
NASA Technical Memorandum 4241
NASA-I 'M-424 I I 00 10O02000

Analog-Digital Simulation of
Transient-Induced Logic Errors
and Upset Susceptibility of
an Advanced Control System

Victor A. Carreno, G. Choi,
and R. K. Iyer

NOVEMBER 1990

NASA

NASA Technical Memorandum 4241

Analog-Digital Simulation of
Transient-Induced Logic Errors
and Upset Susceptibility of
an Advanced Control System

Victor A. Carreno
Langley Research Center
Hampton, Virginia

G. Choi and R. K. Iyer
University of Illinois
Urbanna, Illinois

NASA
National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Division

The use of trademarks or names of manufacturers in this
report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and
Space Administration.

Abstract

This paper describes a simulation to predict the
susceptibility of an advanced avionics control sys-
tem to electrical transients resulting in logic errors,
latched errors, error propagation, and digital upset.
The system is based on a custom-designed micropro-
cessor, and it incorporates fault-tolerant techniques.
The system being tested and the method of perform-
ing the transient-injection experiment are described.
Results for 2100 transient injections are analyzed and
classified according to charge level, type of error, and
location of injection.

Introduction

Digital system upset, as used herein, is caused by
electrical transients and refers to the mode that a sys-
tem can enter in which the system is not performing
its intended function but in which no physical com-
ponent failure is caused by the transient. This upset
mode is inherent to digital computers and other sys-
tems with discrete internal states. It is estimated
(ref. 1) that 80 percent of computer "crashes" are
caused by electrical transients. Digital control sys-
tems onboard aircraft and spacecraft are exposed to
many sources of electrical transients. Of particular
interest are electrical transients produced by sources
external to the system like lightning, high energy ra-
dio frequency (HERF) transmitters, electromagnetic
interference (EMI), and high energy particles.

The application of digital systems to the control
of critical functions necessitates the study of system
susceptibility to upset by electrical transients. Upset
studies have been performed in the past using hard-
ware injection experiments (ref. 2) and simulation
injection experiments (ref. 3). These hardware and
simulation experiments were performed on identical
systems, and the results were compared. The sys-
tem test-bed was a general-purpose computer based
on an Intel 8080 microprocessor. This system, how-
ever, was not representative of avionics control sys-
tems (electronic systems used in the control of air-
craft functions), and the program that was executing
during injections was not a real application program.

The study of transient injections on digital sys-
tems can yield two types of results-the understand-
ing of the mechanisms by which electrical transients
produce logic errors, error propagation, latched er-
rors, and possible prevention strategies; and the im-
pact of these errors on the overall functionality of the
system and the possibility of system upset. Given
that there is a logic error in the system, protec-
tion schemes can prevent the system from enter-
ing an upset mode. These protection schemes can
be implemented by using specially designed hard-

ware and software algorithms. This paper describes
a simulation study of transient-caused logic errors,
latched errors, error propagation, and pin errors (er-
rors propagating to external pins) on a microproces-
sor designed specially for avionics applications. The
section "Simulation Methodology" describes the se-
lected simulation program and the development of
the program into the transient-injection and error-
propagation analysis system. The section "Experi-
ment Setup" describes initial runs to determine sim-
ulation accuracy, injection waveform, gate-transistor
combination requirements, and the processor used as
the system under test. The simulated processor, the
HS1602, was developed by Hamilton Standard and is
the computational unit of an electronic engine con-
troller (EEC). Detailed descriptions of the processor
and two hardware units of the EEC were obtained
from Hamilton Standard. Results for 2100 transient
injections are presented in the section "Experimen-
tal Results." An error-transition model is described
in the section "Data Analysis," and a description of
the feasibility of performing such assessment by using
digital simulation is presented in the section "Upset-
Assessment Outlook."

Simulation Methodology

The modeling of the transient-injection process
(fig. 1) requires multiple levels of simulation. Circuit
analysis is employed to obtain the incidence of logic
errors caused by the analog transients. Logic errors
are then used in a logic level simulation (gate, func-
tional) to determine error-propagation characteris-
tics of the entire system under test. The SPLICE1
(simulation program with large-scale integrated cir-
cuit emphasis) mixed-mode simulator selected for
the study can perform coupled-circuit analysis and
logic simulation. A mixed-mode simulator eliminates
the need for two separate programs and the inter-
facing associated with data transfer, interpretation,
and manipulation between the two programs. The
SPLICE1 consists of the following three parts:

1. The language (description) translator, which
is similar to a compiler. The description
listing of the circuit is analyzed for syn-
tax errors, undefined arguments, connectivity,
etc. A data file is generated that represents
the circuit with initialization and run-time
parameters.

2. The simulator, which takes the circuit data file
and performs the actual simulation.

3. The postprocessor, which plots and prints
selected node values against time from the
simulation.

The detailed implementation and characteristics of
the SPLICEl simulator are documented in
reference 4.

Several modifications and enhancements have
been made to the SPLICEl simulator for the
transient-injection study. Typical injection of tran-
sients is performed by connecting a current or voltage
source at the node where the injection is to occur.
This method, however, requires the reprocessing of
the entire circuit for changes in injection location and
current characteristics. A new method was developed
to allow the direct specification to the simulator of in-
jection locations and electrical characteristics of the
transient. This was accomplished by changes in the
SPLICEl relaxation algorithm (ref. 5). The electri-
cal characteristics of the transient are then specified
as a mathematical expression as a function of time.

The SPLICEl simulator was also enhanced by
the creation of a utility to manipulate external data
files during simulation to service modules that rep-
resent external memory. Modeling large memories
(random-access memory (RAM) and read-only mem-
ory (ROM)) with SPLICEl primitives (models pre-
defined in the SPLICEl description) was not feasi-
ble. This utility allows the user to specify a memory
device as a normal electrical device with all connec-
tions and electrical characteristics associated with it.
When the simulator processes the memory module
during a memory access, the address is calculated
and an external file is used to store or retrieve the
value for the calculated memory location.

Finally, two new facilities were developed for the
output postprocessing. The first facility extends
the output of SPLICEl from 16 to 80 nodes and
produces an output only if any of the 80 selected
output nodes changes value. It also converts the
value of selected groups of nodes to a hexadecimal
radix. This notation can aid in the identification
of microprocessor operations by grouping the DATA
and/or ADDRESS lines. The second new facility
is an extended-trace facility that monitors all the
nodes in the system, approximately 4000 nodes for
the HS1602. Output is generated for a node every
time a gate driving that node is evaluated by the
simulator. Monitoring all nodes is essential for a
study of fault propagation.

Experiment Setup

Processor Description

The EEC's are typically full-authority, dual-
channel jet-engine controllers. They incorporate
fault-tolerant techniques at various levels. One chan-
nel of the EEC, excluding the interfaces, was sim-

ulated and used as the system being tested. An
EEC application program was supplied by Hamil-
ton Standard and was modified to account for the
single-channel nature of the system being tested. The
simulated EEC is based on the HS1602 16-bit mi-
croprocessor. Integral to the microprocessor are a
parity generator and parity-error detection, a watch-
dog timer, and a universal transmitter and receiver.
Other modules are the arithmetic logic unit (ALU),
control unit, decoder unit, countdown unit, and mul-
tiplexer. A gate-level description of the entire micro-
processor was supplied by Hamilton Standard. The
gate-level description is structured in a hierarchi-
cal manner. Each basic submodule of the gate-level
description was then described at the transistor level.
The simulation can be performed with any combi-
nation of gate-level submodules or transistor-level
submodules. An increase in transistor submodules
results in a penalty in simulation execution time.
Transistor models for the transistor-level submodules
are CMOS (complementary metal-oxide semiconduc-
tor) models similar to those found in analog circuit
analysis tools, such as SPICE (simulation program
with integrated circuit emphasis). Silicon param-
eters for the transistor models were obtained from
the manufacturer. Capacitance loads were calcu-
lated from metallization lengths in the circuit layout.
Metallization lengths supplied by the manufacturer
were from VLSI (very large scale integration) CAD
(computer-aided design) tools.

Injection Waveform

The current waveform used for the injections is
the double exponential type, based on the following
approximate analytical solution (ref. 6) for ion track
charge collection:

where a is the collection-time constant and ,O is the
track-establishment constant. The values of a and ,O
were set to 1 . 6 4 ~ 10-lo and 5 . 0 0 ~ lo-'', respectively,
for the injection experiment. The constant A is the
approximate maximum current, and it was varied to
produce charge accumulations of 0.5 to 9 PC. The
charge level was limited to 9 PC, since charge levels
higher than 9 pC cause permanent damage to the
circuits (ref. 7). It was found, however, that for
the CMOS technology modeled in this experiment,
it was total charge, and not the time constants a
and ,O, that determined the potential of the transient
to cause logic errors.

During transient injections, the simulated EEC
was executing the initialization portion of the ap-
plication software. The initialization consists of the

watchdog test, parity test, instruction set test, RAM
test, and ROM sum test. Also, initial data values are
loaded in RAM during this part of the program.

Initial Runs

To establish simulation accuracy and increase
confidence of results, an undisturbed simulation run
was compared with the operation of the actual hard-
ware unit. Two comparisons were made. The first
verifies the correct flow and execution of instructions
by monitoring data, address, and control lines during
the time that these lines are stable (valid). Correct
execution flow was observed for 74 instruction cy-
cles (90 300 simulation steps). The second compari-
son, which is more rigorous, monitors all changes in
logical values, including transitional times. For the
second comparison, 16 231 simulation steps were ana-
lyzed. This comparison reveals electrical characteris-
tics of the simulation, such as propagation delay, race
conditions, and gate loading. This comparison, how-
ever, is not completely deterministic, since some per-
formance parameters in the actual hardware circuit,
given the same conditions, vary from one experiment
to the next. Gate delay, for example, can be mea-
sured and specified as minimum, typical, and max-
imum delay time. Differences in transitional times
between the ~imulat~ion and the actual system were
3 nsec or less after normalization. Normalization was
needed because the actual system runs at 12.08 MHz
and the simulation was set at 82 nsec per clock cy-
cle (12.195122 MHz). Normalization consists of mul-
tiplying the simulation times by a 1.009530 factor.
Simulation resolution was 1 nsec; therefore, all time
values were in 1-nsec increments. Differences in tran-
sitional times are well within the acceptable levels of
accuracy for the simulation.

Gate-Transistor Module Combination

For transient injections, the number of transistor-
level submodules needed for accurate simulation was
determined by experimentation. Simulations were
performed with all gates at 1, 2, 3, 4, and 5 gate
distances modeled at the transistor level, where gate
distance is as defined in figure 2. For a combinatorial
circuit, it was found that a minimum of three gate
distances is needed for accurate simulation; that is,
modeling gates at the transistor level at more than
three gate distances does not change the results of
the simulation.

When latches in the circuit are within three gate
distances of the transient-injection node, a minimum
of four gate distances is required for consistent re-
sults. Figure 3 shows an example of a circuit with a
latch at two gate distances from the transient. In this

example, the shaded gates and latch need to be mod-
eled at the transistor level for correct results. The
transient injections for the gate-distance experiment
were at the maximum 9-pC level.

Experimental Results

A total of 2100 transient injections were per-
formed on the simulated processor. Seven nodes were
randomly selected from each of the six major units.
The nodes were injected with 10 electrical transients,
with charge levels of 0.5, 1.0, 2.0, . . ., 9.0 PC, at five
different times during program execution. The inci-
dence of errors, as a function of charge level, is shown
in table 1. A first-order error is defined as a logic er-
ror that is present one clock cycle after the transient
has been injected (i.e., latched error). Second-order
errors are latched errors that are present two or more
clock cycles after the transient. First-order pin errors
are first-order logic errors that appear at the device
pins. First-order pin errors are a subset of first-order
latched errors. Functional errors were recorded when
there was a change in the functional operation of the
microprocessor.

Injections with charge levels of less than 2 pC
cause few or no errors. For charge levels from 2
to 6 PC, there is an increase in all types of errors
with increase in charge. Increasing the charge level
above 6 pC does not have any significant effect on
the number of errors.

Table 2 shows first-order errors in the system for
injections in each individual functional unit. First-
order error is an approximation of the susceptibility
of the module to the transient injection. As can
be seen from the table, the watchdog and the ALU
have the highest susceptibility to transients, and the
decoder, control, and countdown have about half the
errors. Injections in the multiplexer did not produce
any effect on the system.

Because of the complexity of the software used
in the EEC and the various recovery mechanisms
implemented in software and hardware, a quanti-
tative measurement of system upset was not fea-
sible with digital simulation. During simulation,
however, many of the mechanisms for recovery were
observed. "Power on" resets were issued after some
errors were detected by the processor as parity er-
ror. This reset causes reinitialization and check of
the RAM, PROM (programmable read-only mem-
ory), etc. When the processor detects a parity er-
ror, a parity-error counter is incremented and the
suspected memory unit is "charged" with the par-
ity error. The parity-error counter could be used
at a later time to change control of the engine from
one channel to another. Another observed functional

recovery was corrupted data values that were dis-
carded because the values were out of range.

To thoroughly evaluate the recovery mechanism
and determine if the system would enter an upset
mode after a functional error, the simulation would
have to be run for several million machine cycles,
and the functional outputs of the system would have
to be monitored to determine if they were within a
specified range. This translates into several weeks of
simulation time for each transient injection, which
makes the creation of a data base not viable. A
simulation run of 10 msec real time, with 12 two-
input logic gates and 2 D-type flip-flops modeled at
the transistor level, requires approximately 130 hr of
CPU time in a MicroVAX 11 computer.

Data Analysis
This section presents an analysis of the error-

propagation probability by using an error transition
model. That is, given an error in module A, what is
the probability that the error source was module B?
The results of this analysis are useful in identifying
several critical aspects of the system: the identifica-
tion of the critical-error propagation paths; the deter-
mination of the module most sensitive to error prop-
agation; and the module with the highest potential
for causing external pin errors. Figure 4 is a state
transition diagram, based on the measured data, to
quantify the intermodule latched-error propagation.
A state in the figure represents a system module that
contains one or more errors. In this model, the sys-
tem can be in more than one state at the same time.
Given that errors exist in a module, the numbers in-
side the state are average numbers of errors. When
first-order latched errors exist in a module, they are
not necessarily the results of an injection in that
module. For example, although injections in the mul-
tiplexer did not cause any latched errors, first-order
errors were observed in the multiplexer after tran-
sient injections in other modules. This is shown by
the line from "FAULT INJECTION" to "MULTI-
PLEX" (0.04) in the figure.

Latched errors in the decoder unit do not propa-
gate from other functional units. All latched errors
that occurred in this unit were a result of the direct
effect of the injected transient. The probability of a
latched error in the decoder unit propagating to the
pins is small (0.01). Thus, the decoder is not a criti-
cal unit from a fault-propagation point of view. The
model shows that the critical fault path in the system
is between the control unit and the watchdog unit.
Given a latched error in the control unit, the prob-
ability that it propagated via the watchdog unit is
0.32. Conversely, the probability of the control unit
being the source of a latched error in the watchdog

unit is also high (0.30). Although the one-way prop-
agation probability is high in some cases (e.g., 0.63
from the watchdog unit to the multiplexer), none has
a higher two-way propagation probability. Therefore,
if all other factors are equal, the best way to reduce
intermodule error propagation is to protect the inter-
connections between the watchdog and control units.
Since a significant number of functional errors result
from the second-order and higher order latched er-
rors, the system level impact of providing this pro-
tection is expected to be a decrease in the probability
of functional errors.

The model also shows that the modules with the
highest potential to cause external pin errors are the
watchdog and control units. Fifty-seven percent of
all pin errors were a result of the latched errors in
the watchdog and control units. The module most
sensitive to fault propagation was the ALU. Of all
functional units, an error occurrence in the ALU is
likely to lead to the largest number of latched errors
(9.89). Applying internal retry to ALU operations
may be a successful way of reducing the number of
latched errors. It is important that, with the ex-
ception of the decoder, the probability of the tran-
sient injection directly causing the latched errors is
low. More than 95 percent of latched errors were
caused by propagations from other latched errors in
the ALU, control, countdown, watchdog, and multi-
plexer. Also, 89 percent of pin errors were caused by
latched-error propagation; therefore, error propaga-
tion is critical in the study of highly reliable systems.

Upset- Assessment Out look
Testing the resiliency to upset of a hardware unit

independently from its operating system software
is not meaningful because of the interdependency
between the hardware modules and the software pro-
gram controlling the hardware resources. The appli-
cation program is also usually involved in the hard-
ware management and forms an integral part of the
system and the upset-assessment process. (Appli-
cation program is used in this context as the pro-
gram that implements the control laws in a control
system.) For example, electrical transients can be
detected by the microprocessor as sensor failures.
The microprocessor can synthesize the missing values
from other sensors or transfer control to other chan-
nels and shut itself down or enter other modes. Fig-
ures 5 and 6 show hypothetical flow diagrams to illus-
trate this example. Figure 5 shows no fault-tolerance
techniques, while figure 6 shows some built-in fault
tolerance. In figure 6, the validity of the reading from
sensor A is determined based on other physical val-
ues as illustrated by the comparison g(xl ,x2,x3) <
value sensor A < f (xl , x2, x3), where g() and f ()

are functions of other sensors or calculated values.
In this example, if the value sensor A is out of range
two consecutive times, the sensor is assumed to be
failed and other paths are taken to calculate control
parameters. Physical characteristics of the control
loop and control laws are therefore used to manage
hardware resources.

Previous work in the area of upset (ref. 8) identi-
fied an upset dependency on software. This relation,
however, was at a low level of software (i.e., proces-
sor instruction level). In this previous work, "illegal"
loops were found within the correct program. The
illegal loops are a result of multiword instructions.
Multiword instructions typically have one, two, or
three words. The first word is the instruction itself,
and the second and third words are the data nec-
essary to perform the instruction. The second and
third words of a multilevel instruction are never read
as an instruction under normal operation. If the pro-
cessor is forced (e.g., with an electrical transient) to
read a data word as an instruction, the processor can
enter an illegal path or loop, where it no longer is ex-
ecuting the code correctly. When the system is in
this mode, reset or other corrective action is usually
necessary. The HS1602 instructions, however, are
single-word instructions, and no illegal loops exist.
The upset-software dependency is at a higher level,
and the application and operating system are the de-
termining factors in the upset susceptibility of the
system, as illustrated by the example in this section.

During transient-injection runs, the system did
not enter an upset mode. The state of the system,
however, was in many cases different than the state
of the system for the undisturbed (gold) run. Within
the scope of this experiment, it is impossible to pre-
dict in a quantitative manner the impact that present
system state would have had on the continued oper-
ation of the system. Limited simulation runs and in-
formal predictions based on observations of the oper-
ation of the EEC system suggest that the occurrence
of upset is an unlikely event. Thus, random tran-
sient injection is not an effective method of uncover-
ing upset in such systems. This situation is similar
to software testing for the detection of code design
errors. In software testing, like in upset testing, ex-
haustive testing is not an alternative because of the
large state space, and partial testing only reveals the
more probable errors. Also, upset testing, unlike nor-
mally executed software, has to account for entry into
sections of a program at any random location. Nor-
mally executed software has predetermined entry and
exit points, as defined by test (comparison) instruc-
tions. The possibility of random entry into the code
makes program flow analysis an extremely difficult
task, and the result of the program flow analysis is

limited by some of the assumptions that were made
to make the problem tractable. Other mechanisms
that contribute to the complexity of program flow
analysis include watchdog timer updates; hardware-
implemented, interrupt-driven, program flow control;
hardware status checks; and corrective action during
background program execution. Upset, a functional
characteristic, can be separated between hardware
and software in only the most simple of systems,
when the results are almost trivial. Therefore, the
study of upset on systems that incorporate recov-
ery mechanisms, multiprocessing, and fault-tolerant
techniques requires the analysis of the dependency
of the code on the computational and combinato-
rial units and on the physical mechanisms that cause
changes in logic values and disruption of the data
flow. Upset assessment of these systems could be
performed by analytical means (i.e., program flow
analysis, timing analysis, etc.) or a combination of
analysis and digital simulation, where the analysis is
used to extrapolate the results of the simulation. In
systems with recovery mechanisms, deviation from
an undisturbed path (compared with a gold system)
does not imply that the system is not meeting its re-
quirements. A prediction of the future state of the
system can be attempted, by analytical means, from
the present state of the system, which was obtained
from the simulation after transient injections.

Overall system functional testing also presents the
problem of input-output dynamics. Since the control
system is an element in a control loop, any control
command issued by the control unit is fed back to its
inputs in the form of parameter measurements and is
used for following computations. Static inputs during
upset testing will likely result in inaccurate results;
thus, evaluation of the system should be performed
in a closed loop. It is rarely possible or economically
feasible to test a control unit in its normal control
loop. Computer simulation of the mechanical devices
in the loop is an alternative for closed-loop testing.

Concluding Remarks
A system for the analysis of electrical transient in-

jection and error propagation was developed based on
the SPLICE1 (simulation program with large-scale
integrated circuit emphasis) multimode simulator.
An electrical engine controller was used as the can-
didate system for the tool development and injection
experiments. The gate-transistor level mix for ac-
curate results was obtained experimentally. For the
modeled technology, no more than four gate distances
need modeling at the transistor level. Approximately
25 percent of the electrical transient injections re-
sulted in logic errors. Some modules were more
susceptible than others to transient-induced logic

errors, ranging from approximately 37-percent error
incidence for the ALU and watchdog to 0-percent in-
cidence for the multiplexer. These results suggest
that error recovery techniques can be applied to the
more vulnerable modules in a discriminative man-
ner to obtain a larger improvement from the added
cost associated with implementing the error recovery
techniques. Error recovery techniques that are im-
plemented at a low level can be used to keep logic
errors from propagating to other modules.

In general-purpose systems that do not employ
fault tolerance, the study of upset is performed by
analyzing the internal states of the system. In-
ternaa state monitoring through simulation stud-
ies does not lead to upset susceptibility predictions
on systems that incorporate recovery mechanisms
and fault-tolerance techniques. Fault-tolerance tech-
niques have indirectly addressed some of the weak-
nesses that permitted system functional upset. Theo-
retical development is needed in the area of hardware,
software, implementation, and control-law depen-
dency to further investigate the upset phenomenon.
A "unified" theory will contribute to the study of
upset and other areas of great interest, such as ultra-
reliable systems.

NASA Langley Research Center
Hampton, VA 23665-5225
September 14, 1990

References

1. Iyer, Ravishankar K.; and Rossetti, David J.: A
Measurement-Based Model for Workload. Dependence of
CPU Errors. IEEE Trans. Comput., vol. C-35, no. 6, June
1986, pp. 511-519.

2. Belcastro, Celeste M.: Digital System Upset- The Effects
of Lightning-Induced Transient on a General-Purpose Mi-
croprocessor. NASA TM-84652, 1983.

3. Carreno, Victor A.: Upset Susceptibility Study Employing
Circuit Analysis and Digital Simulation. NASA TM-
85822, 1984.

4. Saleh, Resve Aslam: Iterated Timing Analysis and
SPLICEI. M.S. Thesis, Univ. of California, Berkeley,
1983.

5. Duba, Patrick: Transient Fault Behavior in a Micropro-
cessor: A Case Study. M.S. Thesis, Univ. of Illinois at
Urbana-Champaign, 1989.

6. Messenger, G. C.: Collection of Charge on Junction Nodes
From Ion Tracks. IEEE Trans. Nucl. Sci., vol. NS-29,
no. 29, Dec. 1982, pp. 2024-2031.

7. Nichols, Donald K.; Price, William E.; Kolasinski, W. A.;
Koga, R.; Pickel, James C.; Blandford, James T., Jr.;
and Waskiewicz, A. E.: Trends in Parts Susceptibility to
Single Event Upset From Heavy Ions. IEEE Trans. Nucl.
Sci., vol. NS-32, no. 6, Dec. 1985, pp. 4189-4194.

8. Glaser, R.; and Masson, G. M.: Transient Upset in
Microprocessor Controllers. Digest of the 11 th Annual
International Symposium on Fault Tolerant Computing,
IEEE Computer Soc. Press, 1981, pp. 165-167.

Table 1. Error Incidence

Table 2. First-Order Errors by Functional Unit

Charge level,
PC
0.5
1
2
3
4
5
6
7
8
9

Totals

First-
order errors

1
2
9

38
52
64
72
76
77
79

470

Functional unit

Watchdog
Multiplexer
Decoder
Control
Countdown
ALU

Second-
order errors

0
0
0

10
14
15
17
19
22
23

120

First-order errors

132
0

68
70
70
130

Percent errors per injection

37.7
0

19.4
20.0
20.0
37.1

First-order
pin errors

0
0
5

23
30
34
37
4 1
42
43

255

Functional
errors

0
0
7

17
24
29
29
29
29
29

193

State
Logic changes
error (latched

Analog Functional ~r " O r S k Functional
transient errors fai lure
injection (upset)

Figure 1. Transient-injection process.

One
gate distance Three Five

node
gate distances

Figure 2. Gate distance from injection node in combinatorial circuit.

node

Figure 3. Gate distance in circuit including latches with shaded areas modeled at transitor level.

Read sensor A ::_::;
Compute value Y c *

Figure 5. Flow diagram without fault tolerance.

Read sensor A

Run N D test

N3

v

-
Bad sensor

Synthesize value A

Compute value Y Cannot compute value Y

v v

4 'I

Figure 6. Flow diagram with built-in fault tolerance.

v

Bad N D

N3

Report Documentation Page
Space Adm$nlstrallon

7. Author(s)

Victor A. Carreno, G. Choi, and R. K. Iyer

1. Report No.

NASA TM-4241

Analog-Digital Simulation of Transient-Induced Logic Errors and
Upset Susceptibility of an Advanced Control System

8. I'crforlning Organization Report No.

November 1990
6. Performing Organization Code

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

I
15. Supplementary Notes

Victor A. Carreno: Langley Research Center, Hampton, Virginia.
G. Choi and R. K. Iyer: Computer Systems Group, Coordinated Science Laboratory, University
of Illinois, Urbana, Illinois.

16. Abstract

This paper describes a simulation to predict the susceptibility of an advanced avionics control
system to electrical transients resulting in logic errors, latched errors, error propagation, and
digital upset. The system is based on a custom-designed microprocessor, and it incorporates
fault-tolerant techniques. The system being tested and the method of performing the transient-
injection experiment are described. Results for 2100 transient injections are analyzed and classified
according to charge level, type of error, and location of injection.

5. Report Date

10. Work Unit No.

505-66-21-04
11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

Logic errors
Electrical transient
Analog-digital simulation

17. Key Words (Suggested by Authors(s))
Upset

18. Distribution Statement
Unclassified-Unlimited

Subject Category 62
22. Price

A03
NASA FORM 1626 OCT 86 NASA-Langley, 1990

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

21. No. of Pages

11
19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified

National Aeronautics and
Space Administration
Code NTT-4

Washington, D.C.
20546-0001

BULK RATE
POSTAGE & FEES PAID

NASA
Permit No. G-27

Oll8ctal Bus~ness
Penally lor Privale Use. 5300

POSTMASTER: If Unddlvarblc (Sectbn I I 8
Postal Manual) Do Not Return

	01672
	01673
	01674
	01675
	01676
	01677
	01678
	01679
	01680
	01681
	01682
	01683
	01684
	01685
	01686
	01687

