1+2i 2i 1+2i 1+1i 2+1i

2 1−1i −2i −1−1i −2 −1+1i +2i 1+1i
−2 −1+2i 1+1i 2−1i −2i −2−1i −1+1i 1+2i

2 −2i −2 +2i 2 −2i −2 +2i
−2 1+2i 1−1i −2−1i 2i 2−1i −1−1i −1+2i

2 −1−1i +2i 1−1i −2 1+1i −2i −1+1i
−2 2+1i −1−1i 1+2i −2i −1+2i 1−1i −2+1i

⎤
⎥⎥⎥⎦,

A1,0 =

⎡
⎢⎢⎢⎣

2 −2 2 −2 2 −2 2 −2
2 −2+1i 1−1i −1+2i −2i 1+2i −1−1i 2+1i
2 −1+1i −2i 1+1i −2 1−1i +2i −1−1i
2 −1+2i −1−1i 2−1i 2i −2−1i 1−1i 1+2i
2 +2i −2 −2i 2 +2i −2 −2i
2 1+2i −1+1i −2−1i −2i 2−1i 1+1i −1+2i
2 1+1i +2i −1+1i −2 −1−1i −2i 1−1i
2 2+1i 1+1i 1+2i 2i −1+2i −1+1i −2+1i

⎤
⎥⎥⎥⎦ , A1,1 =

⎡
⎢⎢⎢⎣

2 −2 2 −2 2 −2 2 −2
−2 −2+1i −1+1i −1+2i 2i 1+2i 1+1i 2+1i

2 −1+1i −2i 1+1i −2 1−1i +2i −1−1i
−2 1−2i 1+1i −2+1i −2i 2+1i −1+1i −1−2i

2 +2i −2 −2i 2 +2i −2 −2i
−2 −1−2i 1−1i 2+1i 2i −2+1i −1−1i 1−2i

2 1+1i +2i −1+1i −2 −1−1i −2i 1−1i
−2 −2−1i −1−1i −1−2i −2i 1−2i 1−1i 2−1i

⎤
⎥⎥⎥⎦.

lated beams for the exact DFT and the ADFT for the 8- and 16-

point scenarios against the normalized spatial frequency. The

maximum magnitude error of 8-point approximated transform

beam response (Fig. 4 (b)) with respect to exact DFT responses

(Fig. 4 (a)) was calculated as 3.0% where as for 16-point case

it was calculate to be 2.9%. In addition, the main-lobes point

in the same directions as the exact transforms, which make

the approximate transforms well suited for multi-beamforming

applications. However, note from Fig. 4 (b) that the shapes of

four side lobes differ from those of the other four. A similar

result can also be observed in Fig. 4(d). Since the matrix

entries of the approximate transform are constrained to a

limited choice of integer values and orthogonality was relaxed

in favor of near-orthogonality, the filter banks associated to

the approximate and exact DFT are different giving rise to an

error in the side lobes. Nevertheless, such a minor distortion

does not affect the targeted application in the sense that it is

smaller than the secondary lobe of the exact DFT.

The method given in (6) can also be applied for larger

matrix sizes such as N = 1024, 2048, . . .. The resulting

approximation matrices possess better properties such as near-

orthogonality and spectral behavior that is close to the exact

DFT. The main problem in deriving such larger approximate

DFT matrices is the necessity of creating associated fast

algorithms: the larger the matrix, the harder it becomes to

derive such algorithms. At the time of writing this manuscript,

we are able to generate up to 64 beams using multiplierless

approaches, and up to 1024 beams using O(N) complexity for

multipliers. A possible alternative for generating such large

approximations is the use of scaling methods. Essentially,

larger ADFTs can be generated by re-using smaller ADFTs.

This avoids the hassle of deriving fast algorithms for large

matrices, which the authors find to be impractical for matrices

larger than 32 × 32, while still furnishing approximations

with O(N) complexity for multipliers.

V. CIRCUIT TOPOLOGIES, BEAMFORMING

ARCHITECTURES

Realization of the analog-DFT is key to implementing the

mmW receiver and transmitter architectures shown in Fig. 2.

Early attempts to implement analog DFT processors used

op-amp circuits to realize the weights of the DFT matrix [48].

This approach is slow and difficult to scale to larger arrays

because the twiddle factors become closer to each other

as the FFT size increases, making them harder to realize

accurately. More recently, a 0.13 µm CMOS 8-point Cooley-

Tuckey FFT processor for orthogonal frequency division

multiplexing (OFDM) applications was reported [49], [50].

The processor uses a time-interleaving bank of sample-and-

holds and discrete time analog multipliers, and has been tested

with 1 GS/s OFDM inputs. However, dedicated input signals

are used to represent the FFT coefficients, which makes scaling

difficult. 2-D rectangular LC lattices implemented on CMOS

have also been proposed for computing analog DFTs of spatial

input signals [51]. The method has been verified using numer-

ical simulations, and bandwidths of > 10 GHz are possible

for on-chip implementations. However, such large bandwidths

require small inductor and capacitor values, which are difficult

to realize accurately, and unwanted mutual coupling between

the inductors is also an issue. The analog FFT processor in [52]

uses a current-mirror-based architecture to scale the input

current by the twiddle factor weights. However, the authors

had to approximate the weights to the first decimal place for

ease of implementation, resulting in degraded beam shapes.

Finally, the work in [53] describes a 16-point analog domain

FFT using a charge-reuse analog Fourier transform (CRAFT)

engine. The circuit uses charge reuse to achieve an input band-

width of 5 GHz. However, the design requires RF samplers

in the front-end, and inaccuracies in the capacitance network

lead to twiddle factor errors that make scaling difficult.

A critical issue faced by all previous approaches for real-

izing analog DFTs has been that accurate twiddle factor

values are difficult to generate on-chip. The level of difficulty

grows as the FFT size increases since the factors become

closer to each other, which results in performance degra-

dation. Hence it makes sense to allow some error margin

and implement approximate transforms with integer twiddle

factors. The resulting implementations are more scalable since

the transform coefficients are now constrained to a small set of

Gaussian integers. The approximate transforms in (7) and (9)

satisfy this special property, i.e., are limited to small integer

coefficients P ∈ {0,±1,±2}. This property enables high-

bandwidth current-mode analog ICs in which well-controlled

geometric parameters (namely, the W/L ratios of current

mirror transistors) determine the integer coefficients.

A. Analog Current-Mode ADFT Designs

Let the current-mode signals captured by the N Nyquist-

spaced antennas of an N-beam multi-beamforming system

be xin = [x1, x2, . . . , xN ]T . The beam outputs y = F̂N ·
xin where y = [y1, y2, . . . , yN ]T correspond to unique

directions of arrival given by ψi = sin−1
(

2k
N

)
where
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Fig. 4. (a) 8-point exact DFT beams and the corresponding (b) approximated-DFT beams; (c) 16-point exact DFT beams and the corresponding
(d) approximated-DFT beams as a function of the spatial frequency.

Fig. 5. Current-mode implementation of (a) addition and (b) subtraction operations, which are the primary functions for implementing the analog ADFT

circuit shown in Fig. 2 to realize mmW receivers and transmitters; (c) example showing the implementation of row 4 of Re{F̂8}; (d) NMOS and (e) PMOS
current mirros designed using a low-voltage cascode topology.

k =
{

i ; 1 ≤ i ≤ N/2

−i ; N/2 < i ≤ N
and i is the output bin number.

In current mode, the output current at each output bin yi

requires implementation of
∑N−1

k=0 pik xk where pik denotes

a matrix coefficient. The addition and subtraction arithmetic

required for this calculation can be implemented directly using

NMOS and PMOS current mirrors as shown in Fig. 5(a). Here

α and β are the weights by which the input current needs to be

scaled. Thus the transforms in (7) and (9) can both be realized

using analog current-mode CMOS. The Re{F̂8} and Im{F̂8}
transforms can be implemented separately to realize the full

transformation. For example, implementation of the 4th row

of Re{F̂8} is shown in Fig. 5(c).

In section V-B, we discuss an 8-point current-mode design

that follows this approach. Such an approach would in gen-

eral require O
(
N2

)
current mirrors for generating N-beams.

A digital architecture, which implements a fast algorithm (e.g.

Fourier, discrete sine/cosine), involves the implementation of

butterfly matrices. Use of such sparse factorization matrices

reduces the hardware complexity of the transform. Given that

a sparse factorization exists for the transform of interest,

the same principle can be applied to analog implementations.

Therefore we take advantage of a sparse factorization that

reduces the arithmetic complexity of the approximate trans-

forms given in (7) and (9). It is realized by implementing

each factorization individually and then combining them.

After observing the factorization matrices of (8) and (10),

it can be seen that each row and column of the factorized

matrix consists of a maximum of two elements. This implies

that i) each output of the factorization stage requires an

addition of the form pai +qa j where p, q ∈ P and ai and a j

are i th, j th 0 < i, j ≤ N inputs to the factorized matrix; and

ii) each input ai has to be copied a maximum of two times.

Thus an implementation of each stage of the factorization

given in (8) and (10) comprises of N NMOS current copiers

producing two current copies and N PMOS mirrors attached

to the outputs of each stage. The full realization of the analog

circuit requires implementation of all the factorization stages

and separate copies of the hardware for the real and imaginary

parts as shown in Fig. 6. The analog implementation of the

last factorization stage B1 in the real signal path requires

small changes in the circuit compared to the implementation

(denoted by B1) used in the imaginary signal path. Therefore

it is denoted as B ′
1. In the design of the B ′

1 block, the polarity

of the signals entering from inputs 10-16 have been negated to

account for the −1 generated by multiplication of the outputs

10-16 of the imaginary component at the B2 stage by j .

B. 8-Point ADFT Implementation in 65 nm CMOS

Given the effort required to design different stages, the fac-

torized version of the transformation is not beneficial for

realizing analog transforms with smaller values of N . There-

fore, the 8-point ADFT was designed using the final matrix

in (7). Real and imaginary parts of F̂8 were separately realized

using 65-nm general-purpose (GP) CMOS technology cells

and BSIM4 RF transistor models using the approach shown

in Fig. 5(c). Both types of current mirrors were realized using

low-voltage cascode topology to reduce systematic errors due

to finite output impedance while simultaneously obtaining

enough voltage headroom to accommodate four transistors in

series (see Figs. 5(d) and (e)). The W/L values used for

the circuit that implements the NMOS and PMOS mirrors

in Fig. 5 are tabulated in Table I. For 1:1 NMOS mirrors,

the output branch transistor sizes were set as W3/L3 =
W1/L1, W4/L4 = W2/L2, while for 1:2 NMOS mirrors the
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Fig. 6. (a) System architecture of the 16-point analog ADFT; (b) realization of the B5 factorization stage using current mirros.

sizes were set to W3/L3 = 2W1/L1, W4/L4 = 2W2/L2.

The design was simulated using Cadence Spectre and initial

results were reported in [45]. It was then laid out; post-layout

simulation results and noise analysis are shown in Section VI.

Fig. 7 shows simulated beam patterns for sinusoidal inputs

at 2 and 4 GHz. These are in good agreement with the exact

DFT responses (maximum magnitude error of 6% and 10% for

2 GHz and 4 GHz respectively), but are distributed unevenly

versus angle. Specifically, the beams are more concentrated

around 0◦ than around −90◦ and 90◦. This is due to the nature

of the DFT, which samples the frequency domain linearly, i.e.

ωx = 2πk
N

where k is the bin number and ωx corresponds to the

spatial frequency. As a result, ωx = −ωct sin ψ where ωct is

the normalized temporal frequency and ψ is the spatial angle.

Thus each output bin of the DFT corresponds to a different

angle which has a sin−1 relationship with k. In particular,

the beam directions are given by sin−1
(

2k
N

)
for a Nyquist-

sampled array, resulting in an uneven distribution.

C. 16-Point ADFT Implementation in 65 nm CMOS

The reduced hardware complexity of the factorized

version makes it attractive for higher values of N . Specifi-

cally, the number of current copies needed for realizing an

N-point ADFT transform in non-factorized form has a max-

imum value of 4N2 (asymptotically O(N2)), whereas it is

4SN N in the factorized form where SN is the number of

factorization stages (realized using NMOS mirrors). Since

SN ≪ N , the latter number asymptotically converges to O(N).
The factorized circuit also needs O(N) PMOS mirrors for

performing current addition/subtraction, so the total number of

mirrors required remains O(N) as compared to O
(
N2

)
for the

direct approach. For example, 308 current copies are needed

for implementing the factorized version of the 16-point ADFT

in current mode, whereas a direct realization would require

768 copies. Although the number of PMOS mirrors required

for addition/subtraction of currents is higher for the factorized

implementation (160 versus 96), the overall complexity asso-

ciated with the factorized implementation is still significantly

lower. Moreover, this performance benefit becomes larger as

N increases. Thus the individual factorization stages given

by equations (11) to (15) were implemented using 65-nm

CMOS. The real and imaginary components of the designs

were implemented separately and the top-level architecture is

shown in Fig. 6. The inputs to the design were assumed to be

5-µA peak-to-peak RF signals superimposed on a 100-µA DC

TABLE I

CURRENT MIRROR SIZING FOR THE 8-POINT ADFT CIRCUIT

Fig. 7. Simulated beam patterns generated by the analog 8-point ADFT
design at (a) 2 GHz and (b) 4 GHz (maximum magnitude beam errors of 6%
and 10%, respectively).

bias current. The factorized stages were designed and cascaded

starting from B5 to B1 to generate the 16-point transformation

as shown in Fig. 6. The diagonal matrix D is implemented as

a cross-connection of wires. All NMOS and PMOS mirrors

used are low-voltage cascode current mirrors, as in the case

of the 8-point design. The output bias currents of the stages

were equalized by using PMOS mirrors with appropriate bias

currents. The transistor sizes (named as shown in Fig. 5 (d)

and (e)) used for the basic NMOS and PMOS mirrors in each

individual stage are shown in Table II. The transistor sizes of

the output branch were set depending on the magnitude of the

matrix coefficient that was realized.

D. Simulated Beams

The circuit was simulated in Cadence Spectre using

noiseless input signals generated by MATLAB. For a given

direction of arrival (DOA) ψ , 16 spatially Nyquist-sampled

sinusoidal signals, which emulate downconverted plane waves,

were generated. The simulation frequencies of the signals

were chosen to be within the baseband bandwidth of interest,

which is smaller than the bandwidth of the circuit being

simulated [13]. These inputs were fed to the circuit and

the simulated output waveforms were recorded. To obtain

the array factor for each bin of the ADFT, waveforms were

generated for different values of ψ in the range −90◦ to 90◦.

The output waveforms were then exported to MATLAB in

order to compute the beamformed signals as a function of ψ .
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TABLE II

W/L VALUES USED TO REALIZE CURRENT MIRRORS AT EACH FACTORIZED STAGE IN THE 16-POINT ADFT CIRCUIT

Fig. 8. Beams generated from Cadence Spectre simulations for each output bin of the 16-point analog ADFT design. Each sub-figure shows beam patterns
for different IF bandwidths. The patterns for an ideal accurate DFT were simulated using MATLAB and are also shown (dashed magnenta lines). Simulated
baseband channel bandwidths in this work correspond to 1 to 2 GHz, as required for wideband 5G channels operating at carrier frequencies of 28 or
38 GHz [13].

Fig. 8 shows the power patterns of each beam at different

frequencies.

In general, the beam shapes obtained from Cadence sim-

ulations closely follow theoretical ADFT responses. The side

lobe levels of the beam patterns at 500 MHz remain consistent

with theoretical responses except for bins 5, 7, 11, and 13,

which have significantly higher side-lobe levels in the stop

band than expected. This effect arises due to slight deviations

between the theoretical coefficients and those realized by the

cascaded current-mode architecture. Since the bias currents

grow in magnitude as we traverse from input to the output

through the factorization stages, the absolute values of the

current matching errors also tend to grow. Thus, the realized

coefficient values deviate from the required ones, resulting in

deviations in the beam patterns. Nevertheless, these changes

are in the stop band and are lower than the maximum side lobe

level. Thus, they are of minor importance for beamforming

applications. However, they become more significant as the

frequency increases. At a baseband frequency of 500 MHz

the average and worst case peak lobe levels were −12.9 dB

and −11.9 dB, respectively. At 1 GHz and 1.5 GHz these

numbers increased to −12.2 dB and −11.3 dB (average) and

−10.2 dB and −9.1 dB (worst case), respectively.

VI. POST-LAYOUT ANALYSIS AND EXPERIMENTS

The 8-point current-mode ADFT circuit was laid out and

fabricated in the UMC 65-nm RF-CMOS process. The chip

was designed for a 1.8-V power supply, and the transistor sizes

were chosen to ensure a current mirror bandwidth of at least

1 GHz for a DC bias current of 100 µA. As shown in Fig. 2,

the chip is placed between the RF front-end and digital back-

end of a mmW transmitter or receiver array, both of which are

expected to have voltage-mode interfaces. Thus, V-I and I-V
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TABLE III

SIMULATED CHANGES IN BEAM POWER LEVELS DUE TO PROCESS

VARIATIONS AND MISMATCH FOR THE 8-POINT ADFT CIRCUIT AT

200 MHz. THE ANGLES CORRESPOND TO THE DOA VALUES

FOR MAXIMUM RESPONSES FOR EACH BEAM

converter circuits have to be added to the current-mode ADFT

core. Such circuits were designed, and the performance of the

overall implementation was then analyzed.

A. Effect of Mismatch on the Beams

The effect of transistor mismatch on the beam patterns were

studied using Monte-Carlo simulations. In each simulation,

transistor sizes were randomly chosen based on probability

distributions provided by the foundry that include both process

variation and mismatch. Table III shows the simulated power

deviations of the eight beams due to process variation and

mismatch for an input frequency of 200 MHz. Means and

standard deviations of the probability distributions, which

are nearly Gaussian, are shown; these have maximum values

of 28.6% and 4.6% respectively. The deviations in beam width

and pointing direction were small (< 1% in both cases) and are

not shown. Finally, the average and worst case (3σ ) peak side

lobe levels were also degraded by relatively small amounts

(0.2 dB and 1.8 dB, respectively).

B. Design of V-I/I-V Converter Circuits

As shown in Fig. 2, V-I/I-V converter circuits are necessary

for interfacing the current-mode ADFT core with external

circuits. Thus, such converters were added to provide 50 

impedance at each input and output port of the ADFT.

The noise and linearity of the V-I converter dominate the

dynamic range (DR) of the multi-beamformer. Our design

(see Fig. 9(d)) uses a common-gate input stage for impedance

matching. The bias current is adjusted via Vn to set the desired

input impedance Z in ≈ 1/gs , while the AC current is mirrored

to create the output current Iout . The DC value of Iout , which

sets the power consumption and bandwidth of the current-

mode core, can be independently adjusted via Vp.

Fig. 9 shows simulation results for the V-I converter for

a NMOS bias current (set by Vn) of 1.6 mA, a PMOS bias

current (set by Vp) of 1.1 mA, and an output bias current of

(1.6 − 1.1) = 0.5 mA. The power consumption is 2.38 mW.

A Bode plot of the effective small-signal transconductance

Gm (see Fig. 9(c)) shows a −3 dB bandwidth of 2.7 GHz.

The lower cut-in frequency is set to fc ≈ gs/ (2πCdc)
by the value Cdc of an input DC blocking capacitor (not

shown here). The circuit is well-matched over the useful

frequency range: |S11| is approximately −16 dB from 10 MHz

to 4 GHz as shown in Fig. 9(b). The input-referred noise

power spectral density (PSD), including noise from the source

resistance, is ≈ 1 nV/Hz1/2 as shown in Fig. 9(f). The resulting

noise figure (NF) is 6 to 8 dB over the operating bandwidth,

which is adequate since in practice this baseband circuit will be

preceded by an RF receiver chain. The total integrated (1 MHz

to 10 GHz) output current noise is iout,n = 1.0 µArms .

The simulated total harmonic distortion (THD) versus

input amplitude at two frequencies is shown in Fig. 9(e).

As expected, THD levels increases with frequency. The max-

imum input amplitudes for THD < 5% are Vin,max = 30 mV

and 13 mV at 100 MHz and 1 GHz, respectively. Assuming

no further low-pass filtering to limit the output bandwidth,

the dynamic range (DR) of the circuit is

DR = 20 log10

(
Vin,max Gm/

√
2

iout,n

)
. (16)

The resulting values are 49.9 dB and 42.2 dB at 100 MHz

and 1 GHz, resulting in an effective number of bits (ENOB)

of 8.0 and 6.7 bits, respectively. Similarly, the signal to noise

and distortion ratio (SN DR) of the ADFT circuit is

SN DR = 20 log10

⎛
⎝ Vin/

√
2√

v2
in,n + α2V 2

in/2

⎞
⎠, (17)

where vin,n = iout,n/Gm is the total input-referred noise

voltage, and α is the THD at an input amplitude of Vin . For

a 1 GHz input, the maximum value of SN DR ≈ 32 dB

occurs for an input amplitude of Vin = 7 mV, for which

THD = 2.5%. This results in a significantly lower ENOB

of 5.0 bits. Note that the capacity of the wireless system

depends on both THD and SNDR; the relative importance

of these specifications thus needs further study. Given that

the noise and linearity of the current-mode core and output

I-V converter do not limit system performance (the latter is

simply a 50 
 resistor), the ENOB of the final analog outputs

is limited either by THD or SNDR to the values stated above.

For the remainder of the paper, we will make the conservative

assumption that the overall ENOB is limited by SNDR to

5.0 bits. This level of precision is sufficient for most mmW

communications applications.

The finite bandwidth of the current mirrors in the ADFT

core slightly reduces the output bandwidth compared to that

shown in Fig. 9(c). The −3 dB bandwidth of a single mirror

is given by BW ≈ gm/Ctot , where gm is the transconduc-

tance of the input transistor and Ctot ≈ 2Cgs is the total

parasitic capacitance where Cgs is the gate-source capacitance

of transistors. BW can be improved at the cost of current

matching accuracy (and eventually beam shape fidelity) by

decreasing the transistor area W L, since Ctot ∝ W L and

threshold-voltage mismatch σ�Vth ∝ 1/
√

W L . Alternatively,

it can also be improved at the cost of power consumption

by increasing gm ∝
√

Ids . In our case the value of gm (and

thus BW ) can be adjusted through the bias voltage Vp in

the V-I converters. The actual circuit uses N = 3 cascaded

mirrors (one NMOS, two PMOS) in the signal path. Assuming

that these are identical, the bandwidth is further reduced to

BW ×
√

21/N − 1 ≈ BW/2.

Fig. 9(a) shows a labeled die photograph of the fabricated

chip. The active area is 190 µm × 270 µm. A printed circuit
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Fig. 9. (a) Die photograph of the chip in the UMC 65 nm 1P/8M CMOS process. (b) Simulated input reflection coefficient |S11|. (c) Simulated Bode plot of
the small-signal transconductance. (d) The proposed V-I converter circuit. (e) Simulated total harmonic distortion (THD) versus input amplitude. (f) Simulated
input-referred noise power spectral density (PSD) over the frequency range from 1 MHz to 10 GHz. Bias conditions for the V-I converter were as described
in the text.

Fig. 10. Experimental setup for testing the 8-point ADFT IC.

board (PCB) for testing the chip has been designed and tested

as described in the next section. The die is attached to the

PCB using a chip-on-board technique to minimize parasitic

capacitance and inductance from the package.

C. Preliminary Experimental Results

A 10-mil-thick PCB using Rogers 4350B substrate material

was implemented to create 50 
 microstrip traces for the RF

inputs and outputs of the ADFT chip, as shown in Fig. 10.

The bare die was wire-bonded on the PCB. An off-the-shelf

one-to-eight 0◦ phase-shift power splitter with approximately

0.5 MHz to 1.5 GHz bandwidth was used to simulate the

outputs of an eight-element uniform linear antenna array with

RF signals impinging on them at a DOA of 0◦. The bias

current of the V-I converter was adjusted by setting the NMOS

bias current using Vn = 0.67 V and the PMOS bias current

using Vp = 1.34 V. Moreover, the gate voltage Vg was set to

1.45 V to ensure that all transistors in the V-I converter remain

saturated. An external DC blocker (approximately 0.5 MHz to

8.0 GHz bandwidth) was used at each input to isolate the DC

level of the RF inputs from the V-I converters, thus ensuring

proper biasing of the chip.

Initial experiments were focused on verifying the basic

functionality of the chip at low input frequencies (≤ 20 MHz).

Fig. 11 compares the experimental and simulated THD of the

ADFT chip as a function of the input signal amplitude at

two input frequencies: 2 MHz and 10 MHz. Assuming that

the maximum allowable THD = 5%, the largest allowable

input amplitude based on the experiments are Vein,max =
13.5 mV and 9.1 mV at 2 MHz and 10 MHz, respectively.

These numbers are in reasonable agreement with the simulated

values of Vsin,max = 21.4 mV and 11.2 mV at 2 MHz and

10 MHz, respectively. In addition, by comparing the THD

curves in Fig. 9(e) and Fig. 11, we observe that the linear

range of the entire receiver chain (Fig. 11) is significantly

degraded compared to that of a single LNA (Fig. 9(e)). This is

because of the limited linear range of the ADFT current-mirror

matrix.

The measured outputs of the ADFT chip in response to nar-

rowband input signals at 10 MHz and 0◦ DOA are shown (after

normalization) as the red dots in Fig. 12. The output of the 0◦

beam is much larger than that of the other beams, as expected.

However, these have significantly larger power levels (on

average, ∼ 10% of the 0◦ beam) compared to the circuit

simulation results shown as blue dots (on average, ∼ 0.16%

of the 0◦ beam). In addition, both these results are worse than

the theoretical ADFT outputs to a 0◦ DOA input, which are

1 for the 0◦ beam and 0 for all other beams. The observed

non-zero outputs of the other beams, which correspond to

degradation of beam orthogonality, are due to finite current

mirror output impedances (systematic errors) and transistor

mismatches (random errors). These effects result in errors in

the ADFT matrix coefficients and thus the beam shapes. Note

that the circuit simulations result in more accurate beam shapes

than the experiments because they include systematic errors

but not random ones. The latter can be modeled using Monte-

Carlo simulations, as shown in Table III, and can be reduced

by i) using optimized layouts to reduce mismatch, such as

common centroid geometries; and ii) increasing transistor area
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TABLE IV

COMPARISON OF 8- AND 16-POINT ANALOG ADFTS WITH DIGITAL IMPLEMENTATIONS IN THE 45 nm FREEPDK LIBRARY

Fig. 11. Measured THD of the 8-point ADFT IC to narrowband inputs at
two different input frequencies.

W L and gate overdrive voltage to further reduce mismatch at

the cost of increased capacitance and reduced bandwidth.

VII. COMPARISON WITH A BASELINE DIGITAL

IMPLEMENTATION

Equivalent digital designs for the proposed 8-point and

16-point ADFTs were implemented in VHDL to allow their

bandwidth, power, and area requirements to be compared with

the proposed analog implementations. Both digital cores were

synthesized using the NCSU 45 nm FreePDK library [54].

Note that this is a more advanced technology than the 65-nm

process used for the analog designs. The input word length for

the digital synthesis was set to 6 bits to be comparable with

the SNDR-limited analog ENOB of 5.0 bits.

The figures of merit for the both digital and analog imple-

mentations are listed in Table IV for comparison. The number

of digital cores Nc needed for processing a bandwidth B

(assuming polyphase sampling) is given by Nc =
(

2B
fs,max

)
.

Thus to handle a bandwidth of 1 GHz, Nc ≈ 2. The total

power consumption of the digital equivalent implementation

includes that of the digital cores as well as the analog-to-

digital converters (ADCs). For quadrature receivers, the digital

implementation requires two ADCs per antenna (in total 2×N

for an N-point transform), while the analog implementation

only requires two ADCs per sampled beam (real and imaginary

outputs). Therefore, when implementing an N-point transform

in analog, the number of ADCs required is 2M where 1 ≤
M ≤ N . The numbers in Table IV assume the worst case,

i.e. that all N beams are sampled, resulting in M = N . ADC

Fig. 12. Measured output responses of the 8-point ADFT chip to narrowband
input signals corresponding to a DOA of 0◦: simulation (blue) and experiments
(red), respectively. The input frequency was 10 MHz.

power was estimated by assuming a converter with suitable

specifications (≥ 1 Gs/s, ENOB = 5 to 6 bits) and the lowest

possible Walden figure of merit (FoM). We searched Dr. Boris

Murmann’s ADC survey [55] for this purpose. As of writing,

the lowest reported FoM is 28.7 fJ/conversion for ENOB

= 5.5 bits at 1 Gs/s [56]. As shown in Table IV, since the

bandwidth of the digital cores is ≈ 460 MHz, the ADC power

is 2 × 0.46 GHz ×25.5 × 28.7 fJ = 1.2 mW per channel.

According to the table, the total power consumption of the

proposed analog implementations are ≈ 45% and ≈ 41% less

than that of the digital implementations for the 8-point and

16-point cases, respectively. This is despite the fact that the

digital results were obtained using a more advanced process

(45 nm versus 65 nm). The area metric also indicates a ≈ 27%

reduction in area for the 8-point analog circuit even though the

corresponding digital core was implemented in 45 nm. There-

fore, our results suggest that the proposed analog beamforming

solution is significantly more power- and area-efficient than

digital implementations with similar performance.

There is another significant advantage of the analog imple-

mentation. In a fully digital implementation all antenna outputs

have to be amplified to span the full-scale input range of

the ADCs. For example, the design in [56] has a input

single-ended range of 300 mV. Amplifying all N input sig-

nals to such large levels prior to digitization is not trivial;

the amplifiers have to be linear and so are power hungry.

This is even more difficult if directional blockers are present,

since these blockers are not rejected until after the beamformer

and so the amplifiers and the ADCs have to deal with them.



478 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2018

On the other hand, the proposed analog multi-beamformer can

be placed right after a baseband mixer, so only M amplifiers

(one per beam) are needed. Moreover, since these amplifiers

operate after the beamformer, their linearity requirements are

relaxed since the beamformer can greatly suppress blockers.

VIII. CONCLUSION AND FUTURE WORK

At mmW frequencies, wireless signals suffer from heavy

attenuation due to obstructions, weather, and other environ-

mental conditions. Such attenuation can be compensated by

using array processing to improve transmitter and receiver

directivity. Moreover, mmW channels typically have multiple

propagation paths due to scattering and reflection that provide

spatial diversity in the presence of changing environmental

conditions. Thus, the ability to form multiple sharp steerable

beams is of great importance in mmW communication sys-

tems, and mmW access points need many beams in both

transmit and receive modes. Broadband multi-beam analog

architectures have been discussed to address this need. ADFT

algorithms with small integer coefficients that closely match

FFT-based beam-patterns have been proposed for beamform-

ing, and analog CMOS architectures for 8 and 16 simultaneous

beams using these transforms have been discussed. The 8-point

circuit was realized directly, i.e. by mapping the proposed 8-

point ADFT matrix to analog current mirrors. This approach

has a hardware complexity (number of mirrors) of O(N2),
making it difficult to realize higher values of N for 5G

systems with massive MIMO front-ends. Thus, a more scalable

approach was used for the 16-point ADFT. Instead of directly

implementing the matrix, individual sparse factorization stages

were mapped to current mirrors. This approach reduces the

number of current mirrors to O(N), resulting in lower hard-

ware complexity and circuit area. However, realizing even

larger values of N remains challenging.

Beamforming circuits were designed in 65-nm GP CMOS

technology. The designs were simulated using Cadence Spec-

tre to obtain the multi-beam array factors. The 8-point version

was laid-out and fabricated in UMC 65 nm RF-CMOS, and

preliminary experimental results confirm basic functionality of

the chip. Moreover, simulation results for the 16-point version

show high beam fidelity up to 1.5 GHz of baseband bandwidth,

which is sufficient for proposed 5G communications standards.

Future work may include the investigation of larger ADFTs.

The investigation of ADFTs are problematic as N increases

given that good ADFTs are found solving the nonlin-

ear discrete optimization problem defined in Section IV-B.

A possible solution to investigate larger ADFTs is to re-use

smaller optimal approximations. A similar methodology has

been used for approximating the discrete cosine transform in

the context of image compression [57] and could be applied

in the search of ADFTs. This could be derived from fast

algorithms that express a large DFT as a function of smaller

DFTs, such as the Cooley-Tukey fast algorithm.

The proposed V-I converter circuit topology is not par-

ticularly power efficient, which significantly increases total

power consumption. Future circuit design efforts will thus

be focused on designing a more power-efficient V-I topology.

The resulting 8- and 16-point ADFT circuits will be laid out,

fabricated, and then tested using uniform linear antenna arrays

for different values of DOA and signal bandwidth.

ACKNOWLEDGMENT

The authors would like to thank A. Nikoofard and J. Liang

for help with integrated circuit layout.

REFERENCES

[1] K. Haneda et al., “5G 3GPP-like channel models for outdoor urban
microcellular and macrocellular environments,” in Proc. IEEE 83rd Veh.

Technol. Conf. (VTC Spring), May 2016, pp. 1–7. [Online]. Available:
http://arxiv.org/abs/1602.07533.

[2] K. Haneda et al., “Indoor 5G 3GPP-like channel models for office
and shopping mall environments,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC), May 2016, pp. 694–699.

[3] F. Boccardi et al., “Five disruptive technology directions for 5G,” IEEE
Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.

[4] R. Mudumbai et al., “Distributed transmit beamforming: Challenges and
recent progress,” IEEE Commun. Mag., vol. 47, no. 2, pp. 102–110,
Feb. 2009.

[5] G. MacCartney, Jr., et al., “Millimeter-wave human blockage at 73 GHz
with a simple double knife-edge diffraction model and extension for
directional antennas,” in Proc. IEEE Veh. Technol. Conf. (VTC-Fall),
Sep. 2016, pp. 1–6.

[6] T. S. Rappaport et al., Millimeter Wave Wireless Communications
(Prentice Hall Communications Engineering and Emerging Technologies
Series from Ted Rappaport). Englewood Cliffs, NJ, USA: Prentice-Hall,
2015.

[7] S. Sun et al., “MIMO for millimeter-wave wireless communications:
Beamforming, spatial multiplexing, or both?” IEEE Commun. Mag.,
vol. 52, no. 12, pp. 110–121, Dec. 2014.

[8] R. W. Heath et al., “An overview of signal processing techniques for
millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 436–453, Apr. 2016.

[9] R. Méndez-Rial et al., “Hybrid MIMO architectures for millimeter wave
communications: Phase shifters or switches?” IEEE Access, vol. 4,
pp. 247–267, 2016.

[10] K.-J. Koh and G. M. Rebeiz, “0.13-µm CMOS phase shifters for X-,
Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42,
no. 11, pp. 2535–2546, Nov. 2007.

[11] K.-J. Koh et al., “A millimeter-wave (40–45 GHz) 16-element phased-
array transmitter in 0.18-µm SiGe BiCMOS technology,” IEEE
J. Solid-State Circuits, vol. 44, no. 5, pp. 1498–1509, May 2009.

[12] H. Hashemi et al., “A fully integrated 24 GHz
8-path phased-array receiver in silicon,” in IEEE Int. Solid-State

Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 1. Feb. 2004,
pp. 390–534.

[13] T. S. Rappaport et al., “Millimeter wave mobile communications
for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349,
May 2013.

[14] Aalto University, BUPT, CMCC, Nokia, NTT DOCOMO, New York
University, Ericsson, Qualcomm, Huawei, Samsung, Intel, University
of Bristol, KT Corporation, and University of Southern California,
“5G channel model for bands up to 100 GHz,” in Proc. IEEE Global

Telecommun. Conf. (GLOBECOM), Dec. 2015, pp. 1–56.
[15] S. Rangan et al., “Millimeter-wave cellular wireless networks: Potentials

and challenges,” Proc. IEEE, vol. 102, no. 3, pp. 366–385, Mar. 2014.
[16] G. R. MacCartney and T. S. Rappaport, “Rural macrocell path loss

models for millimeter wave wireless communications,” IEEE J. Sel.
Areas Commun., vol. 35, no. 7, pp. 1663–1677, Jul. 2017.

[17] T. S. Rappaport et al., “Wideband millimeter-wave propagation mea-
surements and channel models for future wireless communication sys-
tem design (invited paper),” IEEE Trans. Commun., vol. 63, no. 9,
pp. 3029–3056, Sep. 2015.

[18] H. Krishnaswamy and L. Zhang, “Analog and RF interference mitigation
for integrated MIMO receiver arrays,” Proc. IEEE, vol. 104, no. 3,
pp. 561–575, Mar. 2016.

[19] B. Sadhu et al., “A 28 GHz 32-element phased-array transceiver IC with
concurrent dual polarized beams and 1.4 degree beam-steering resolution
for 5G communication,” in Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 2017, pp. 128–129.

[20] K. F. Warnick et al., “Minimizing the noise penalty due to mutual
coupling for a receiving array,” IEEE Trans. Antennas Propag., vol. 57,
no. 6, pp. 1634–1644, Jun. 2009.

[21] L. Belostotski et al., “Low-noise amplifier design considerations for
use in antenna arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 6,
pp. 2508–2520, Jun. 2015.



ARIYARATHNA et al.: ANALOG APPROXIMATE-FFT 8/16-BEAM ALGORITHMS, ARCHITECTURES AND CMOS CIRCUITS 479

[22] H.-S. Lui et al., “A note on the mutual-coupling problems in transmitting
and receiving antenna arrays,” IEEE Antennas Propag. Mag., vol. 51,
no. 5, pp. 171–176, Oct. 2009.

[23] S. M. Perera et al., “Wideband N-beam arrays using low-complexity
algorithms and mixed-signal integrated circuits,” IEEE J. Sel. Topics

Signal Process., to be published.
[24] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301,
Apr. 1965.

[25] X. Zhang et al., “DFT spread generalized multi-carrier scheme for
broadband mobile communications,” in Proc. Int. Symp. Pers., Indoor

Mobile Radio Commun., Sep. 2006, pp. 1–5.
[26] P. Xia et al., “DFT structured codebook design with finite alphabet

for high speed wireless communication,” in Proc. 6th IEEE Consum.
Commun. Netw. Conf. (CCNC), Jan. 2009, pp. 1–5.

[27] G. Berardinelli et al., “On the potential of zero-tail DFT-spread-OFDM
in 5G networks,” in Proc. 80th IEEE Veh. Technol. Conf. (VTC Fall),
Sep. 2014, pp. 1–6.

[28] S. Gupta, “An adaptive and efficient data delivery scheme for DFT-
MSNs (delay and disruption tolerant mobile sensor networks),” in Proc.

Int. Conf. Adv. Eng., Sci. Manage. (ICAESM), Mar. 2012, pp. 99–104.
[29] Y. Wang et al., “Protocol design and optimization for delay/fault-tolerant

mobile sensor networks,” in Proc. 27th Int. Conf. Distrib. Comput. Syst.

(ICDCS), Jun. 2007, p. 7.
[30] T. Hunziker et al., “Spectrum sensing in cognitive radios: Design of DFT

filter banks achieving maximal time-frequency resolution,” in Proc. 8th

Int. Conf. Inf., Commun. Signal Process. (ICICS), Dec. 2011, pp. 1–5.
[31] Y. Wang et al., “Generalized DFT waveforms for MIMO radar,” in Proc.

7th IEEE Sensor Array Multichannel Signal Process. Workshop (SAM),
Jun. 2012, pp. 301–304.

[32] M. Sezgin et al., “A novel DFT/RDFT based subband representation for
the fusion of remote sensing images,” in Proc. 2nd Int. Conf. Recent
Adv. Space Technol. (RAST), Jun. 2005, pp. 611–616.

[33] J. Li et al., “Robust multiple watermarks for medical image based on
DWT and DFT,” in Proc. Int. Conf. Comput. Sci. Converg. Inf. Technol.
(ICCIT), Nov./Dec. 2011, pp. 895–899.

[34] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2009.

[35] A. F. Molisch et al., “DFT-based hybrid antenna selection schemes for
spatially correlated MIMO channels,” in Proc. 14th IEEE Pers., Indoor

Mobile Radio Commun. (PIMRC), vol. 2. Sep. 2003, pp. 1119–1123.
[36] L. Dong et al., “The research for effects of window functions in radio

astronomy,” in Proc. 3rd Int. Congr. Image Signal Process. (CISP),
vol. 7. Oct. 2010, pp. 3064–3073.

[37] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approx-
imate forward DCT,” IEEE Trans. Circuits Syst. Video Technol., vol. 14,
no. 11, pp. 1236–1248, Nov. 2004.

[38] S. M. McDonnell et al., “Compensation and calibration techniques
for current-steering DACs,” IEEE Circuits Syst. Mag., vol. 17, no. 2,
pp. 4–26, 2nd Quart., 2017.

[39] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Cambridge,
U.K.: Cambridge Univ. Press, 2010.

[40] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to
neurobiology,” Neural Comput., vol. 10, no. 7, pp. 1601–1638, 1998.

[41] N. J. Higham, Functions of Matrices: Theory and Computation (Other
Titles in Applied Mathematics). Philadelphia, PA, USA: SIAM, 2008,
ch. 1, pp. 1–34.

[42] D. Suarez et al., “Multi-beam RF aperture using multiplierless FFT
approximation,” Electron. Lett., vol. 50, no. 24, pp. 1788–1790, 2014.

[43] C. J. Tablada et al., “A class of DCT approximations based on the Feig–
Winograd algorithm,” Signal Process., vol. 113, pp. 38–51, 2015.

[44] V. Britanak et al., Discrete Cosine and Sine Transforms. San Francisco,
CA, USA: Academic, 2007.

[45] V. Ariyarathna et al., “Multi-beam 4 GHz microwave apertures using
current-mode DFT approximation on 65 nm CMOS,” in Proc. IEEE Int.

Microw. Symp. (IMS), May 2015, pp. 1–4.
[46] B. N. Flury and W. Gautschi, “An algorithm for simultaneous orthogonal

transformation of several positive definite symmetric matrices to nearly
diagonal form,” SIAM J. Sci. Stat. Comput., vol. 7, no. 1, pp. 169–184,
Jan. 1986.

[47] T. I. Haweel, “A new square wave transform based on the DCT,” Signal
Process., vol. 81, no. 11, pp. 2309–2319, Nov. 2001.

[48] An Analog FFT Beamformer for Acoustic Applications, Office Naval
Res., Arlington, VA, USA, Mar. 1978.

[49] M. Lehne and S. Raman, “An analog/mixed-signal FFT processor for
wideband OFDM systems,” in Proc. IEEE Sarnoff Symp., Mar. 2006,
pp. 1–4.

[50] M. Lehne and S. Raman, “A prototype analog/mixed-signal fast Fourier
transform processor IC for OFDM receivers,” in Proc. IEEE Radio

Wireless Symp., Jan. 2008, pp. 803–806.
[51] E. Afshari et al., “Ultrafast analog Fourier transform using 2-D LC

lattice,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 8,
pp. 2332–2343, Sep. 2008.

[52] N. Sadeghi et al., “Analog DFT processors for OFDM receivers: Circuit
mismatch and system performance analysis,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 56, no. 9, pp. 2123–2131, Sep. 2009.
[53] A. Farahmand and M. R. Zahabi, “An energy efficient, high speed analog

FFT processor for MB-OFDM UWB receivers,” in Proc. Int. Congr.

Technol., Commun. Knowl. (ICTCK), Nov. 2014, pp. 1–6.
[54] FreePDK45:Contents. Accessed: Mar. 21, 2018. [Online]. Available:

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
[55] ADC Performance Survey 1997–2017 (ISSCC & VLSI

Symposium). Accessed: Mar. 21, 2018. [Online]. Available:
https://web.stanford.edu/murmann/adcsurvey.html

[56] K. D. Choo et al., “Area-efficient 1GS/s 6b SAR ADC with charge-
injection-cell-based DAC,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, vol. 59. Jan./Feb. 2016, pp. 460–461.

[57] M. Jridi et al., “A generalized algorithm and reconfigurable architecture
for efficient and scalable orthogonal approximation of DCT,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 2, pp. 449–457,
Feb. 2015.

Authors’ photos and biographies not available at time of publication.


