
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 7, JULY 1998 881

Analog Error-Correcting Codes Based
on Chaotic Dynamical Systems

Brian Chen and Gregory W. Wornell,Member, IEEE

Abstract—The properties of chaotic dynamical systems make
them useful for channel coding in a variety of practical com-
munication applications. To illustrate this, a novel analog code
based on tent map dynamics and having a fast decoding algorithm
is developed for use on unknown, multiple, and time-varying
signal-to-noise ratio (SNR) channels. This code is shown to be
an attractive alternative to both digital codes and linear modu-
lation in such scenarios. Several properties and interpretations
of the codes are developed, along with some methods for their
optimization.

Index Terms— Broadcast channels, chaotic systems, error-
correction codes, fading channels, joint source and channel
coding, nonlinear dynamics, twisted modulation.

I. INTRODUCTION

I N MANY communication applications, the information to
be transmitted over the channel of interest is inherently

analog (i.e., continuous-valued) in nature. Among many ex-
amples are speech, audio, or video information. For unreliable
channels, the goal is typically to encode the information at the
transmitter so as to allow reconstruction at the receiver with the
minimum possible distortion. Over the last few decades, there
has been an increasing bias toward digital solutions to this
problem. A traditional digital approach involves appropriately
quantizing the source data and encoding the quantized data
using a suitably designed channel code so that the quantized
data can be recovered with arbitrarily low probability of error.

The attractiveness of digital approaches of this type
stems largely from the flexibility inherent in digital formats
within large interconnected systems. Moreover, Shannon’s
source–channel separation theorem is frequently invoked to
argue that performance need not be sacrificed using a digital
approach. Recently, there has been a resurgence of interest
in at least partially analog approaches in the form of joint
source and channel coding techniques. The motivation for such
methods has come primarily from the argument that although
a digital approach can be used to achieve the performance
of an analog system, the computational complexity of a fully
digital approach may be considerably greater.
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However, there is another key reason for considering analog
communication techniques—for many important classes of
channels that arise in practice, Shannon’s theorem does not
apply and, in fact, performanceis necessarily sacrificed using
a digital approach. Such is the case, for example, when the
channel is an additive white Gaussian noise (AWGN) channel
where the signal-to-noise ratio (SNR) is unknown at the
transmitter, or, equivalently, in broadcast scenarios where there
are multiple receivers with different SNR’s, as well as in
low-delay systems operating in the presence of time-selective
fading due to multipath propagation.

In these kinds of settings which arise in, for example, a va-
riety of wireless communication systems, separate source and
channel coding is inherently suboptimum. As we will develop,
digital approaches are inadequate because their performance
depends crucially on being able to choose the proper number
of quantization levels, which in turn depends on there being
a specific target SNR. Motivated by these observations, in
this paper we explore efficient analog coding strategies for
scenarios precisely of this type. And while we will derive
such codes by exploiting a nonlinear dynamical system theory
perspective, we will demonstrate that the algorithms we obtain
have important interpretations in the context of both classical
analog modulation theory [1], [2] and contemporary error-
correcting codes [3].

An outline of the paper is as follows. Section II describes
the system model of interest and motivates the need for analog
solutions. Section III then describes a rather general state-
space framework for describing a broad range of analog codes
as well as many digital codes, which may be considered
special cases of analog codes. Section IV develops an efficient
analog code with a fast decoding algorithm and compares its
performance with some conventional coding methods. Section
V then outlines an approach for the design of broader classes of
such codes based on an interpretation of the code developed in
Section IV as a multiresolution code, and Section VI contains
some concluding remarks.

II. PROBLEM FORMULATION AND

PRELIMINARY OBSERVATIONS

We consider the transmission of a random continuous-
valued source over the stationary unknown AWGN channel
depicted in Fig. 1.1 In this system the encoder maps each
analog source letter into a sequence of length —the

1For simplicity of exposition, we restrict our attention to real-valued
baseband channels; extensions to more typical complex equivalent baseband
channels are straightforward.
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Fig. 1. Joint source–channel coding of a uniform source over an AWGN
channel.

bandwidth expansion factor—and of average power

(1)

The received signal takes the form

where the white Gaussian noise process is independent
of and has zero mean and variance, so the SNR in the
channel is

(2)

The variance and, hence, the SNR, is known at the receiver
but unknown at the transmitter. The decoder generates an
estimate of the transmitted analog symbol from the
received data

In such scenarios the objective is to find source–channel
codes with small distortion for a given SNR and bandwidth
expansion factor A convenient distortion metric for many
applications, and the one on which we will focus in this paper,
is mean-square error, i.e.,

For such problems, digital solutions are suboptimal even
when and when the transmitter knows that the variance

of the noise takes one of only two possible values, say
or In fact, we show in Appendix A that, even in this case,
transmitting a Gaussian source sequence uncoded achieves a
smaller distortion than that obtained by the best separate source
and channel coding. See, e.g., Trott [4] for a broader discussion
of the suboptimality of separate source and channel coding in
such scenarios.

III. A C LASS OF ANALOG CODES FORERROR PROTECTION

A rather broad class of encoding strategies for the prob-
lem of Section II can be described in the following state-
space form. In particular, the message is embedded in
an initial state variable , and the corresponding encod-
ing is obtained via iterations of the
dynamical system

(3a)

(3b)

where and are appropriately chosen functions. In
general, these functions are designed so that the resulting code
has both a computationally efficient and practical decoding
algorithm, and good error-protection properties. In the sequel
we restrict our attention to the case in which the message
is uniformly distributed on the unit interval [0,1].

(a) (b)

Fig. 2. (a) Tent map and (b) mod map state evolution functions.

Among candidate maps , those for which the resulting
dynamics (3a) arechaotic are particularly attractive for such
error-protection applications. Among other important prop-
erties [5], chaotic systems are globally stable in the sense
that state sequences remain bounded, resulting in codes with
constant amplitude characteristics. At the same time, such
systems possess a local instability in the form of sensitivity
to initial conditions—i.e., because the Lyapunov exponent

of a chaotic system is positive [6],
state trajectories corresponding to nearby initial states diverge
exponentially fast. In the coding context this sensitivity results
in codes with useful distance properties—similar source letters
map to very different transmitted sequences and, hence, can
be readily distinguished at the receiver.

From the perspective of the encoding process (3), the
decoding problem can be viewed as one of (initial) state
estimation, and the sensitivity to initial conditions that char-
acterizes chaotic dynamics is actually advantageous in this
estimation. Moreover, for at least some classes of chaotic
systems, very efficient recursive state estimation algorithms
exist for implementing such decoding.

Two useful chaotic systems in this class correspond to
choosing to be either the symmetric “tent” map function2

(4)

or the “mod” map function

(5)

It is straightforward to verify that these functions, which are
shown in Fig. 2, lead to state sequences that are uniformly
distributed on [0,1] when the initial state is uniformly
distributed on [0,1].

The dynamics of chaotic systems governed by these maps
are surprisingly rich. Indeed, the dynamics are equivalent to
those of an infinite length binary shift register. In particular,
for the mod map, if

(6)

2Without loss of generality, we restrict our attention to functionsf(�) that
map the unit interval [0,1] to itself.
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is the (nonterminating) binary representation
for , then the th iterate has the binary representation

These same results apply to the
tent map dynamics when Gray quantization encodings of the
binary expansions are used.3

The preceding interpretation of the dynamics implies that
through judicious choice of the observation function
in (3b), one can obtain a remarkably broad set of codes
for mapping to In fact, within this class lie many
widely used digital error-correction codes as special cases.
To illustrate this, first note that given any binary sequence
of bits , there exists an initial state such that

Such a has the binary expansion
(6) in the case of the mod map and the Gray code binary
expansion in the case of the tent map. In turn, given the state

, one can obtain every subsequent binary element via

(7)

Thus, any digital encoder whose output is a function of the
contents of some binary shift register can be represented by
a tent map or mod map system with the appropriate choice
of observation function Specifically, if the bits in the
shift register are and the encoder
output is some function , then

(8)

Similarly, one can represent the dynamics of a register that
shifts bits at a time with the state evolution function4

and, hence, convolutional encoders can be obtained from
such chaotic systems using piecewise constant observation
functions.

As a simple example, the rate-1/2 four-state convolutional
encoder depicted in Fig. 3 can be expressed in this form with
the observation function illustrated in Fig. 4; this representa-
tion is developed in Appendix B. One can readily generalize
this result to show that any rate- , -state convolutional
encoder can be represented in the form

(9)

where is the -fold iteration of either the tent map or
the mod map and is a discrete-valued (piecewise constant)
function that maps intervals into one of possible
channel inputs.

While digital codes result from discrete-valued observation
functions, a variety of usefulanalog error-correction codes
for the scenario of Section II are obtained by employing an
observation function that iscontinuous valued. In the next
section we explore one of the simplest useful examples of
such a code and develop its key properties and performance
characteristics.

3The specific Gray code that applies throughout the paper isz[0] =
1

2
+ 1

4
�1i=0 (�

1
2
)i �i

j=0 (2b[j]� 1):

4In general, we use the notationf (k)(�) for the k-fold iteration of a map
f(�):

Fig. 3. A rate-1/2 four-state convolutional encoder.

(a) (b)

Fig. 4. Observation functions for implementing a rate-1/2 four-state con-
volutional encoder via (a) tent map and (b) mod map chaotic systems. No
particular ordering of the channel symbolsa, b, c, and d is implied. The
2-bit labels along thez-axis indicate the state of the convolutional encoder
corresponding to each interval.

IV. A N ANALOG CODE FROM TENT MAP DYNAMICS

In this section we focus on the case in which is the
linear function

(10)

which maps the unit interval onto the interval ,
yielding a zero-mean channel input with average power

.5 We refer to the corresponding code as the “tent map code”
as the resulting code sequence itself obeys a kind of tent
map dynamics, with the tent map rescaled and translated to
map the interval , rather than [0,1], onto itself.

In particular, since is invertible, a direct implementation
of the encoder follows as:

(11a)

where6

(11b)

Exploiting the interpretation of the code (11) as the state
trajectory of a chaotic system with the source letterem-

5This analog code is effectively “systematic” in the sense that one can
obtain the messagem from one samplex[0] of the code sequence since
g(�) is invertible. The other code sequence samples are analog “parity-check”
samples.

6We use� to denote composition, so thata � b (x)
�
= a(b(x)):
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bedded in the initial state, we now consider the problem of
decoding in the context of state estimation. In particular, using

to denote the estimate of based on observation of
, the decoded source letter is obtained

from
While optimal state estimation for chaotic sequences is in

general a difficult problem, for the case of tent map dynamics
specifically, highly efficient recursive algorithms exist. In
particular, Papadopoulos and Wornell [7] derive the maximum-
likelihood (ML) estimator for tent map sequences in stationary
AWGN and show that it can be implemented by a forward
recursive filtering stage followed by a backward recursive
smoothing stage. The forward recursion takes the form

(12a)

(12b)

(12c)

where the gain is also computed recursively as developed
in [7, eq. (31)]. In turn, the backward recursion is

(12d)

In (12) denotes the ML estimate of
In terms of the Gray encoding of the source letter, i.e.,

, the signs are related to the quantization
bits via

Useful expressions for the mean-square error performance
characteristics of the tent map code with ML decoding (12) can
be derived and expressed in terms of the bandwidth expansion
factor and the SNR. To begin, since , we
have

(13)

so the mean-square error is given by

(14)

where, more generally, While
it is tempting to simply use the Cramér–Rao bound approx-
imation [7]

(15)

in the calculation of in (14), this approximation is
generally only accurate when [7]. For ,
it fails to take into account the nonzero probability of errors
in the estimation of the signs

An accurate expression for the smoothing error variance can
be developed by explicitly accounting for the probability that

In particular, in Appendix C we show that when
the SNR is at least moderately large, the distortion can be

Fig. 5. Distortion threshold(Dth): Empirical data are marked with�’s.
Analytically predicted results (16b) are represented by the dotted line. Each
empirical data point is obtained by averaging 4� 104 measurements.

well approximated by

(16a)

where

(16b)

Equation (16) establishes a key feature of the distortion—that
it decays exponentially with bandwidth to a lower limiting
threshold that is SNR-dependent. This behavior, which is
consistent with the results of Monte Carlo simulations depicted
in Fig. 5 and [7, Fig. 4], is rather attractive in comparison with
that of other alternative methods, as we now develop.

A. Performance Bounds on Analog Codes

To gain perspective on the specific performance of the tent
map code, we first develop a lower bound on the mean-
square error performance of any analog code. One that is
easily derived but, in general, not tight, is obtained from the
rate-distortion bound.

This bound and the associated analysis will allow us to
verify that there is always a power-bandwidth regime in
which the tent map code yields better performance (i.e., lower
distortion) than not only any -ary channel code but also any
multiresolution code based on Cover’s superposition strategy7

with finitely many resolutions.
To develop the bound, we begin by observing that with

denoting the channel capacity, the rate-distortion function for

7Such a strategy [8] is used for optimum transmission of digital streams of
differing levels of importance over the broadcast channel. These codes have
the property that more important information is encoded for the worst-case
SNR, and less important information is encoded and superimposed for users
at higher SNR’s [9], [10].
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(a) (b)

(c) (d)

Fig. 6. Distortion bounds. The dashed line represents the actual distortion of the tent map code. The solid line represents the bound corresponding tothe
SNR being known at the transmitter. The dotted lines represent lower bounds whenM -ary coding is used. (a)N = 1. (b) N = 2. (c) N = 3. (d) N = 4.

our uniform source satisfies

(17)

where the first inequality is the rate-distortion bound and
where, with denoting differential entropy, the second
inequality is due to a Gaussian bound on the estimation error
[11, eq. (9.100)]. Rearranging (17), we obtain

(18)

After substituting the well-known channel capacity
into (18), we obtain the desired bound

that applies to any code

(19)

Again, we note that the above bound is not tight in general.
Indeed, for , no practical coding scheme can achieve
this bound over all SNR [2].

However, the rate-distortion bound can be achieved at a
specific SNR by separate source and channel coding with
digital codes. In particular, with an -ary digital code, the
capacity is bounded by , which when combined
with (18) yields

(20)

Note that this bound cannot be approached when our
bound exceeds the known SNR channel capacity

; hence, (20) is a useful measure of
attainable performance only in the following SNR regime:

(21)

We stress that, as (20) and (21) reflect, the success of an
-ary transmission scheme depends critically on choosing the

correct , which in turn requires knowledge of the SNR and is
impossible, for example, in a broadcast scenario. By contrast,
as (16a) reflects, the lower limiting threshold (16b) for the tent
map code tends to zero with increasing SNR.

The performance bound implied by (19) is depicted in Fig.
6, along with the associated performance (20), (21) of digital
codes for several specific values of Note that for any finite
bandwidth ( ), the tent map codes result in lower distortion
than -ary coding, as long as the SNR is higher than some
finite lower cutoff SNR. The specific cutoff SNR is determined
by comparing (16)–(20), and corresponds to the intersections
of the dashed and respective dotted lines in Fig. 6.

Fig. 6 also provides a means for relating tent map code
performance to any multiresolution scheme employing Cover’s
superposition strategy. In particular, such schemes yield an
effectively staircase-shaped-SNR characteristic that, again,
in general lies strictly above the lower bound (19) represented
by the solid curve, as the analysis of Appendix A (and Fig.
10) also reflects. The gap between the bottom corners of
this staircase and the lower bound depend on a variety of
factors, including the designed number of resolutions (i.e.,
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Fig. 7. The experimentally determined region in the power–bandwidth plane
where the tent map code resulted in lower distortion than the repetition code, a
form of linear modulation, is marked with�’s. The region where the repetition
code resulted in lower distortion is marked with�’s. The dashed line is the
theoretically predicted boundary.

SNR operating points). It is also important to emphasize
that when the number of resolutions is finite, this staircase
characteristic begins with a vertical drop in distortion at some
lower SNR threshold and ultimately ends up being flat beyond
some upper SNR threshold. As a result, for such schemes there
always exists an SNR beyond which the tent map will provide
better performance.

B. Comparison with Linear Modulation

Other interpretations of the tent map code yield additional
insights. As one example, examining (11b), we see that the
tent map code corresponds to nonlinearly modulating a set of
orthogonal unit-energy sequences with the source letter

In particular, we can express the code in the form

(22)

where, in this specific case, the orthogonal sequences are
simply delayed Kronecker delta functions and the
nonlinear modulating functions are As such, we
can view the tent map code as a contemporary example of
the nonlinear or “twisted” modulation schemes developed in
the context of analog communication theory [1], [12]. As
with other nonlinear modulation schemes, we would expect
tent map coding to provide superior performance to linear
modulation in the high-SNR regime. In this section we confirm
this to be the case.

Any corresponding linear modulation of can be expressed
in the form

(23)

where, to meet the power constraint (1), themust satisfy

With ML decoding, the resulting distortion follows immedi-
ately as

(24)

which is larger than (16a) whenever

(25)

The corresponding boundary in the power–bandwidth plane is
depicted in Fig. 7, together with experimental data validating
these results. As we would expect due to the familiar nonlinear
capture phenomenon (threshold effect), the tent map code is
superior to linear modulation at high SNR or in low-bandwidth
regimes.

V. TENT MAP CODES AS MULTIRESOLUTION CODES

Tent map codes have a convenient interpretation as mul-
tiresolution codes. In particular, since with the observation
function (10)

(26)

where and , we see that
the tent map code can be viewed as the superposition of less
significant bit information in [i.e., the second term in (26)]
on top of binary phase-shift keying (BPSK) transmission of
most significant bit information in The performance results
of Section IV-A can be interpreted as reflecting that such
superposition enables the tent map code to be effective at
multiple SNR values.

More general classes of analog codes can, in principle,
be developed by varying the relative protection of the most
significant and less significant bit information. Although a
full exploration of these possibilities is beyond the scope of
this paper, we outline the basic ideas as an illustration of a
potentially interesting direction for future research.

For example, consider codes whose dynamics take the form

(27)

where is again the tent map and where
for some integer parameter At one extreme, when the
associated observation function is piecewise-constant as de-
picted in Fig. 8, the result corresponds to simple uncoded

-pulse-amplitude modulation (PAM) digital transmission of
the quantization of , which can be optimized for a fixed
known SNR. However, using the piecewise-linear observation
function in Fig. 8 yields analog codes incorporating less
significant bit information, which may improve performance at
high SNR but which also represents a noise in the decoding of
the most significant bit information. Accordingly, there seems
to be a tradeoff—greater may provide better representation
of the less significant bit information, while smaller allows
higher fidelity decoding of the most significant bit information.
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(a) (b)

Fig. 8. Observation functions for 4-PAM with (a) single and (b) multiple
SNR’s. By varying�, which controls the common slope of each piecewise
linear section, one can add an analog component to a purely digital(� = 0)
code. The constellation points of the (purely digital) 4-PAM constellation are
�~b and�3~b: Note thatb 6= ~b if the two codes are to have equal energy.

Given specification of the SNR range of interest for the
AWGN channel of Section II, say, in the form of a probability
density for , it is possible, at least in principle, to
optimize and so as to obtain the best tradeoff in terms
of minimizing distortion. First, using reasoning similar to that
used to obtain (40), one can express the distortion in the form

(28)

where is now the -bit symbol error probability,
is the mean-square estimation error in ,

and is the mean-square estimation error in ,
occurring when the estimate of theth symbol is in error.

To continue this optimization process, one can proceed to
express the quantities , , and in (28)
in terms of and If a simple slicer is used to estimate the
symbols (i.e., most significant bit information) at the receiver,

can be approximated as

(29)

where the second approximation applies when is
sufficiently large. Next, from the Craḿer–Rao bound for the
problem, one can obtain the approximation

(30)

Furthermore, one needs to estimate

(31)

possibly in a manner similar to that used in our original tent
map code.

Meanwhile, our power constraint (1) implies thatand
lie in the set

(32)

Hence, using (29)–(31) in (28), suitable values ofand
within the set (32) could be obtained from an optimization of
the form

(33)

We emphasize that the preceeding discussion is just an outline
of one possible generalization.

VI. CONCLUDING REMARKS

We have introduced intriguing analog error-correcting codes
that are potentially useful in a variety of applications, examples
of which are communication over broadcast channels and low-
delay communication in time-varying fading environments.
These analog codes are generated from iterations of a non-
linear state-space system governed by chaotic dynamics, with
the analog message embedded in the initial state. We have
demonstrated that within this class are practical codes having
recursive receiver structures and important performance ad-
vantages over conventional codes. We have outlined a method
for generalizing and optimizing such codes, although detailed
refinement of the method remains as one of a number of
rich directions for further research. More generally, these
analog codes and the general framework used to describe
them have important connections to both modern digital codes
and classical analog modulation techniques, the exploration of
which is also likely to prove fruitful.

APPENDIX A
SUBOPTIMALITY OF SEPARATION OF SOURCE AND CHANNEL

CODING FOR A CHANNEL WITH UNKNOWN SNR

We first calculate the minimum distortion that can be
achieved through separated source and channel coding, i.e.,
by quantizing a Gaussian source and channel coding the bits
in the quantization with a capacity achieving channel code.
The minimum rate in bits per source letter required to be able
to transmit the source with maximum distortionis given by
[11, eq. (13.24)]

(34)

Since we require a rate of one channel use per source letter,
if is the rate of the channel code in bits per channel use,
then Since the noise variance is known at the
receiver, the channel coding problem is equivalent to coding
for a broadcast channel with two noise variancesand
The receiver determines which is the true noise variance and
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Fig. 9. Coding for the broadcast channel. Two codes are merged together,
one for each possible noise variance.SRCENC1 is an optimal source encoder
with rateR1: SRC ENC2 is an optimal encoder for the residual error of
SRC ENC1 with rateR2 � R1: CH ENCi are the channel encoders and
RECi are the receivers (channel and source decoding combined). Note that
REC2 can recover the bits from bothSRC ENC1 andSRC ENC2 since
(�2

2
<�2

1
):

decodes appropriately, as shown in Fig. 9. Assuming without
loss of generality that , the pairs of achievable rates
are [8], [11, Sec. 14.1.3]

(35)

i.e., if , the receiver can decode bits per channel
use and if , the receiver can decode bits per
channel use, the bits from the first encoder plus an
additional bits. The parameter can be chosen
anywhere in [0,1] so that for each value of, we can design
a channel code that corresponds to a particular achievable rate
pair. Then, since and the Gaussian problem we
consider is successively refinable [13], we can combine (34)
and (35) to find the corresponding set of achievable distortion
pairs, specifically, and , so that

(36)

From (36), we obtain the following lower bounds on and
:

(37)

With this scheme, we can not simultaneously achieve both
bounds (37) since each value ofcorresponds to a different
channel code. However, both bounds (37) can be achieved
simultaneously if, rather than decomposing the encoder into
the cascade of a quantizer with a digital channel encoder,
we simply transmit the source letter uncoded (but linearly
scaled so as to have power). Indeed, when the information
is “decoded” by processing the channel output with the
linear minimum mean-square error estimator

(38)

the resulting distortion is precisely the lower bounds in (37)

Fig. 10. The achievable distortion pairs when(�2
1
; �2

2
) = (P=10; P=100):

The solid line represents the pairs achievable with separate source and channel
coding. The symbol� is used to denote the achievable point with direct
transmission of the source and linear minimum-mean-square error decoding.

(see, for example, Berger [14, Sec. 5.2]). These results are
illustrated in Fig. 10.

APPENDIX B
CONVOLUTIONAL ENCODERS VIA CHAOTIC SYSTEMS

In the rate-1/2 four-state convolutional encoder depicted
in Fig. 3 the represents a sequence of input bits from
a Bernoulli-1/2 process. Two coded bits and are
formed from the modulo-2 sums of the contents of the shift
register and the input bit, and these coded bits are mapped
into one of four channel symbols, , , or For example,

, etc. One can produce the sequence with a tent
map system by choosing the initial state to be the number
whose Gray code binary expansion is and
by choosing the observation function to be the piecewise
constant function shown in the Fig. 4(a) . Similarly, one can
produce the sequence with a mod map system by choosing
the initial state to be the number whose normal binary
expansion is , i.e., (6), and by choosing the
observation function to be the function shown in Fig. 4(b).
One can easily verify that these systems are equivalent to the
convolutional encoder in Fig. 3 by noting that the four intervals
labeled with binary labels in Fig. 4 correspond exactly to the
four possible states of the shift register in the convolutional
encoder. For example, in the case of the tent map system,
if , then either or

These correspond to transitions from state
01 to state 11 with output or from state 01 to state 10 with
output , respectively.

APPENDIX C
TENT MAP DISTORTION CALCULATIONS

In our derivation denotes the bit-error event, i.e., the
event that , and

(39)

To facilitate an analysis of the steady-state scenario, we
treat the events as effectively mutually independent
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and equally probable,8 i.e., for all , and
Under these conditions, the smoothing error can

be expressed in the following form, with denoting the
complement of :

(40)

To obtain the first equality, we write an expectation as a
weighted sum of conditional expectations, where the condi-
tioning is on the mutually exclusive collectively exhaustive
events that either there are no sign errors at indexes

or the first sign error is at index for
The weights are the corresponding

probabilities of these events. To obtain the second equality,
we repeatedly use the fact that given ,

, as can be seen from (12d). We can
rewrite (40) as

(41)

where

(42)

is a lower threshold in the limit of large for the error
variance and where the approximation in (42) is valid when

As we’ll see when we develop the specific relation-
ship between and SNR, this approximation is valid in the
high-SNR regime.

8Although the bit-error events are unlikely to be strictly independent,
the results arising from these assumptions closely match the experimentally
observed behavior depicted in Fig. 5 and [7, Fig. 4]. Apparently, the
approximation is a good one in that any dependence that may exist among the
bit-error events does not significantly impact the calculations in this section.

Hence, the distortion is given by

(43)

where, via (42), we have

(44)

Now is well approximated by the Craḿer–Rao
bound (15)

(45)

So substituting (45) into (43), we see that when , the
distortion is well approximated by (16a). It therefore remains
only to obtain (16b), which requires determining and

A useful expression for is obtained by approximating the
residual filtering errors as Gaussian
with mean zero and variance Then with large
enough that (15) takes its steady-state value, i.e.,

(46)

and (0 dB), we obtain9

(47)

where to obtain the equality on the first line we have used
(46), and that is a uniform density over the interval

Hence, is approximately inversely propor-
tional to the square root of SNR, and is therefore small in
the high-SNR regime. The result (47), although based on a
Gaussian approximation, agrees with empirical measurements
[15].

To calculate , note that the effect of is to produce a
fairly good estimate of rather than , so that

(48)

9The Q-function is defined according to

Q(x) =
1
p
2�

1

x
e�t =2 dt:
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where is the probability density for condi-
tioned on Thus, since

(49)

we can express (48) as

(50)

where to obtain the second equality we have again used (46)
and to obtain the last equality we have also used (47). Finally,
substituting (47) and (50) into (44) yields (16b). This analytical
expression for is compared to empirical measurements
from computer simulations in Fig. 5.
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