
International Journal of Computer Vision, 4, 211-223 (1990) 

© 1990 Kluwer Academic Publishers, Manufactured in The Netherlands. 

Analog Hardware for Detecting Discontinuities in Early Vision 

JOHN G. HARRIS, CHRIS1DF KOCH, ERIK STAATS, AND JIN LUO 

Computation and Neural Systems Program, 216-76 California Institute of Technology, Pasadena, California 91125 

Abstract 

The detection of discontinuities in motion, intensity, color, and depth is a well-studied but difficult problem in 

computer vision [ 6]. We discuss the first hardware circuit that explicitly implements either analog or binary line 

processes in a deterministic fashion. Specifically, we show that the processes of smoothing (using a first-order 

or membrane type of stabilizer) and of segmentation can be implemented by a single, two-terminal nonlinear voltage

controlled resistor, the "resistive fuse"; and we derive its current-voltage relationship from a number of deter

ministic approximations to the underlying stochastic Markov random fields algorithms. The concept that the quadratic 

variation functionals of early vision can be solved via linear resistive networks minimizing power dissipation [37] 

can be extended to non-convex variational functionals with analog or binary line processes being solved by nonlinear 

resistive networks minimizing the electrical co-content. 

We have successfully designed, tested, and demonstrated an analog CMOS VLSI circuit that contains a 1D 

resistive network of fuses implementing piecewise smooth surface interpolation. We furthermore demonstrate the 

segmenting abilities of these analog and deterministic "line processes" by numerically simulating the nonlinear 

resistive network computing optical flow in the presence of motion discontinuities. Finally, we discuss various 

circuit implementations of the optical flow computation using these circuits. 

1 Introduction 

Most early vision algorithms incorporate the generic 

constraint that variables such as surface orientation and 

reflectance, depth or optical flow vary slowly in space 

[7, 12, 17, 20, 27, 40, 43]. Within the standard 

regularization approach, this is reflected in the use of 

stabilizing operators corresponding to various measures 

of smoothness [39]. Thus, in the problem of inter

polating a 2D surface through sparse and noisy depth 

measurement, the final surface should be as close as 

possible to the initial data as well as being as smooth 

as possible [7] or, in the problem of computing optical 

flow from the time-varying intensity, the final flow field 

should be compatible with the locally measured velocity 

data as well as being smooth [12, 17, 34, 48]. However, 

surfaces display discontinuities where the smoothness 

constraint is violated. Thus, the to-be-reconstructed sur

face may have been generated by an underlying piece

wise smooth or even piecewise constant depth distribu

tion, or the 2D velocity field induced by a rigid object 

moving in an otherwise stationary environment varies 

smoothly across the surface of the object but is zero 

beyond the contours of the object. 

In the last years, a number of researchers have intro

duced powerful algorithms to deal with the representa

tion of such discontinuities. Geman and Geman [6] first 

proposed binary line processes to model discontinuities 

in intensity within the stochastic framework of Markov 

random fields. Discontinuities are subject to various 

constraints, such that they should form along continuous 

contours or should not intersect nor form parallel lines. 

Their approach was extended and modified to account 

for discontinuities in depth, texture, optical flow, and 

color [19, 28, 29, 38, 49]. The principal drawback of 

the Geman and Geman-type method is the computa

tional expense involved in minimizing the associated 

nonquadratic cost functionals using stochastic optimiza

tion methods, in particular when numerous constraints 

are incorporated. A number of authors have used 

deterministic methods to find the (local) minima of the 

associated nonconvex variational functionals, with next

to-optimal results (e.g., [3, 24, 44]). A rigorous deter

ministic approach has been championed by Blake and 



212 Harris, Koch, Staats and Luo 

Zisserman [1]. Their "graduated nonconvexity" (GNC) 

algorithm bears many similarities to the above methods, 

and leads to excellent results in the case of piecewise 

continuous reconstruction of surfaces [2]. 

The idea of using analog circuits for solving vision 

problems was raised by Horn [14], where he proposed 

the use of a grid of resistors to find the inverse of the 

discrete approximation to the Laplacian. Poggio and 

Koch [37] show how standard regularization algorithms 

map onto simple resistive networks. Exploiting Kirch

hoffs and Ohm's law, they proved that the minimum 

of the regularized, quadratic cost functional is equiv

alent to the state of least power dissipation in an appro

priate linear resistive network, where the data are given 

by injecting current into certain nodes and the solution 

by the stationary voltage distribution. Figure 1 shows 

the appropriate network for membrane-type surface in

terpolation, where the "strength" of smoothing is given 

by the value of the horizontal grid conductance. For 

an overview of various analog circuits for implement

ing early vision algorithms see Koch [21] and Horn [16] 

Fig. 1. Resistive network for a membrane-type surface interpolation 

and smoothing. The circuit minimizes the variational functional of 

equation (1). In the continuum limit, minimization of this functional 

corresponds to the Euler-Lagrange equation -A 'i12f + Gf = Gd. The 

battery supplies the measured depth data d;, while the vertical con

ductance G corresponds to l/(2a2
) and the horizontal conductance 

of the grid to A. If no data are present at the particular location i, 

G is set to zero. The stationary voltage distribution then corresponds 

to the interpolated surface J;. The amplitude of the horizontal grid 

conductance, A, controls the amount of smoothing. A 48 X 48 pixel 

hexagonal network implementing this circuit has been built and tested 

successfully [22, 26]. 

The recent development of subthreshold, analog 

CMOS (Complementary Metal Oxide Semiconductor) 

VLSI circuits for various sensory tasks by Carver Mead 

(see in particular his recent textbook [32]) has enabled 

us to implement these resistive networks-together with 

the photo-transduction stage-using this real-time, low

power, and robust technology. Two circuit elements are 

particularly attractive for our purposes: a photo

transistor with a logarithmic voltage output over five 

orders of intensity brightness [31, 32] and a transistor 

circuit with a quasi-linear current-voltage relationship 

[32, 41]. Using this as our basic construction element, 

we have built and tested a number of resistive net

works-with up to 48X48 pixels-for first- and second

order (membrane and thin-plate type) smooth surface 

interpolation [9, 22, 26] (see figure 1). All of our 

experimental chips are fabricated through the MOSIS 

silicon foundry, which is available at most universities. 

We introduce in this paper an analog, purely deter

ministic, approach to locating discontinuities in the case 

of surface interpolation and optical flow estimation. It 

leads to a very simple and elegant circuit implementa

tion in terms of a two-terminal, nonlinear, voltage

controlled resistor termed "resistive fuse" [10]. We have 

implemented this device in analog CMOS and demon

strate its performance here. 

2 Theory 

2.1 Smooth Surface Interpolation 

Let us begin by analyzing the isomorphism between the 

quadratic variational functional for smooth surface 

interpolation and the dissipated power in linear resistive 

networks. Because our methodology does not distin

guish between a 1D and a 2D implementation of 

smoothing in the presence of discontinuities, we will 

first consider the 1D case. The simplest possible varia

tional functional for interpolating noisy and sparsely 

sampled data d; is a first-order, membrane type of sur

face in interpolation: 

where fi is the value of the final surface fat location 

i, a 2 is the variance of the additive Gaussian noise 
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process assumed to corrupt the data d;, and A is a free 

parameter. The first term in this functional implements 

the constraint that surfaces should vary smoothly. The 

second term in equation (1), where the sum includes 

only those locations i where data exist, forces the final 

solutionfto be close to the measured data d. How close 

depends on the estimated magnitude of the noise, in 

this case on a2• Thus, the surface f minimizing (1) will 

be the one that best satisfies the conflicting demands 

of smoothness and fidelity to the measured data. 

2.2 Quadratic Variational Functionals and Linear 

Resistive Networks 

The quadratic variational functional can be minimized 

using the resistive network illustrated in figure 1, where 

the final smoothed surface is given by the stationary 

voltage distribution.fi, the observed data by the battery 

d;, and the conductance G connecting the battery to 

the grid by 1/(2a2). If no measured surface valued; is 

present at a particular location, G = 0 at that loca

tion. The horizontal grid conductance A controls the 

amount of smoothing: a large conductance value will 

facilitate the spread of current throughout the network 

while smaller conductance values will prevent this. 

Because the electrical power dissipated in a linear net

work is proportional to the square of the voltage across 

all resistors, the dissipated power can be identified with 

the variational functional of equation (1). Maxwell's 

minimum heat theorem [30] then implies that in such 

an idealized linear network the distribution of voltages 

and currents (subject to Kirchhoffs laws) minimizes 

the total power dissipated as heat.! In other words, the 

smoothest surface can be read as the stationary voltage 

distribution [37]. 

Mead has invented a saturating resistor element, 

whose current-voltage (1-V) relationship is linear for 

small voltage drops [32, 41]. The value of the slope, 

i.e., the conductance for small voltage drops can be 

varied over five orders of magnitude. The current 

through this circuit saturates for large values of the 

voltage. The measured I-V curve has the form of a 

hyperbolic tangent as shown in figure 2b. We have built 

and tested 48X48 pixel resistive networks of the type 

shown in figure 1 on the basis of this circuit component 

1Note that, in an abuse de language, the functional J of equation 

(1) is frequently termed "energy," while it actually represents "elec

trical power." 
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Fig. 2. Theoretical I-V curves for a linear resistor (a) and an ex

perimentally measured I-V curve for Mead's [32] saturating resistor 

(b). Integrating numerically over these curves gives the co-content 

of the linear resistor (c) and the saturating resistor (d). Co-content 

is defined by equation (2) and represents generalized power for 

nonlinear systems. The co-content for the linear resistor is equivalent 

to half the dissipated power, and thus a quadratic function in dV for 

all values of d V, while the co-content for the saturating resistor is 

a quadratic function in .:lVfor small values of .:lV, becoming a linear 

function of .:lV as 14lVI --+ oo. 

(for more details see [22]). But how will the imple

mentation of ideal, linear resistors (figure 2a) with these 

saturating nonlinear resistors affect the final result? As 

pointed out by Poggio and Koch [37], the notion of 

minimizing power in linear networks implementing 

quadratic "regularized" algorithms must be replaced 

by the more general notion of minimizing the total 

resistor co-content [33] for nonlinear circuit elements. 

For a two-terminal voltage-controlled resistor 

characterized by I= f(V), the co-content is defined as 

J(V) = f 
0

v f(V')dV' (2) 

For a linear resistor, I = GV, the co-content is given 

by VzGV2
, which is just half the dissipated power P = 

GV2 (figure 2c). For a network consisting of a collec

tion of resistors, voltage sources, and other elements, 

the total network co-content ftotal is defined as the sum 

of all the (linear or nonlinear) resistor co-contents. The 



214 Harris, Koch, Staats and Luo 

co-content for various resistors is plotted in figures 2 

and 3. Differentiating equation (2), we have 

f(V) 

300 

300 

(nA) 

A 

B 

d.! 

dV 

-JO?o.!-o.,-+-----;o~.o-+--_,___..~o.o 
AV(V) 

(3) 

c 

(oW) 

.>V(V) 

(nW) 

l:J.V(V) 

Fig. 3. Simulated 1-V curve for an infinite-gain fuse (a) and an ex

perimentally measured 1-V curve for a finite-gain resistive fuse (b). 

Integrating numerically over these curves gives the co-content J for 

the infinite-gain (c) an the finite-gain fuse (d). 

It can be shown that a network of arbitrary topology 

consisting of strictly incrementally passive resistors 

(i.e., where di I dV > 0 for all V) and ideal voltage and 

current sources has at most one solution, given by the 

unique minimum of the co-content [11]. Because the I

V curve of Mead's saturating resistor can be described 

quite accurately by I = I0 tanh (V !V0) [32], its 

derivative is always positive. Thus, replacing ideal 

linear resistors with Mead's saturating resistors will not 

cause additional solutions to appear. Note that this treat

ment neglects the possible effect of the internal 

dynamics of the saturating resistor on the stability of 

the network. 

2.3 Piecewise Smooth Surface Interpolation 

Including binary line processes f into the functional of 

equation (1) le;1ds to 

J(f, f) 

(4) 

+ -
1
- ~ (d; - !Y + ex ~ f; 

2a2 i 

where ex is an additional free parameter. The first term 

in this functional implements the constraint that sur

faces should vary smoothly for small values of the sur

face gradient. If all variables, with the exception of fi, 

fi+I, and f;, in equation (4) were held fixed and 'A.(jj -

fi+1)
2 < ex, it would be "cheaper" to pay the price 'A.(jj 

- fi+ 1)2 and set f; = 0 than to pay the larger price ex. 

However, if the difference becomes too steep, the line 

process is switched on, i.e., f; = 1, and the "price" 

ex is paid. The functional of (4) is, different from (1), 

nonquadratic; and a large number of both stochastic 

and deterministic methods have been designed to find 

optimal or nearly optimal solutions for this and similar 

functionals [1, 6, 24, 29, 44]. 

Figure 3c shows a plot of J (f, f) as a function of 

fi - fi+I· The values of the surface and of the line 

discontinuities are assumed to be fixed at all other loca

tions. As long as 'A(jj+1 - /;)2 ::::;; ex, the function J is 

quadratic in the gradient. However, once [1;+1 - Jil ex

ceeds ..rc;n;.., J remains constant. The term ..rc;n:,. is 

similar to the gradient limit of Blake and Zisserman [1]. 

One straightforward manner to implement line 

discontinuities is via binary switches, breaking the 

resistive connections among neighboring nodes (see 

figure 5b in Koch, Marroquin, and Yuille [24], and 

figure 7a). Each switch has an associated digital pro

cessor opening and closing the switch in either a deter

ministic or a stochastic fashion, depending on the value 

of the voltage across the switch as well as on the states 

of neighboring switches. Such an analog-digital imple

mentation is quite difficult to implement within con

ventional two-dimensional silicon circuits, due to the 

high amount of connectivity among nodes and the inte

gration of a clocked, digital processor within non

clocked analog circuit components. However, as argued 

by Harris, Koch, Luo, and Wyatt [11], we can replace 

such a hybrid network by a single analog nonlinear 

resistor, the "resistive fuse." The appropriate current

voltage relationship of an infinite-gain or binary resis

tive fuse is illustrated in figure 3a. As long as the voltage 

drop across this device is below a threshold, the cur

rent through the nonlinear resistor is linearly related 

to the voltage across it. Once past the voltage threshold, 
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the circuit open circuits (hence the name "fuse"), 

and the current is zero. Unlike conventional electrical 

fuses, however, the resistive fuse can "reconnect" after 

open-circuiting as long as the voltage across the fuse 

drops again below the threshold. This two-terminal 

device therefore implements the high-level constraint 

that surfaces should be smooth unless their neighbor

ing values differ by more than ± ~. at which 

point the surface will break (see also Perona and Malik 

[36]). 

The I.V relationship of the device we have built is 

shown in figure 3b. The most salient difference from 

the infinite-gain fuse are the smooth flanks where the 

current decreases smoothly to zero for increasing values 

of the voltage difference. The 1-V curve of this device 

can be directly derived from a number of different early 

vision algorithms. Blake and Zisserman [1] first ex

plicitly proposed the use of an energy functional for 

the problem of surface interpolation and segmentation 

from which the line process £ is eliminated. Its form 

is identical to that illustrated in figure 3c. In order 

to find the minimum of this nonquadratic functional, 

Blake and Zisserman use a continuation method [35], 

their GNC algorithm. The idea behind this iterative 

method is to map the variational functional J if, £) to 

be minimized onto a family of functionals J* if, £, t) 

with t E [0, 1], such that J* if, £, t = 0) is given by 

some convex functional and J*(j, £, t = 1) = J(j, £). 

Instead of directly attempting to minimize the non

convex functional J*(j, £, 1), continuation methods 

involve first finding the unique solution to the convex 

functional J* if, £, 0) and then to apply some smooth 

transform (parameterized by t) to continuously deform 

J*: The minimum of the functional J*(j, £, t) is then 

used as a starting approximation when attempting to 

minimize J* if, £, t + .1t) until the minimum to the 

desired function J* if, £, 1) = J if, £) is reached .2 For 

the construction of J*, Blake and Zisserman [1; 

eq. (7.23)] used a piecewise polynomial of order two, 

whose functional dependency (for a fixed value of t) 

is similar to our measured co-content in figure 3d. 

The analytical form of the 1-V relationship of the 

"resistive fuse" element used in our simulations (see 

below) can be rigorously derived using a deterministic 

mean field approximation to the underlying stochastic 

Markov random field model of piecewise smooth 

2Intuitively, such a method can also be thought of as "deterministic 

annealing" [5]. 

surface interpolation [5]. In this approximation, com

mon to statistical mechanics [18], the interaction among 

neighboring values off and£ is replaced by the interac

tion among neighboring mean values off and £. If we 

reinterpret the results of Geiger and Girosi [5] within 

our electrical circuit framework, we arrive at the con

stitutive relationship of our finite-gain or analog 

resistive fuse: 

I =j(V) 
1 + ef3(l,V'-a) 

(5) 

where {3 is a free parameter depending on the inverse 

of the "temperature" T of the associated MRF 

algorithm. {3 can also be related to the imbedding 

parameter tin the continuation method. We had earlier 

derivedf(V) of equation (5) in a somewhat ad hoc man

ner using the Hopfield and Tank [13] analog embed

ding for the binary line processes proposed in Koch, 

Marroquin, and Yuille [24]. It is quite satisfying that 

all these seemingly diverse approaches arrive at very 

similar results, which can all be implemented via a sim

ple two-terminal nonlinear circuit. 

As discussed above, the notion of minimizing the 

dissipated power in linear resistive networks must be 

replaced by the notion of minimizing the co-content 

(equation (3)) in nonlinear resistive networks. ]total is 

convex if and only if all resistors are incrementally 

passive, i.e., have positive slope everywhere [11]. This 

is the case for Mead's saturating resistor. With in

crementally active resistors, i.e., with regions of 

negative slope such as in our fuse, there will in general 

exist a number of stationary network solutions for a 

given input image, and uniqueness cannot be guar

anteed anymore. However, if the internal dynamics of 

the incrementally active resistor circuit are neglected 

(that is, if we neglect the fact that our fuse circuit con

sists of transistors with their own, relatively fast, tem

poral behavior), for any voltage input and any initial 

condition the network will not oscillate indefinitely but 

must eventually settle to some stationary state (for more 

general stability results, see Wyatt and Standley [ 4 7]. 

This conclusion also holds even if parasitic (nonlinear 

but positive) capacitors are distributed arbitrarily 

throughout the network, provided there are no induc

tors. In other words, the total co-content of all resistors 

Jtotaz(t) will act as a Lyapunov function [11]. 
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3 Circuit Performance 

We will not discuss the implementation of the fuse 

circuit (see Harris, Koch, Luo, and Wyatt [11] for 

details), but only demonstrate some of the capabilities 

of our analog resistive fuse circuit. Its measured 1-V 

curve as well as the associated co-content is plotted in 

figure 3. The 1-V relationship of each fuse circuit can 

be controlled by various voltage input controls. This 

allows us to change continuously from a Mead type of 

saturating resistor to a finite-gain fuse (figure 4). In 

other words, by turning the voltage control, we are 

300 
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Fig. 4. Measured 1-V curves that show the effect of varying an external 

voltage control (VA) from the saturating characteristic of Mead's 

resistor to that of the fuse. This effectively corresponds to the im

plementation of a continuation method [35]. 

transforming the "energy" landscape in a continuous 

fashion from containing one unique global minimum 

to a landscape containing many local minima, thereby 

directly implementing a class of continuation methods. 

We also control the threshold value for which the fuse 

ceases to generate a current (figure 5). Because this 

value corresponds to the threshold ±.Jan:. in an 

infinite-gain fuse (figure 3a), we have effective control 

over a, determining where surface discontinuities will 

be introduced. 

A linear network of eight analog fuses implementing 

lD piecewise smooth surface interpolation was fabri

cated via MOSIS. Figure 6 shows a segmentation result 

for a "noisy" lD step edge. The network effectively 

smoothes out small steps without degrading large step 

edges3
• We have experimented with several different 

3We have duplicated this result using Mead's photoreceptors to pro

vide voltage input to the network. An edge imaged onto the chip is 

successfully smoothed and segmented. 
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Fig. 5. Measured 1-V curves illustrating different line process penalties 

through adjustment of V8 • This is paramount to controlling the 

threshold a in equation ( 4) for introducing discontinuities. 
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Fig. 6. Measured segmentation from an 8 pixel experimental analog 

resistive fuse network. The circles denote "noisy" step data that was 

used as the input to the network. The solid-line curve indicates 

measured voltages from the chip. The dotted-line curve shows the 

measured voltage output given by a network of Mead's saturating 

resistors. 

continuation methods by using the controls illustrated in 

figures 4 and 5. The specific continuation method used 

for this example was to gradually increase the amount 

of smoothing provided by the network, while simultan

eously decreasing the threshold a for breaking. The 

final 1-V curves of the fuses in this example have the 

form shown in figure 3b. We have also successfully 

implemented a network of binary fuses (with 1-V curves 

of the form shown in figure 3a) and are considering 

the computational differences between networks of 

binary and analog fuses. 
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4 Computing Optical Flow 

We wish to demonstrate how the analog fuse will work 

for the problem of estimating the 2D optical flow in the 

presence of motion discontinuities. The optical flow is 

the vector field (u, v) derived from the changing image 

brightness I (x, y, t). It differs, in general, from the 

underlying velocity field, a purely geometrical concept 

[15, 45]. Following Hom and Schunck [17], we assume 

that the brightness I(x, y, t) of the image is constant 

over time; in other words di/dt = Ixu + Iyv + It = 
0, where the velocity (u, v) = (dxldt, dyldt) and Ix, Iy, 

and It are the partial derivatives of the brightness I. 

This manner of formulating the optical flow is ill posed 

("aperture problem"), due to the presence of two 

unknowns u and v in a single linear equation.4 

4.1 Smooth Optical Flow 

Hom and Schunck [17] "regularized" this ill-posed 

problem by imposing a smoothness constraint. Because 

objects, in general, are continuous and undergo smooth 

movements, neighboring points in the world will have 

similar velocities. The projected velocity field should 

reflect this fact. As the measure of smoothness Hom 

and Schunck chose the square of the velocity field grad

ient leading to a velocity field which minimizes 

(6) 

where the regularization parameter "A is inversely 

dependent on the signal-to-noise ratio. The first term 

describes the fact that the final solution should follow 

as closely as possible the measured data, whereas the 

second term imposes the smoothness constraint on the 

solution. The degree of minimization of one or the other 

term is governed by A. Because E is quadratic in u and 

v, the associated Euler-Lagrange equations, discretized 

on a square lattice, will be linear: 

•Recently, Verri, Girosi, and Torre [46] have proposed a rather elegant 

solution to the aperture problem. However, for demonstrating the 

use of "fuses," the formulation of the optical flow problem presented 

here is entirely sufficient. 

Ii-ijuij + Ix-;Jy-ijvij + Ix-;/t-ij 

+ "A(uij - ui+lj) + "A(uij - uij+i) 

+ "A(uij - u;-ij) + "A(uij - uij_1) = 0 (7) 

Ix-;Jy-ijuij + f2y-ijVij + Iy-uft-ij 

+ "A(vij vi+1) + "A(vij vij+i) 

+ A(vij - V;-lj) + "A(vij - vij_1) 0 

Following Poggio and Koch [37], we can map these 

equations directly onto a linear resistive network (figure 

7a) if we identify 

T-+"A 

G -+ -Ixiy 

Gx -+ Ix (Ix + Iy) 

Gy -+ Iy (Ix + Iy) 

E 
-It 

-+---

Ix + Iy 

(8) 

This network will then settle into the state ofleast power 

dissipation following Kirchhoffs current law, expressed 

in the Euler-Lagrange equations (7). The associated sta

tionary voltages correspond to the solution sought: uu 
is equivalent to the x component and vij to the y com

ponent of the optical flow field (for more details see 

Hutchinson, Koch, Luo, and Mead [19]). A much 

simplified version of such a network has been imple

mented using analog CMOS [42]; see also [32]. Tan

ner's chip with an array of 8 X 8 phototransistors com

putes the constant optical flow induced by rigid body 

motion (i.e., it can act as an "optical mouse") and 

essentially corresponds to the network in figure 7a with 

all the transversal conductances T set to a very high 

value and all switches removed. 

We simulated the behavior of this linear optical flow 

network on a 16 node hypercube using natural imagery 

acquired via a video camera. Figures 8a and b show 

a sequence of several moving people. Figure 8e illus

trates the solution of the linear resistive network: the 

smoothness assumption of Hom and Schunck leads to 

the qualitatively correct optical flow field. However, 

at the occluding boundary between the two rightmost 

people, the estimated flow field is zero due to the 

averaging effect of the smoothness assumption. Further

more, the algorithm smoothes over the motion discon

tinuities along the contour of the people. 



218 Harris, Koch, Staats and Luo 

Fig. 7a. Resistive network for computing optical flow with binary 

switches. The conductances G as well as G. and G, (for clarity, only 

two such elements are shown) depend on the measured spatial and 

temporal image gradients, as well as the battery E (see equation (8)). 

The conductance T (corresponding to A) controls the amount of 

smoothing. On-chip photoreceptors compute I •• I,, and I, and con

trol the values of G, G •• G, , and E according to equation (8) . The 

x component of the velocity, u, is given by the voltage in the top 

network, while the y component of the velocity, v, is given by the 

voltage in the bottom network. Digital processors, not shown, con

trol the opening and closing of the switches. The parasitic capacitances 

C govern the dynamic behavior of the circuit. 

4. 2 Piecewise Smooth Optical Flow 

In a previous publication [19] we showed how binary 

motion discontinuities can be incorporated into the op

tical flow estimation functional of equation (6). We 

placed a number of constraints on the formation of line 

processes, most notably that motion discontinuities 

should form along continuous contours, should not 

intersect, and should coincide in general with inten

sity discontinuities [ 4] . The state of the binary line pro

cesses was evaluated using the steepest descent rule. 

The network implementation we envisaged at that time 

is shown in figure. 7a, where the binary line processes 

Fig. 7b. Proposed resistive network for computing optical flow with 

resistive fuses. The binary switches and horizontal resistors of figure 

7a have been replaced by resistive fuse elements (shown as cylinders 

with a schematic "F"). Constraint boxes (indicated with shaded 

circles) have replaced the data-dependent resistors and batteries of 

figure 7a. A.J; described in the text, every constraint box minimizes 

the local square error of the image brightness constraint equation 

dlldt = 0 [8] . 

are implemented via binary switches. Digital processors 

(not shown) control the state of these switches (see 

figure 4b in Koch, Marroquin, and Yuille [24]) . Such 

a scheme requires a sort of hybrid technology, exploit

ing both analog as well as digital circuits. However, we 

will now replace the resistance T, the binary switch as 

well as its digital "controller," by our nonlinear fuse 

circuit. Following the above discussion for piecewise 

smooth surface interpolation, we simply replace the 

current through the linear resistor (of the form A.(uij -

ui+v)) by the current through the non-linear fuse (of 

the form f(uij - u;+1)), where I = f(V) is the con

stitutive relationship of the fuse (equation (5)). We then 

have 
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Figure 8. Computed optical flow of several moving people. (a) and (b) show the two 128 X128 pixel images captured by a video camera. 

The two leftward people move toward the left while the rightward person moves to the right. (c) The initial , local velocity data prior to 

smoothing. (d) the zero-crossings of the Laplacian of a Gaussian of both images; the zero-crossings are thresholded to remove noise. (e) 

Smooth and subsampled optical flow obtained by numerically solving equation (7b) . Two undifferentiated "blobs" move to the left and 

one moves to the right. (f) The subsampled optical flow computed with analog resistive fuses. In order to visualize the behavior of the 

fuses, we indicated their state with a solid line if the voltage difference across them exceeds the value for which their conductance is 

half of the conductance for the zero voltage case. The fuses are prevented from breaking at locations where no zero-crossings are present. 
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I}-;ptj + Ix-tjiy-IjVtj + Ix-i./t-tj 

+ f(uti - ui+i) + fiuu - uij+i) 

+ f(uij - U;-v) + f(uij - uij_1) 0 

I x-Jy-ijUij + I~-ijvij + Iy-ufr-ij 

+ f(vij - vi+ij) + f(vti - vij+i) 

+ f(v;j - V;-v) + f(vij - vij_1) = 0 

(9) 

Figure 9 shows the theoretical 1-V curve I= f(V) super

imposed onto the experimentally measured I-V curve of 

our analog fuse. We solve equations (9) by adding a fixed 

parasitic capacitance at every node and iteratively com

puting the voltage until a stationary value is reached. 

We use the additional constraint that the fuse should 

only break if an intensity discontinuity (in our case 

thresholded zero-crossings of the image filtered with 

the Laplacian of a Gaussian) occurs at the same loca

tion, implementing the constraint that motion discon

tinuities usually coincide with intensity discontinuities 

[ 4] . We achieve this by increasing the threshold a by 

a factor 100 if no zero-crossing is present, effectively 

preventing the fuse from "breaking" in the absence of 

intensity edges. The fusion of motion and intensity dis

continuities could be accomplished at the circuit level 

by biasing the voltage control for the current cutoff on 

the fuse circuit, VB, with the output of a second chip 

computing zero-crossings of the 'V 2G operator. 
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Fig. 9. Comparison of the 1-V curve used in our simulations (dotted 

line given by equation (5)) with the experimentally measured curve 

of our fuse circuit (solid line; see also figure 3b). 

Traditionally, additional constraint terms have been 

used embodying the fact that, in general, motion dis

continuities occur along extended contours and rarely 

intersect. However, because zero-crossings are located 

on continuous contours and do not intersect, we have 

found these terms to be superfluous and do not use 

them. This, of course, significantly reduces the cost 

of implementing discontinuities in analog hardware. 

Figure 8f shows the resultant stationary voltage 

distribution. The final motion field is substantially im

proved over the smooth optical flow shown in figure 

8e. Notice in particular how the algorithm finds the oc

cluding contour between the two rightward people mov

ing in opposite directions. 

The formation of line discontinuities depends 

crucially on the value of a. Because we assume no a 

priori knowledge concerning the distribution and 

amplitude of any motion discontinuties, we adopt the 

heuristic procedure, illustrated in figure 10, of multiply

ing the penalty for a line process, a (see equation (4)), 

with 1/K(t), where K(t) increases from a small value 

to a large one. This has the effect that the system in

itially detects only very large discontinuities in the op

tical flow. As time goes on, the effective a decreases, 

enabling the detection of smaller motion discontinuities. 

In the final iterations, we reduce K(t) to remove 

spurious or isolated motion discontinuities. As il

lustrated in figure 5, we can vary a on our fuse circuit. 

K 

'" 

iterations 

(x1000) 

56 72 

Fig. 10. Variation in the effective threshold a! K for determining when 

a line process should be introduced as a function of the iteration time. 

This schedule corresponds to requiring a very large gradient to locate 

a discontinuity initially, susequently fucilitating detection of discontin

uities. A cleanup cycle at the end eliminates unwanted discontinuities. 
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4. 3 Constraint Boxes and Optical Flow 

The network depicted in figure 7a is extremely difficult 

to implement in analog VLSI. First of all, the battery 

voltages and resistance values are relatively complicated 

functions of the input data. Furthermore, because the 

resistance values are functions of the input data, they 

may be positive or negative. Negative resistors are dif

ficult to implement and may lead to stability problems. 

We have developed a methodology of constraint boxes 

for implementing most of the constraint terms required 

in early vision problems [8]. In general, suppose we 

would like to minimize a quadratic constraint on the 

voltages vk of the form 

(10) 

where F is an expression linear in the Vk's. A con

straint box is ann terminal, fully reciprocal device with 

the current Ik at every node (with an associated voltage 

Vk) satisfying 

(11) 

It is straightforward to show that this choice of currents 

will minimize the constraint term F 2• Furthermore, a 

network of constraint boxes will minimize the sum of 

the squares of the constraints [8]. Constraint boxes have 

been successfully used to implement the coupled 

depth/slope method for thin plate surface reconstruc

tion [9]. 

For the problem of estimating the optical flow, we 

have 

(12) 

Thus, we need to design a constraint box injecting the 

following current into the u and v resistor meshes: 

(13) 

Note that no additional circuitry beside a single con

straint box per node is required (figure 7b). Thus, con

straint boxes significantly reduce the circuit complexity 

and ameliorate the stability problem (because no 

negative resistors are required). 

5 Conclusion 

We have successfully demonstrated a simple and elegant 

analog circuit implementation of the line discontinuities 

of Geman and Geman [6] and of the graduated non

convexity algorithm of Blake and Zisserman [1]. We 

only report on the experimental data for an 8-pixel 1D 

analog fuse circuit. Our circuit allows us to modify the 

threshold at which the fuse breaks and a discontinuity 

"is detected." Furthermore, we have implemented one 

particular continuation method for smoothly changing 

the I-V relationship from that of a saturating resistor 

to that of the nonlinear resistive fuse. We found this 

to be critical when attempting to detect discontinuities 

with our chips. We also successfully designed and tested 

an 8 pixel 1D binary fuse circuit as well as a two

dimensional, 20X20 pixel version ofthis network. Our 

current implementation medium is subthreshold analog 

CMOS, using a 2p.m process. One of the key advan

tages of this technology is that a significant number of 

computational primitives are available for our use [32]. 

Note that the best technology in which to ultimately 

implement these circuits will critically depend upon the 

requirements of the vision application in terms of 

power, speed, system size, cost, and required accuracy. 

It is not conceptually difficult, for example, to map our 

circuit ideas to a bipolar process where our circuits 

would gain the advantages of higher speed and better 

accuracy at the cost of lower circuit density and much 

higher power dissipation. 

In agreement with other researchers in the field, we 

have found empirically that deterministic implementa

tions of the stochastic Markov random field algorithms 

of early vision lead to solutions little different from 

those obtained with the more time-consuming stochastic 

optimization techniques. Furthermore, the fact that we 

require no additional constraints on the formation of 

discontinuities, except that they should coincide with 

intensity discontinuities, makes their implementation 

into dedicated hardware feasible. Given the provisional 

nature of our first chips, we have not yet attempted to 

characterize their accuracy, although we expect their 

resolution to be within 5 to 7 bits. We have demon

strated already, however, that these circuits are inher

ently robust and accurate enough to allow for simple 

navigation tasks such as following edges or tracking 

moving light sources when mounted onto small, highly 

mobile toy cars operating in a laboratory environment 

[23]. 
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We previously demonstrated chips implementing 

smooth two-dimensional first-order surface interpola

tion [26] and a one-dimensional second-order or thin

plate surface interpolation [9]. Computer simulations 

have shown that detection of discontinuities in surface 

orientation, such as occurring along creases, is feasi

ble in problems such as edge detection and surface 

interpolation [1, 25] and can be incorporated into our 

thin-plane interpolation circuits [9]. 

We thus have all the elementary circuit elements in 

hand-phototransistors for on-chip image acquisition 

[32], resistive networks for smoothing, and resistive 

fuses for detecting discontinuities-to build analog 

chips to compute optical flow fields in the presence of 

motion and intensity discontinuities. 
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