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ABSTRACT 

An extremely compact, all analog and fully parallel implementa

tion of a class of shunting recurrent neural networks that is ap

plicable to a wide variety of FET-based integration technologies is 

proposed. While the contrast enhancement, data compression, and 

adaptation to mean input intensity capabilities of the network are 

well suited for processing of sensory information or feature extrac

tion for a content addressable memory (CAM) system, the network 

also admits a global Liapunov function and can thus achieve stable 

CAM storage itself. In addition the model can readily function as 

a front-end processor to an analog adaptive resonance circuit. 

INTRODUCTION 

Shunting neural networks are networks in which multiplicative, or shunting, terms 

of the form Xi Lj f;(Xj) or Xi Lj Ij appear in the short term memory equations, 

where Xi is activity of a cell or a cell population or an iso-potential portion of a 

cell and Ii are external inputs arriving at each site. The first case shows recurrent 

activity, while the second case is non-recurrent or feed forward. The polarity of 

these terms signify excitatory or inhibitory interactions. 

Shunting network equations can be derived from various sources such as the passive 

membrane equation with synaptic interaction (Grossberg 1973, Pinter 1983), models 

of dendritic interaction (RaIl 1977), or experiments on motoneurons (Ellias and 

Grossberg 1975). 

While the exact mechanisms of synaptic interactions are not known in every in

dividual case, neurobiological evidence of shunting interactions appear in several 
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areas such as sensory systems, cerebellum, neocortex, and hippocampus (Grossberg 

1973, Pinter 1987). In addition to neurobiology, these networks have been used to 

successfully explain data from disciplines ranging from population biology (Lotka 

1956) to psychophysics and behavioral psychology (Grossberg 1983). 

Shunting nets have important advantages over additive models which lack the ex

tra nonlinearity introduced by the multiplicative terms. For example, the total 

activity of the network, shown by Li Xi, approaches a constant even as the input 

strength grows without bound. This normalization in addition to being computa

tionally desirable has interesting ramifications in visual psychophysics (Grossberg 

1983). Introduction of multiplicative terms also provides a negative feedback loop 

which automatically controls the gain of each cell, contributes to the stability of the 

network, and allows for large dynamic range of the input to be processed by the 

network. The automatic gain control property in conjunction with properly chosen 

nonlinearities in the feedback loop makes the network sensitive to small input values 

by suppressing noise while not saturating at high input values (Grossberg 1973). 

Finally, shunting nets have been shown to account for short term adaptation to 

input properties, such as adaptation level tuning and the shift of sensitivity with 

background strength (Grossberg 1983), dependence of visual size preference and 

latency of response on contrast and mean luminance, and dependence of temporal 

and spatial frequency tuning on contrast and mean luminance (Pinter 1985). 

IMPLEMENTATION 

The advantages, generality, and applicability of shunting nets as cited in the previ

ous section make their implementation very desirable, but digital implementation 

of these networks is very inefficient due to the need for analog to digital conver

sion, multiplication and addition instructions, and implementation of iterative al

gorithms. A linear feedback class of these networks (Xi Lj !; (Xj) = Xi Li J{ijXj), 

however, can be implemented very efficiently with simple, completely parallel and 

all analog circuits. 

FRAMEWORK 

Figure 1 shows the design framework for analog implementation of a class of shunt

ing nets. In this design addition (subtraction) is achieved, via Kirchoff's current 

law by placing transistors in upper (lower) rails, and through the choice of deple

tion or enhancement mode devices. Multiplicative, or shunting, interconnections 

are done by one transistor per interconnect, using a field-effect transistor (FET) in 

the voltage-variable conductance region. Temporal properties are characterized by 

cell membrane capacitance C, which can be removed, or in effect replaced by the 

parasitic device capacitances, if higher speed is desired. A buffer stage is necessary 

for correct polarity of interconnections and the large fan-out associated with high 

connectivity of neural networks. 



Analog Implementation of Shunting Neural Networks 697 

+ 

x. , 

I. , 

c 

Vdd 

-t" '.J 

. x· 
J 

Vss 

Figure 1. Design framework for implementation of one cell in a 

shunting network. Voltage output of other cells is connected to the 

gate of transistors Qi,i' 

Such a circuit is capable of implementing the general network equation: 

(1) 

Excitatory and inhibitory input current sources can also be shunted, with extra 

circuitry, to implement non-recurrent shunting networks. 

NMOS, CMOS and GALLIUM ARSENIDE 

Since the basic cell of Fig. 1 is very similar to a standard logic gate inverter, but with 

the transistors sized by gate width-to-Iength ratio to operate in the nonsaturated 

current region, this design is applicable to a variety of FET technologies including 

NMOS, CMOS, and gallium arsenide (GaAs). 

A circuit made of all depletion-mode devices such as GaAs MESFET buffered FET 

logic, can implement all the terms of Eq. (1) except shunting excitatory terms and 

requires a level shifter in the buffer stage. A design with all enhancement mode 

devices such as silicon NMOS can do the same but without a level shifter. With 

the addition of p-channel devices, e.g. Si CMOS, all polarities and all terms of Eq. 

(1) can be realized. As mentioned previously a buffer stage is necessary for correct 

polarity of interconnections and fan out/fan in capacity. 

Figure 2 shows a GaAs MESFET implementation with only depletion mode devices 

which employs a level shifter as the buffer stage. 
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Figure 2. Gallium arsenide MESFET implementation with level 

shifter and depletion mode devices. Lower rail transistors produce 

shunting off-surround terms. Upper transistors can produce addi

tive excitatory connections. 

SPECIFIC IMPLEMENTATION 

The simplest shunting network that can be implemented by the general framework 

of Fig.1 is Fig. 2 with only inhibitory connections (lower rail transistors). This 

circuit implements the network model 

dX· " d/ = Ii - a,X, + Xi(J(iXi) - Xi(L....J J(ijXj) 
j#i 

(2), 

The simplicity of the implementation is notable; a linear array with nearest neighbor 

interconnects consists of only 5 transistors, 1-3 diodes, and if required 1 capacitor 

per cell. 

A discrete element version of this implementation has been constructed and shows 

good agreement with expected properties. Steady state output is proportional to 

the square root of a uniform input thereby compressing the input data and showing 

adaptation to mean input intensity (figure 3). The network exhibits contrast en

hancement of spatial edges which increases with higher mean input strength (figure 

4). A point source input elicits an on-center off-surround response, similar to the 

difference-of-Gaussians receptive field of many excitable cells. This 'receptive field' 

becomes more pronounced as the input intensity increases, showing the dependence 

of spatial frequency tuning on mean input level (figure 5). The temporal response 

of the network is also input dependent since the time constant of the exponential 
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decay of the impulse response decreases with input intensity. Finally, the depen

dence of the above properties on mean input strength can be tuned by varying the 

conductance of the central FET. 
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Figure 3. Response of network to uniform input. Output is pro

portional to the square root of the input. 
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Figure 4. Response of network to spatial edge patterns with the 

same contrast but increasing mean input level. 
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Figure 5. Response of network to a point source input. Inset 

shows the receptive field of fly's lamina monopolar cells (LMC of 

Lucilia sericata). Horizontal axis of inset in visual angle, vertical 

a.xis relative voltage units of hyperpolarization. Inset from Pinter 

et al. (in preparation) 

CONTENT ADDRESSABILITY AND RELATION TO ART 

Using a theorem by Cohen and Grossberg (1983), it can be shown that the network 

equa.tion (2) a.dmits the global Liapunov function 

n n 

V - - "'(l·ln(xi) - a'x ' + K'x~) +.! '" K··x 'XL 
- ~ 1 >. 1 1 1 1 2 ~ IJ J .. , 

;=1 j,k=l 

(3) 

where>. is a constant, under the constraints Kij = Kji and Xi > O. This shows that 

in response to an arbitrary input the network always approaches an equilibrium 

point. The equilibria represent stored patterns and this is Content Addressable 

Memory (CAM) property. 

In addition, Eq. (2) is a special case of the feature representation field of an analog 

adaptive resonance theory ART-2 circuit, (Carpenter and Grossberg 1987), and 

hence this design can operate as a module in a learning multilayer ART architecture. 
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FUTURE PLANS 

Due to the very small number of circuit components required to construct a cell, 

this implementation is quite adaptable to very high integration densities. A solid 

state implementation of the circuit of figure (2) on a gallium arsenide substrate, 

chosen for its superiority for opto-electronics applications, is in progress. The chip 

includes monolithically fabricated photosensors for processing of visual information. 

All of the basic components of the circuit have been fabricated and tested. With 

standard 2 micron GaAs BFL design rules, a chip could contain over 1000 cells per 

cm2 , assuming an average of 20 inputs per cell. 

CONCLUSIONS 

The present work has the following distinguishing features: 

• Implements a mathematically well described and stable model. 

• Proposes a framework for implementation of shunting nets which are biologically 

feasible, explain variety of psychophysical and psychological data and have many 

desirable computational properties. 

• Has self-sufficient computational capabilities; especially suited for processing of sen

sory information in general and visual information in particular (N abet and Darling 

1988). 

• Produces a 'good representation' of the input data which is also compatible with 

the self-organizing multilayer neural network architecture ART-2. 

• Is suitable for implementation in variety of technologies. 

• Is parallel, analog, and has very little overhead circuitry . 

.. - . 
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