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Analog content-addressable memories
with memristors
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A content-addressable memory compares an input search word against all rows of stored

words in an array in a highly parallel manner. While supplying a very powerful functionality

for many applications in pattern matching and search, it suffers from large area, cost and

power consumption, limiting its use. Past improvements have been realized by using

memristors to replace the static random-access memory cell in conventional designs, but

employ similar schemes based only on binary or ternary states for storage and search. We

propose a new analog content-addressable memory concept and circuit to overcome these

limitations by utilizing the analog conductance tunability of memristors. Our analog content-

addressable memory stores data within the programmable conductance and can take as input

either analog or digital search values. Experimental demonstrations, scaled simulations and

analysis show that our analog content-addressable memory can reduce area and power

consumption, which enables the acceleration of existing applications, but also new computing

application areas.
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T
o increase power efficiency and cost performance, there is
growing interest in computing architectures that allow for
in-memory processing1 in order to reduce data movement

and address the memory wall. In this vein, recent work has shown
the promise of using non-volatile memory devices, or memristors,
for accelerating matrix multiplication directly in memory arrays,
accelerating a range of applications such as machine learning2–6,
analog signal processing7,8, and scientific computing9–11. The
performance improvements from this approach originate from
two principles. First, computation is performed where the data
are stored, removing the expensive power and latency costs of
data movement between separate computing and memory units
in a von-Neumann machine. Second, computation is performed
in the analog domain, which provides exponential efficiency gains
over digital, particularly at lower precision requirements. Each
device performs analog computations that would otherwise
require multiple digital elements. Despite the great promise of
this approach, demonstrations have thus far been limited to the
acceleration of matrix multiplication via crossbars.

Meanwhile, in-memory computational approaches in the
digital domain have been extensively explored over the years12.
While many proposed circuit typologies have not been imple-
mented in commercial systems, content-addressable memory
(CAM) and the related ternary CAM (TCAM) have stood as a
notable exception13,14. CAM/TCAM circuits natively perform a
matching operation between an input data word (search key) and
a stored set of data patterns in the CAM/TCAM array. The
operation is highly parallel and another example of an in-memory
operation, leading to extremely high throughput compare
operations at low latency, and therefore commercial success in
applications such as network routing15,16, real-time network
traffic monitoring17, and access control lists (ACLs)18. While
powerful, CAM performance benefits come at the cost of large
power and low memory density, limiting modern usage to high
cost niche areas that demand high performance. Recent work has
shown that utilizing non-volatile memristors (or resistive mem-
ory devices) in TCAM circuits reduces area and power19–27 and
provides the flexibility to accelerate powerful finite state
machines, particularly for Regular Expression matching used in
Network Intrusion Detection Systems23,28. However, nearly all

memristor-based CAM designs utilize schemes similar to con-
ventional static random-access memory (SRAM) designs where
the memristor only encodes binary states. The highly tunable
analog conductance in memristor devices, with many stable
intermediate states are not leveraged29. An analog CAM design
was proposed more than a decade ago that matches an input
voltage with precise values stored in analog storage cells30, but has
not been implemented likely due to practical concerns of high
power and area as it requires large numbers of active comparators
and inefficient array implementations.

Here, we propose a memristor-based analog CAM that sig-
nificantly increases data density and reduces operational energy
and area for these in-memory processing circuits. Our analog
CAM design stores a range of values in each cell using the tunable
conductance of memristive devices, and compares an analog input
with this stored range to determine a match or mismatch. The
concept has been validated with proof-of-concept experiments, as
well as simulations to establish performance and scalability. When
used to store narrow ranges as discrete levels, our analog CAM can
be a direct replacement of digital CAMs while providing higher
memory densities and smaller power consumption. This may
enable the use of CAMs for more generic scenarios31–34 such as
for associative computing that otherwise struggle with the limited
memory densities and high power consumption of conventional
CAMs. More importantly, our analog CAM can store wide
intervals of continuous levels, thereby enabling novel search and
matching functionality in the analog domain. The analog CAM
cell presented here can also be searched with analog input signals,
enabling the processing of analog sensor data without the need for
an analog-to-digital conversion step.

Results
6-transistors 2-memristors analog CAM. The proposed analog
CAM concept is illustrated in Fig. 1, where analog voltage values are
input to the analog CAM to be searched against the analog ranges
encoded by multilevel conductances in the memristors. This is
distinct from all previously reported CAMs (SRAM or memristor-
based), where only digital signals are searched and stored (Fig. 1a).
Similar to a digital CAM, the “match” signal for each row is
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Fig. 1 Schematic of the memristor analog content-addressable memory concept. a A digital content-addressable memory (CAM) compares the input

word against all stored words or rows in parallel. Ternary CAM (TCAM) is an extension where in addition to search/stored “0” and “1” values, “X” is a

wildcard that always yields a match. Data are searched along vertical Data Lines (DL) and the binary match result of the compare operation between

searched and stored words in each row is sensed on horizontal Match Lines (ML). The CAM returns the match location of stored data and the searched

input (first row here). b The analog CAM searches and stores analog data, where the input data can be a continuous value, and the stored data are a

continuous interval with a lower and upper bound representing an acceptance range for a match.
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generated on the matchline (ML) only when all the inputs for every
column match the data stored in that row’s memory. In contrast to
digital CAMs, each analog CAM cell can match a range of analog
input voltages (Fig. 1b), instead of a digital value. The analog CAM
can be configured to match a narrow range of discrete values, and
therefore one analog CAM cell is a direct functional replacement for
multiple digital CAM cells. In addition, similar to storing a “wild
card” or “X” in the TCAM, the proposed analog CAM can also
store a range of continuous values, which would otherwise be dif-
ficult to implement with digital CAMs/TCAMs, but (as described
later) is beneficial in internet packet (IP) routing, and more novel
applications in decision trees, associative computing34,35 and
probabilistic computing.

To realize the proposed analog CAM concept, we have designed
an analog CAM cell circuit where each cell is composed of six
transistors and two memristors (6T2M) (Fig. 2a). The analog input
search data are mapped to voltage amplitudes VDL applied along
datalines (DL), and the stored analog range is configured by the
programmed conductances of the two memristors of the cell
(Fig. 2b). Similar to existing CAM circuit implementations, the
search operation starts by precharging each row’s ML to a high
logic level, and the MLs stay high (match) only when all of the
attached CAM cells of a row match the corresponding input,
otherwise discharging and leading to a low logic level (mismatch)
on the ML. In the 6T2M design, the ML is connected to pull-down
transistors (T1, T2), and is kept high for a “match” result when the
gate voltage of the pull-down transistors is smaller than the
threshold voltage, keeping the transistor channel in a high
resistance state.

Each analog CAM cell stores an upper and lower bound for
matching against the input search value. These bounds are

encoded by two voltage divider sub-circuits which determine the
gate voltages of two pull-down transistors connected to the ML.
As shown in Fig. 2c, the voltage divider sub-circuit consists of a
transistor and series-connected memristor, which generates the
gate voltage (G1) of the pull-down transistor (T1) in the 6T2M
analog CAM circuit to embody the analog CAM cell’s lower
bound match threshold. When VDL is larger than a certain
threshold voltage, the transistor is highly conductive and thus the
search voltage between SL_hi and SL_lo (typically at GND) will
mainly drop across the M1 memristor, resulting in a small voltage
on G1 that does not turn on the pull-down transistor and yields a
match result. The lower bound of the input voltage VDL that
yields a match is configured by tuning the memristor con-
ductance in the voltage divider. The upper bound of the search
range is configured similarly with an independent voltage divider
using M2 and an inverter to control the gate voltage (G2) of the
second pull-down transistor (T2) (Fig. 2d). This concept is shown
by the simulation of the voltage on G1 and G2 depending on VDL

with different M1 and M2 memristor conductances (Fig. 2c, d).
As a result, the cell keeps ML high only when VDL is within a
certain range as defined by the M1 and M2 conductances. As
several cells are connected on the same ML in a row, just as in
digital CAMs, a row ML outputs “high” only when each cell in the
row matches.

Simulations and experiments. To validate our circuit design and
further investigate the memristor-based analog CAM concept, we
(1) conducted extensive simulations of individual analog CAM
cells and CAM arrays and (2) experimentally measured analog
CAM circuit operation in a taped-out silicon test chip. The circuit
simulations shown here utilize 16nm design rules to enable
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Fig. 2 6-transistors 2-memristors analog content-addressable memory circuit. a Schematic of our proposed analog CAM circuit, composed of six

transistors and two memristors (6T2M). Voltage amplitude on the Data Line (DL) provides search input and the matching result is sensed as the voltage

level on the Match Line (ML). b “Match” result when the analog input is within the range (narrow green band) stored by the cell. The stored range is

defined by the conductances of two memristors (M1 and M2) in the cell, with M1 determining the lower bound and M2 determining the upper bound of the

matching range. c,d Voltage divider sub-circuits translate the input voltage (a search value) to the gate voltage on the ML pull-down transistors. c When

the input voltage is smaller than the lower bound threshold, the voltage on the gate of the T1 is large enough to pull down the ML, yielding a “mismatch”

result. The lower bound threshold is set by the M1 memristor conductance. d Similarly, when the input voltage is larger than the upper bound threshold,

which is tuned by the M2 memristor conductance, the cell returns a “mismatch” result by pulling down the ML. Here, SL_hi is at 0.5 V which sets the max

G1 and G2 voltage.
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projected performance comparisons against current CMOS-based
solutions, and our silicon tape-out utilized a 180nm technology
node to provide voltage and current overheads and accelerate
design to fabrication time.

We first validated the operation of the individual memristor
analog CAM cell circuit with circuit simulations (see Methods for
details) based on a layout using commercial 16 nm design
rules (see Fig. 3a). The memristor conductance tuning in an
analog CAM array is similar to the “write” operation in a 1T1M
array and described in Supplementary Note 1, and Supplemen-
tary Fig. 1, with the parameters summarized in Supplementary
Table 1. The current design prioritizes feasibility and demonstra-
tion of this new circuit concept and is not fully optimized for
speed or power consumption.

The analog stored value was first configured in the CAM cell by
setting the conductance of two memristors in one analog CAM cell
to 40 μS and 80 μS and tested by applying different VDL values to
observe the changing VML behavior during the search operation.
From simulations we see that after the search is initiated (by pulling
SL_hi high), VML stays high (Fig. 3b) when VDL is 0.4 V, indicating
a “match”, but is discharged low when VDL is either 0.3 V or 0.5 V
for a “mismatch”. The operation’s timing diagram and voltage
parameters are presented in Supplementary Fig. 2, from which one
sees that the search result can be measured from the transient VML

at some time (e.g. 100 ps) following the search when the voltage
difference (i.e. sensing margin) between match and mismatch
scenarios is large enough for a sense circuit. The simulated ML
sensing output at 100 ps following the search operation for different
VDL (Fig. 3c) shows that this programmed memristor configuration

corresponds to matching for 0.37 V < VDL < 0.42 V. The lower
bound (V_lo) and the upper bound (V_hi) of the analog CAM cell’s
acceptable matching range can be configured independently by
tuning the corresponding memristor conductance in the cell. Using
the resulting mapping between the voltage bound and conductances
(Fig. 3d) as a guide, we configured analog CAM cells to match
various voltage ranges (Fig. 3e) or eight narrower ranges (Fig. 3f) for
representing 3-bit discrete voltage levels. CMOS process variation
effects are studied with a layout-based simulation under different
corner conditions, and results (in Supplementary Fig. 3) show that
while different conditions slightly change the latency and search
boundaries, we can still perform a calibration under those specific
conditions to achieve the same bit accuracy as our search boundary
is programmed with an iterative program-and-verify approach.
Therefore, the proposed analog CAM cell implements the desired
functionality and can be used to search for discrete levels (encoding
at least 3-bits in a single cell) or for arbitrary analog voltage ranges
to encode continuous values.

Next, we experimentally verified the proposed analog CAM
operation in 6T2M analog CAM cells designed and fabricated at a
180 nm technology node on a silicon test chip (see Methods).
Memristors of size 50 nm × 50 nm and based on Ta/TaOx were
monolithically integrated in a Back End of the Line (BEOL)
process with CMOS circuits on top of metal 6 and tungsten vias
(Fig. 4a). Figure 4b shows the top view image of the analog CAM
array with integrated memristors. The integrated memristors
have a wide ~103 range of conductance tunability (Fig. 4c) and a
programming voltage <1 V under direct-current (DC) sweeps
(Fig. 4d shows a typical switching curves, and Supplementary
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Fig. 4 shows a test chip under measurement), enabling us to
validate the search operations experimentally. Given that the
switching voltage of the memristor device exhibits a certain
degree of variation, some devices may require a larger voltage to
program than others (see Supplementary Fig. 5a). Therefore, it
may impose challenges for a future technology node which
supplies a voltage smaller than 1 V. We programmed two analog
cells in the same row to store different ranges using an iterative
program-and-verify approach and observed the match line (ML)
pull-down current as we sweep the corresponding data line (DL),
with the experimental configuration schematic shown in Supple-
mentary Fig. 6a. As expected, the pull down current is low only
when the applied data line voltage falls into the programmed
range, indicating a match (Fig. 4e), and the other cell attached to
the same ML shows a different search range (Supplementary
Fig. 6b, c). Figure 4f shows 1000 repeated measurements without
any observed disturb effects in the stored range (see also
Supplementary Fig. 6d) and Supplementary Fig. 7 and 5 show
the stability statistics of the analog conductance states of the
memristors. These results suggest our analog CAM does not
require static power to store a range table, nor frequent updates
once programmed.

The relationship between an analog CAM cell’s stored range
for a match and the programmed memristor conductances can be
understood by the series-connected transistor and memristor
voltage divider (see Fig. 2c, d). During a search operation, the
serial transistors in the divider are working in the triode regime,
as the voltage drop across the transistor channel is fairly small.
Under this condition, VML stays high when VDL follows Eq. (1),
with bounds from the lower bound M1 voltage divider and the

higher bound M2 voltage divider:

GM1 � ðVSLhi=VTH;ML � 1Þ=βþ VTH

≤VDL ≤GM2 � ðVSLhi=VTH;inv � 1Þ=βþ VTH;
ð1Þ

where VTH, VTH,ML, VTH,inv are the threshold voltages of the
transistor in the M1 voltage divider, the T1 pull-down transistor,
and the inverter respectively. β ( = ∂GT∕∂VDL) is a constant
coefficient in the transistor transfer function. GM1 and GM2 are the
memristor conductances, which are linearly related to the accepted
VDL for a match according to the above equation. This analysis is
consistent with the results shown in Fig. 3d when the transistor is
working in the linear regime, but when the memristor conductance
is very small (i.e. the transistor voltage drop is small) a numerical
simulation is required to extract the precise relation. In practice, we
use the simulated relation in Fig. 3d to determine the programming
target memristor conductance values from the desired stored
analog value or range. Under this assumption, we scale up our
simulations from single cells to large analog CAM arrays to predict
performance.

Memristor analog content-addressable memory arrays. While
we have demonstrated single analog CAM cell operation in a
small array, it is crucial to investigate whether large arrays can be
operated without degradation to the desired search operation
result. Using extracted parasitic parameters from the 16 nm
layout, we constructed analog CAM arrays with arbitrary num-
bers of rows and columns (see Methods) to study how the analog
CAM performs with increasing array size. Fig. 5a shows the
simulation configuration, where the two memristors in each of
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the analog CAM cells are programmed to 20 and 80 μS in order to
accept VDL from 0.33 to 0.43 V. All DLs are biased to 0.4 V,
except for one column DL that is swept from 0.0 V to 1.0 V to
observe how VML changes. This single-bit mismatch is the worst-
case scenario as it represents the situation where the mismatch
VML decay is the closest to the match VML behavior. Since all cells
with VDL = 0.4 V match, the VML drop leading to a “mismatch”
is initiated by the cells in the column with the sweeping DL.
Similar to a conventional CAM, ML discharging latency increases
with the number of columns because of larger ML capacitances
(Fig. 5b). With increasing number of rows, on the other hand, the
latency only changes 5% in our simulation for an array with 512
rows, suggesting our analog CAM supports the search for many
entries in parallel.

As expected even with conventional CAMs, increasing the
number of columns can also lead to a degradation of the VML

(Fig. 5c) such that the acceptable search range is slightly changed.
Our analysis shows that the degradation of VML with increasing
column number is from the sub-threshold leakage current of the
pull-down transistors (see Supplementary Note 2 for more details),
and it can be improved with some emerging devices with extremely
low leakage current and sharp transition, as we preliminary

explored in Supplementary Note 3, Supplementary Fig. 8, Supple-
mentary Fig. 9, and Supplementary Fig. 10. Nevertheless, the change
in the accepted voltage range is within 0.02 V and is thus sufficient
to separate more than 20 discrete levels between 0.2 V and 0.6 V for
4 bit searching capability in a 64-column analog CAM array. On the
other hand, analog CAM arrays with two columns but an increasing
number of rows show little change (Fig. 5d) in VML with additional
rows (simulated up to 512 rows), demonstrating negligible row-wise
interference.

Applications. The direct advantages of our proposed analog
CAM are the improvements in energy and area over existing
digital approaches. To demonstrate the potential scale of these
improvements, we compared our analog CAM approach with the
digital-equivalent for the usecase of classifying Internet protocol
(IP) packets, which is a common commercial application for
CAMs13. The ternary wildcard “X” capability of TCAMs is fre-
quently used to compress multiple table entries into fewer rows in
the IP routing look-up table, owing to the fact that most classi-
fying ranges are continuous. With our proposed analog CAM’s
ability to store broad ranges, this look-up table can be further
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compressed. Analysis in the previous section suggested that one
analog CAM cell is capable of searching 8-64 discrete levels,
depending on the size of array and the specific implementation.
Columns can therefore be combined as fewer cells are required to
store the same amount of information. Additionally, by taking
advantage of the range storage capability, fewer rows are required
than in a digital CAM/TCAM representation. A real example is
given in Supplementary Note 4 and Supplementary Fig. 11, which
shows a 14× reduction in the number of required cells from
conventional TCAM to 16-level analog CAM cells, with further
reductions possible with improved analog CAM cells. As an area
improvement, given the analog CAM cell occupies less area than
the SRAM cell, we estimate an 18.8× reduction for our analog
CAM table with 12.5 μm2 chip area compared to an SRAM
implementation with 235.2 μm2 (see Supplementary Section 4 for
details).

To evaluate the search energy improvement with an analog
CAM, we simulated the circuit current from all the power supplies
with an 86×12 analog CAM array. For a practical evaluation of all
digital applications, we custom designed a digital-to-analog (DAC)
converter, which imposes additional overhead in both chip area
and energy, but our analyses in Supplementary Note 5, Supple-
mentary Fig. 12 and Supplementary Table 2 show this overhead is
limited to approximately 10%. The cumulative consumed energy
is calculated by integrating the voltage and current over the 16-
cycle search with all MLs discharging in the search for the worst-
case scenario. Estimating the full array power (including drivers
and unoptimized peripherals such as the custom-designed digital-
to-analog (DAC) converters), the average total energy per search
is ~0.52 fJ per analog cell, or 0.037 fJ for the equivalent number of
TCAM bits implementing the same function (see Supple-
mentary Note 4 for details). The energy per cell consumption is
significantly smaller than an SRAM TCAM (0.165 fJ)36, which
utilizes numerous power saving techniques that provides a > 10×
reduction but are not implemented in our analog CAM yet, and a
conventional memristor TCAM (0.17 fJ)37.

In addition to serving as a higher data-density digital replace-
ment, the proposed analog CAM offers novel applications when
the range search capability is utilized. As an example, a decision
tree with binary and non-binary classification features can be
implemented in the analog CAM directly by mapping each root
to leaf path to a row in the analog CAM (see Supplementary
Fig. 13 and Supplementary Note 6 for mapping details). Logically,
each root-to-leaf path traverses a series of nodes with Boolean
ANDs between elements in a given input feature vector
(Supplementary Fig. 13a). Since AND is commutative, we can
reorder the nodes such that feature variables are processed in the
same order for all paths38. Nodes for the same feature are
combined into one node and "don’t care” nodes can be inserted
for features absent from a specific path, such that each path is of
equal length. This representation can then be directly mapped to
the analog CAM array, with each root to leaf path a row. As the
matching row can directly drive the readout of the classification
result, tree traversal becomes a one-cycle operation (Supplemen-
tary Fig. 13b). This high throughput and low latency operation
is highly advantageous and differentiated from current usage.
While ensemble tree-based models are a popular state-of-the-art
machine learning approach for classification and regression
across diverse real-world applications, these models are difficult
to optimize for fast runtime without accuracy loss in standard
architectures32 due to non-uniform memory access patterns,
resulting in unpredictable traversal and classification times today.
With our proposed analog CAM, it becomes feasible to process
large tree-based models at high data rates, such as those required
for streaming applications or autonomous vehicles.

Discussion. In summary, we have proposed an analog CAM cell
circuit taking advantage of the analog memristor conductance
tunability for the first time. A practical circuit implementation
composed of six transistors and two memristors has been
demonstrated in both experiment and simulation. The analog
CAM increases memory density significantly, as one analog CAM
cell can store multiple bits with only six transistors while an
SRAM CAM cell stores 1 bit values with 10 transistors, or ternary
values with 16 transistors in a TCAM cell. The analog capability
opens up the possibility for directly processing analog signals
acquired from sensors, and is particularly attractive for Internet
of Things applications due to the potential low power and foot-
print. The output of the analog CAM after the sense amplifiers is
digital, and thus can also remove the analog-digital conversion
cost entirely. Finally, the functionality of our analog CAM with
interval storage is intrinsically different from digital CAMs, which
may enable new computing applications in decision tree models,
associative computing and probabilistic processing where inexact
compares and real-valued analog transition probabilities are
common.

Methods
Memristor integration. The memristors are monolithically integrated on CMOS
fabricated in a commercial foundry in a 180 nm technology node. The integration
starts with a removal of silicon nitride and oxide passivation with reactive ion
etching (RIE) and a buffered oxide etch (BOE) dip. Chromium and platinum
bottom electrodes are then patterned with e-beam lithography and metal lift-off
process, followed by reactive sputtered 4.5 nm tantalum oxide as switching layer.
The device stack is finalized by e-beam lithography patterning of sputtered tan-
talum and platinum metal as top electrodes.

Circuit simulation for analog CAM cell and arrays. The proposed 6T2M analog
CAM cells designed in the Cadence Virtuoso Custom IC design environment
(version ICADV12.1-64b.500.14), and the simulation result is analyzed and post-
processed with HP-SPICE (version 4.11). The simulations utilize the TSMC 16 nm
library and the designs follow the corresponding rules. The voltage parameters and
timing diagram are shown in Supplementary Fig. 2. A custom python script
generates the netlist for analog CAM arrays with different numbers of rows and
columns and arbitrary configured memristor conductances and input voltages. In
the netlist, the parasitic parameters are extracted from the taped out layout,
including the wire resistance 1.91, 2.27, 0.85Ω per block for ML, DL, SL, and
capacitance 0.227 fF, 0.324 fF, 0.454 fF between different analog CAM cells. The
voltage stimulus is always applied to the nodes that are the furthest from the ML
sensing node, so that the impact of the wire resistance is the most significant,
i.e. the worst case scenario.

Electrical characterization. The electrical characterization is conducted with a
semiconductor parameter analyzer (Keysight B1500A) and Cascade probe station
under room temperature. The conductance programming is performed with quasi-
static direct-current (DC) sweeps, and where the current through the device is
limited and controlled by the series-connected transistor. After programming, the
memristor conductance is readout by applying a small voltage across the memristor
with the series-connected transistor fully turned on. The search operation is
conducted by applying and sensing voltages from the corresponding node to/from
a source measurement unit (SMU) on the B1500A. A custom python code with
PyVISA library was used to control the equipment.

Data availability
The data supporting plots within this paper and other findings of this study are available

with reasonable requests made to the corresponding author.
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