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We introduce the new concept of “metalines” for manipu-
lating the amplitude and phase profile of an incident wave
locally and independently. Thanks to the highly confined
graphene plasmons, a transmit-array of graphene-based
metalines is used to realize analog computing on an ultra-
compact, integrable, and planar platform. By employing the
general concepts of spatial Fourier transformation, a well-
designed structure of such meta-transmit-array, combined
with graded index (GRIN) lenses, can perform two math-
ematical operations, i.e., differentiation and integration,
with high efficiency. The presented configuration is about
60 times shorter than the recent structure proposed by Silva
et al. [Science 343, 160 (2014)]; moreover, our simulated
output responses are in better agreement with the desired
analytical results. These findings may lead to remarkable
achievements in light-based plasmonic signal processors
at nanoscale, instead of their bulky conventional dielectric
lens-based counterparts. © 2015 Optical Society of America

OCIS codes: (070.1170) Analog optical signal processing; (250.5403)

Plasmonics; (130.3120) Integrated optics devices.
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Recently, realization of analog computing has been achieved
by manipulating continuous values of phase and amplitude
of the transmitted and reflected waves by means of artificial
engineered materials, known as metamaterials, and planar easy-
to-fabricate metamaterials with periodic arrays of scatterers,
known as metasurfaces [1–3]. Both above-mentioned platforms
offer the possibility of miniaturized wave-based computing
systems that are several orders of magnitude thinner than con-
ventional bulky lens-based optical processors [1,4].

Challenges associated with the complex fabrication of meta-
materials [5] besides absorption loss of the metal constituent of
metasurfaces [6,7] degrade the quality of practical applications
of relevant devices. As a result, graphene plasmonics can be a
promising alternative due to the tunable conductivity of gra-
phene and highly confined surface waves on graphene, the
so-called graphene plasmons (GPs) [8,9].

We present a planar graphene-based configuration for mani-
pulating GP waves to perform desired mathematical operations

at nanoscale. By applying appropriate external gate voltage and a
well-designed ground plane thickness profile beneath the dielec-
tric spacer holding the graphene layer, desired surface conduc-
tivity values are achieved at different segments of the graphene
layer [8]. To illustrate the applications of the proposed configu-
ration, two analog operators, i.e., differentiator and integrator,
are designed and realized. The proposed structure will be
two-dimensional (2D) which is an advantage compared to
the previously reported three dimensional structures [1–3] that
manipulate one-dimensional (1D) variable functions.

We introduce a new class of meta-transmit-arrays (MTA)
based on graphene: metalines which are 1D counterparts of
metasurfaces. Our approach for realizing mathematical opera-
tors is similar to the first approach of [1]: i.e., metaline building
blocks (instead of metasurfaces) perform mathematical opera-
tions in the spatial Fourier domain. However, the main advan-
tage of our structure is that it is ultra-compact (its length is
about 1∕60 of the free space wavelength, λ) in comparison with
the structure proposed by Silva et al. whose length is about λ∕3
[1]. It should also be noted that, in this Letter, the whole struc-
ture (including lenses and metalines) is implemented on gra-
phene. Therefore, the total length of the proposed device is
about λ∕4, about 60 times shorter than the one reported in [1].

The general concept of performing a mathematical opera-
tion in the spatial Fourier domain is graphically shown in
Fig. 1(a). In this figure, z is the propagation direction, h�x; y�
indicates the desired 2D impulse response, f �x; y� is an arbi-
trary input function, and g�x; y� describes the corresponding
output function. The whole system is assumed to be linear
transversely invariant and, thus, the input and output functions
are related to each other via the linear convolution [2]:

g�x; y� � h�x; y� � f �x; y�

�

ZZ

h�x − x 0; y − y 0�f �x 0; y 0�dx 0dy 0: (1)

Transforming Eq. (1) to the spatial Fourier domain leads to

G�kx ; ky� � H �kx ; ky�F �kx ; ky�; (2)

where G�kx ; ky�,H �kx ; ky�, and F �kx ; ky� are the Fourier trans-
forms of their counterparts in Eq. (1), respectively, and �kx ; ky�
denotes the 2D spatial Fourier domain variables.
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For our 2D graphene-based system, as shown in Fig. 1(b),
the above formulation is sufficient to be presented in one
dimension. In this figure, f �x� and g�x� represent the trans-
verse field distribution of the incident and transmitted waves,
and H �kx� is the appropriate transfer function. Accordingly,
Eq. (2) can be interpreted as g�x� � IFTfH �kx�FT�f �x��g,
where (I)FT means (inverse) Fourier transform. The transfer
function is given in the spatial Fourier domain kx ; on the other
hand, the incident wave �f �x�� is also transformed into the
Fourier domain. Hence, any transfer function can be realized
by properly manipulating the Fourier-transformed wave in its
transverse direction x [1]. Fourier transform can be carried out
by a lens at its focal point while realizing inverse Fourier trans-
form with real materials is not possible thus, instead, we employ
the relation g�−x� � FTfH �kx�FT�f �x��g. This relation can be
easily obtained from the well-known formula FTfFT�g�x��g ∝
g�−x� and implies that the output will be proportional to the
mirror image of the desired output function g�x� [1].

For performing Fourier transform, we use graded index
(GRIN) lenses. Since the optical properties of dielectric GRIN
lenses change gradually, the scattering of the wave could be sig-
nificantly reduced which leads to higher efficiency. To realize
the graphene-based type of such lenses, the surface conductivity
of graphene should be properly patterned in a way that the
effective mode index of GP waves follows the quadratic refrac-
tive index distribution of their dielectric counterparts [10].

In this Letter, we implement the appropriate transfer func-
tion H �kx� by means of a new type of MTA on graphene. To
manipulate the transmitted wave efficiently, not only should
the transmission amplitude be completely controlled in the
range of 0–1, but also the transmission phase should cover
the whole 2π range independently [11]. To this end, similar
to the approach of Monticone et al. [4], a meta-transmit-array
comprised of symmetric stack of three metalines separated by
a quarter-guided wavelength transmission line is utilized
[Fig. 1(d)] in which each unit cell operates as a nanoscale spatial
light modulator [Fig. 1(c)]. To simplify the design procedure,

the two outer stacks are chosen to be identical, but different
from the inner one.

To fully control the transmission phase, in addition to am-
plitude, we need to locally manipulate propagating GP waves
along and across the meta-transmit-array [4]. As described
previously, this GP surface wave engineering is achieved via sur-
face conductivity variation through an uneven ground plane
beneath the graphene layer.

Recently, analytical results for the reflection and transmis-
sion coefficients of GP waves at 1D surface conductivity dis-
continuity have been reported [12]:

rLR � eiϑLR
kL − kR
kL � kR

; tLR �
2�kLkR�

1∕2

kL � kR
; (3)

where

ϑLR � 2Ψ�−kL� �
π

4
−

2

π

Z

∞

0

arctan�kLu∕kR�

u2 � 1
du: (4)

In these equations, kL;R � 2iωεe∕σL;R are the GP wavenum-
bers of left and right side regions of the discontinuity in the
quasi-static approximation, while σL;R represent their corre-
sponding complex surface conductivities and εe is the average
permittivity of the upper and lower media surrounding the gra-
phene sheet. Similarly, for a GP wave incident on the disconti-
nuity from the right side region, the coefficients rRL and tRL can
be simply achieved by exchanging kL and kR in Eqs. (3) and (4).

To relate the forward-backward fields on one side of the
interface to those on the other side, the matching matrix is
applied. The matching matrix of the interface achieved by
employing the reciprocity theorem and the propagation matrix,
which relates propagative forward-backward fields along a seg-
ment, is obtained as follows [13]:

Mm �

�

rLR;m tRL;m
tLR;m rRL;m

�

; Pn �

�

e−ikn ln 0
0 eikn ln

�

; (5)

where m � 0;…; 5 is the mth interface of the building block;
and n � 1;…; 5 is the nth segment of the unit cell [see
Fig. 1(c)]. Finally, the scattering parameters can be easily calcu-
lated using the whole building block transfer matrix obtained by
multiplication of the matching and propagation matrices [13]:

T � M 0

Y

5

k�1

PkM k : (6)

The amplitude and phase of S21 versus the chemical poten-
tials of the inner and outer metalines, μc;in and μc;out, are plotted
in Figs. 2(a) and 2(b), calculated by means of our analytical
approach. It is obvious that by local tuning of the chemical
potential of each unit cell any transmission phase and ampli-
tude profile can be achieved.

Now, we implement first differentiation, second differentia-
tion, and integration operators with the proposed structure. It is
well known that the nth derivative of a function is related to
its first Fourier transform by d n�f �x��∕dxn � F −1f�ikx�

n

F �f �x��g. Obviously, to realize the nth derivation we have to
perform a transfer function of �ikx�

n. Thus, as described in
the previous section, we set the transfer function of the
meta-transmit-array toH �x� ∝ �ix�n. Sincemetalines are inher-
ently passive media, the desired transfer function has to be nor-
malized to the lateral limit to ensure unity across the structure
the maximum transmittance; thus, the appropriate transfer
function isH �x� ∝ �ix∕�W ∕2��n. Figures 3(b) and 3(c) indicate
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Fig. 1. (a) Sketch of linear transversely invariant system to perform
mathematical operations. (b) Schematic of 2D graphene-based com-
puting system. (c) Basic building block of the metalines labeled by the
propagation and matching matrices corresponding to the interfaces and
segments. (d) Sketch of the meta-transmit-array made of three symmetric
stacked metalines. The dimensions are W � 684 nm, Lg � 1028 nm,
D � 100 nm, Λ � 18 nm, d � 5 nm, and λ � 6 μm.
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the desired magnitude and phase profile of the first-order deriva-
tive transfer function H �x�. According to Figs. 2(a) and 2(b), by
properly tailoring the values of the chemical potential along
the lateral dimension for internal and externalmetalines, the trans-
verse amplitude and phase distribution of the transfer function are
implemented. To this end, the transverse distribution of chemical
potential for the designed first-order differentiatormeta-transmit-
array and its corresponding complex surface conductivity profile
are depicted in Figs. 2(c) and 2(d). Now, a TM-polarized GP sur-
face wave is launched toward the designed meta-transmit-array,
and the calculated electric field distribution is shown in Fig. 3(a),
using Ansoft’s HFSS. As depicted in Figs. 3(b) and 3(c), the
output profile of meta-transmit-array is in excellent agreement
with the desired transfer function. To be more precise, the stan-
dard deviation from the amplitude and phase of the desired trans-
fer function is 0.04° and 6°, respectively. This is smaller than the
standard deviation observed in Fig. (S7b) of [1] which is about
0.19° and 15° for the amplitude and phase, respectively. Other
operators can be designed in a similar manner. To perform the
second-order spatial derivative, the desired transfer function is
H �x� ∝ −�x∕�W ∕2��2. Although here the amplitude is a quad-
ratic function of transverse dimension, the phase is constant. The
results for the designed second-order differentiator are illustrated
inFigs. 3(d)–3(f ). To realize a second-order integrator, a challenge
should be overcome. In this case, the desirable transfer function
should be H �x� ∝ �ix�−2 which leads to an amplitude profile
with values tending to infinity in the vicinity of x � 0. To over-
come this problem, we use the following approximate transfer
function [1]:

H �x� �

�

1; if jxj < h
�ix�−2; if jxj > h

; (7)

where h is an arbitrary parameter that we set it to h � W ∕12. For
all the points within jxj < h, the amplitude is assumed to be

unity; others follow the correct transfer function profile precisely.
Figure 3(g) shows numerical simulation of electric field distribu-
tion for this case. By comparing the obtained results from

Fig. 2. (a) Phase and (b) amplitude of transmission coefficient ver-
sus the internal and external metalines’ chemical potentials, μc;in and
μc;out, calculated by the proposed analytical approach. (c) Transverse
distribution of chemical potential for the designed first-order differen-
tiator meta-transmit-array. (d) Corresponding complex surface con-
ductivity. The complex surface conductivity of graphene can be
retrieved by the Kubo’s formula [8] with T � 300 K and τ � 1 ps.

Fig. 3. (a), (d), (g) Snapshots of electric field distribution �E z� for a
TM-polarized GP surface wave incident on the designed first-order
differentiator, second-order differentiator, and second-order integrator,
respectively. Comparison of the corresponding transverse (b), (e), (h),
amplitude and (c), (f ), (i) phase distribution of transmitted wave and
desired transfer function response right behind the structure.
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meta-transmit-array and analytical solution in Figs. 3(h) and 3(i),
excellent agreement is observed. The standard deviations from the
amplitude and phase of the desired transfer function of second-
order differentiator and second-order integrator are (0.09,11°) and
(0.09,10°), respectively. To demonstrate the functionality of our
proposed structures, a GP surface wave in the form of a Sinc func-
tion is sourced into our proposed GRIN/meta-transmit-array/
GRIN configuration and the simulated electric field distributions
are illustrated in Fig. 4 for the designed first-order derivative,
second-order derivative, and second-order integrator, respectively.
It is obvious from these figures that the achieved results are closely
proportional to the desired results calculated analytically.

In summary, we have proposed and designed a new class
of planar meta-transmit-array consisting of symmetric three-
stacked graphene-based metalines to perform wave-based analog
computing. Using analytical results for the reflection and trans-
mission coefficients of graphene plasmon waves at 1D surface
conductivity discontinuity [12], we have demonstrated that
full control over the transmission amplitude and phase can be
achieved by appropriately tailoring of surface conductivity of
each building block. Employing the general concept of perform-
ing mathematical operations in spatial Fourier domain, we
assign the meta-transmit-array a specific transfer function cor-
responding to the desired operation. The two designed opera-
tors in this Letter, i.e., differentiator and integrator, illustrate a
high efficiency. The proposed graphene-based structure is not
only ultra-compact, but also depicts more accurate responses
than the bulky structure suggested in [1]. These features are due
to exceptionally high confinement of surface plasmons propa-
gating on a graphene sheet. However, this miniature size comes
at a price, namely any future fabrication imperfections and
tolerance will lead to distortion of the anticipated results and,
therefore, degrade the efficiency of the proposed structure. The
presented approach may broaden horizons to achieve more
complex nanoscale signal processors.
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Fig. 4. (a), (d), (g) Snapshots of the z-component of the electric
field distribution along the GRIN Lens/MTA/GRIN Lens for the
first-order differentiator, second-order differentiator, and second-order
integrator, respectively. Corresponding (b), (e), (h) real and (c), (f ),
(i) imaginary parts of the output electric field compared with the ana-
lytical results. The input function is f �x� � sinc�16πx∕W �.
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