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Abstract. I present a new focal-plane analog very-large-scale-integrated (aVLSI) sensor that estimates optical

flow in two visual dimensions. Its computational architecture consists of a two-layer network of locally connected

motion units that collectively estimate the optimal optical flow field. The applied gradient-based optical flow model

assumes visual motion to be translational and smooth, and is formulated as a convex optimization problem. The

model also guarantees that the estimation problem is well-posed regardless of the visual input by imposing a bias

towards a preferred motion under ambiguous or noisy visual conditions. Model parameters can be globally adjusted,

leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum

of motion estimates, ranging from normal to global optical flow. The non-linear network conductances improve the

resulting optical flow estimate because they reduce spatial smoothing across large velocity differences and minimize

the bias for reliable stimuli. Extended characterization and recorded optical flow fields from a 30 × 30 array prototype

sensor demonstrate the validity of the optical flow model and the robustness and functionality of the computational

architecture and its implementation.
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1. Motivation

The ability to estimate motion using visual informa-

tion is important for any natural and artificial agent

behaving in a dynamical visual environment. Know-

ing the relative motions between different objects

as well as between objects and the agent is cru-

cial for a cognitive perception of the environment

and thus a prerequisite for intelligent behavior. How-

ever, the demand for real-time processing and the

limited resources available on freely behaving agents

impose severe constraints that require efficient com-

putational systems in terms of processing speed, en-

ergy consumption, and physical dimensions. These

requirements favor parallel computational architec-

tures. Implementations of such architectures become

particularly appealing when image sensing and motion

estimation circuitry can be combined within a single

sensor. Furthermore, a sensor architecture that consists

of a topographically uniform array of identical pro-

cessing units (pixels) has the advantage that process-

ing power scales with array size, thus keeping process-

ing speed independent of spatial array resolution. Ana-

log VLSI circuits are particularly suited for such archi-

tectures because they require significantly less power

and silicon area than digital circuits for computational

tasks of comparable complexity [1]. Furthermore, time-

continuous analog processing matches the continuous

nature of visual motion information. Temporal alias-

ing artifacts do not occur while they can be a signifi-

cant problem in clocked, sequential circuit implemen-

tations, in particular when limited to low frame-rates

[2].

Visual information is – in general – locally ambigu-

ous and noisy, and often does not allow a unique esti-

mation of visual motion. A prominent ambiguity, com-

monly referred to as the “aperture problem” [3], is

illustrated in Fig. 1a for an idealized motion scene un-

der noise-free conditions. Observations through aper-

tures showing zero-order (aperture A) or first-order spa-

tiotemporal brightness patterns (apertures B and C) do

not permit an unambiguous local estimate of the vi-

sual motion because an infinite number of possible flow

vectors can explains the local percept. A model for vi-

sual motion is needed in order to resolve the ambigu-

ities. A priori assumptions about the expected visual

motion are part of such model. For example, a nor-

mal flow model assumes that from all possible optical

flow vectors the shortest one is correct, which is the

one that is perpendicular to the edge orientation in each

aperture. Clearly, the computational task and the result-

ing quality of the optical flow estimate can vary sub-

stantially depending on the complexity of the chosen

model.

Tracking distinct local brightness patterns as e.g. the

corner of the triangle in aperture D, would allow the
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Fig. 1. The aperture problem. (a) Visual motion observed through the apertures A, B, and C is ambiguous with respect to the motion of the

moving object. (b) Combining the local observations through aperture B and C permits to determine the object motion (intersection of constraints).

Vector averaging of the normal flow field does not lead to the correct global motion (dashed arrow).

local estimation of visual motion without further as-

sumptions, however requiring complex spatiotemporal

filter stages to detect all possible patterns (feature de-

tectors). Clearly, this is only possible at sparse loca-

tions. Alternatively, visual information can be spatially

integrated over multiple, apertures. Combining the lo-

cal constraints from each aperture then ideally leads

to a unique and well-defined estimate of object motion

(see Fig. 1(b))1. It is important to realize that the vec-

tor average of normal flow usually does not coincide

with this collective intersection-of-constraints (IOC)

estimate. The IOC solution assumes that the motion

signals to be integrated arise form a common visual

motion source (object).

2. Review of Analog VLSI Visual Motion Sensors

Most of the known aVLSI motion sensors estimate vi-

sual motion only along a given single spatial orientation

and/or they do not attempt to estimate visual speed ex-

plicitly. They can be classified in methods performing

explicit matching in the time-domain e.g. [4–9], gradi-

ent based methods e.g. [10–12] and implicitly matching

or correlation based methods that follow insect vision

e.g [13–18].

Only a few 2-D visual motion sensors have been re-

ported that attempt to estimate visual speed. A first class

of implementations estimates normal flow. Jiang and

Wu [19] reported a correlation based approach. Motion

is reported if the time-of-travel of the extracted edges

between neighbor motion units matches a pre-set de-

lay time. Since the tuning is very narrow, the sensor is

fairly limited and cannot report arbitrary visual veloci-

ties without being continuously re-tuned. More practi-

cal sensors were reported by Kramer et al. [20], apply-

ing explicit matching in the time-domain. Two circuits

are presented where the time-of-travel of a brightness

edge is measured either by eliciting a monotonic de-

caying function with arrival of an edge and sampling

the functions value at the time the edge passes a neigh-

boring pixel, or, by measuring the amount of overlap of

two fixed-size pulses of neighboring pixels that each

are triggered by the arrival of a brightness edge. A

similar approach but different implementation was pro-

posed by Etienne-Cummings et al. [21]. Where as in

[20] temporal intensity changes are assumed to repre-

sent brightness edges, here, brightness edges are first

extracted in the spatial domain before matching was

performed in the time-domain. This has the advantage

that also very slow speeds can be detected accurately.

Mehta and Etienne-Cummings presented a gradient-

based normal flow sensor [22]. In their implementation,

the extraction of the spatiotemporal gradients and the

normal flow estimation were performed in a line-

sequential manner. The combination of an active pixel

array with correlated double sampling and off-array

computation permits high resolution and low noise

estimation results, but it does not have the scal-

ing property of a topographically homogeneous array

processor.

None of the above approaches, however, performs

spatial integration in order to incorporate more elab-

orate models of optical flow estimation. Tanner and

Mead [23] described early a sensor with an array size

of 8 × 8 pixels that provides a global motion estimate.

Measured motion data, however, was never explicitly

shown and the sensor was reported to be fragile, even

under well-controlled laboratory conditions. Neverthe-

less, it was the first hardware example of a collective

computational approach to visual motion estimation.

Subsequent attempts [24] failed to result in a more ro-

bust implementation. In a previous paper [25], we pre-

sented a first improvement that allowed the estimation

of smooth optical flow besides a global motion esti-

mate. The prototype implementation with a 7 × 7 ar-

ray was functional although it was rather limited by its

small linear output range. A recent attempt by Lei and

Chiueh [26] modified our previous approach [25] by

incorporating segmentation properties but was not able
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to demonstrate robust behavior under realistic illumi-

nation conditions.

The 2-D optical flow sensor described in this paper

represents a significant improvement and further devel-

opment of previous approaches. It provides a locally

smooth optical flow field where the degree of smooth-

ing is adjustable. Its increased linear range and a rea-

sonable prototype array size encourages practical ap-

plications in robotics or surveillance. The sensor is a

successful example of how to apply collective compu-

tation to aVLSI circuits in order to solve a perceptual

task. We have previously presented other aVLSI imple-

mentations that extend the optical flow sensor presented

here, and which permit the dynamical control of the lo-

cal network connections in order to guide the process of

motion integration [27–30]. To clarify the chronologi-

cal order of development, however, note that all these

implementations are based on the design of the optical

flow sensor presented here, despite the fact that they

have been published earlier. In fact, they all use the

exact same schematics of the core motion pixel (later

shown in Fig. 3).

3. Optical Flow Model

For analytical reasons, the input of the proposed

model is defined as the spatiotemporal gradients

Ex = ∂
∂x

E(x, y, t), Ey = ∂
∂y

E(x, y, t), and Et =
∂
∂t

E(x, y, t) of the image brightness distribution

E(x, y, t). Note, that image brightness depends on the

particular characteristics of the imager, and is not nec-

essarily proportional to the irradiance on chip. The ex-

traction of these spatiotemporal gradients in the ac-

tual aVLSI implementation will be discussed later. The

model’s output is the optical flow field v(x, y, t) =

(u(x, y, t), v(x, y, t)), which represents the instanta-

neous estimate of visual motion. To increase readabil-

ity, space and time dependence will not be explicitly

expressed in subsequent annotations.

The applied motion model assumes that the bright-

ness constancy constraint [30] holds and that the op-

tical flow varies smoothly in space. Following Horn

and Schunck [31], these two constraints can be for-

mulated as optimization problem for which the de-

sired optical flow estimate is the optimal solution. It

can be easily verified that using only these two con-

straints results in an ill-posed optimization problem

for particular visual input patterns. Namely, when only

zero- and first-order brightness patterns of equal ori-

entation are present throughout the whole image (see

Fig. 1). However, it is highly desirable for a physical

system that the implemented function is well-posed un-

der all possible input conditions. Otherwise, the sys-

tem’s behavior is unpredictable, driven by noise and

non-idealities of the implementation. To avoid this, a

bias constraint is added, expressed as the convex cost

function

B(v) = (u − uref)2 + (v − vref)2, (1)

which measures the distance of the optical flow estimate

to some predefined reference motion vector (uref, vref).

The reference motion can be understood as the a priori

expected motion in case the visual information content

is unreliable or missing. There is evidence that the hu-

man visual system is applying a similar strategy [32].

In contrast to previous formulations [33, 34, 32], the

reference motion is not necessarily assumed to be zero.

For example, it could be adapted to the statistics of its

visual environment; the reference motion could repre-

sent e.g. the statistical mean of the experienced visual

motion. Such adaptation mechanisms, however, will not

be further discussed in this article.

Combining the model of Horn and Schunck with the

additional bias constraint (1) leads to an optical flow

model that can be formulated as the following constraint

optimization problem: Given the input Exi j
, Eyi j

and Eti j

(on nodes i, j in a discrete, orthogonal n × m image

space) and a reference motion vref = (uref, vref), find

the optical flow field vi j such that the cost function

H (vi j ; ρ, σ ) =

n
∑

i=1

m
∑

j=1

[(

Exi j
ui j + Eyi j

vi j + Eti j

)2

+ ρ((�ui j )
2 + (�vi j )

2) + σ ((ui j

− uref)2 + (vi j − vref)2)
]

(2)

is minimal.2 The positive parameters σ > 0 and ρ ≥ 0

determine the relative influence of each constraint.

Boundary conditions are given by assuming the gradi-

ents of the flow field to be zero along the array boundary.

4. Optical Flow Network

The cost function (2) is convex for any given input.

Thus, a linear dynamical system that performs gradi-

ent descent on the cost function is guaranteed to find

the optimal solution. Gradient descent (u̇ ∝ −∂ H/∂u,

v̇ ∝ −∂ H/∂v) results in a system of 2n × m linear

differential equations

u̇i j = −
1

C
[Exi j

(Exi j
ui j + Eyi j

vi j + Eti j
)

− ρ(ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui j )

+ σ (ui j − uref)]

v̇i j = −
1

C
[Eyi j

(Exi j
ui j + Eyi j

vi j + Eti j
)

− ρ(vi+1, j + vi−1, j + vi, j+1 + vi, j−1 − 4vi j )

+ σ (vi j − vref)] (3)
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Fig. 2. A single unit of the optical flow network.

with C being a positive constant. These equations can

be mapped to the voltage dynamics of an electronic net-

work with two cross-coupled resistive layers. Figure 2

illustrates a single unit of such a network. Identifying

the local estimate of optical flow with the voltages Ui j ,

Vi j (with respect to some virtual ground V0), each term

in straight brackets in (3) represents the sum of currents

that charges up or down the capacitances C until equi-

librium is reached. Each constraint of the cost function 2

has a physical counterpart:

• Smoothness is enforced by the two resistive layers

with lateral conductances ρ.

• The bias constraint is implemented as the leak con-

ductance σ to the reference motion represented by

the potentials Vref and Uref.

• The brightness constancy constraint is enforced by

“constraint-boxes” A and B that inject or sink the

currents

Fui, j
∝ −Exi j

(Exi j
ui j + Eyi j

vi j + Eti j
) and

Fvi, j
∝ −Eyi j

(Exi j
ui j + Eyi j

vi j + Eti j
), (4)

respectively [35]. These correction currents represent

how much a potential optical flow estimate violates

the brightness constancy constraint, and are com-

puted in cross-coupled feedback loops.

Exploiting the natural dynamics of a physical system

to solve an optimization problem is closely related to

the principle of Hopfield networks [36]. The solution

to the problem is represented by a stable attractor of

the analog electronic network [37]. In contrast to Hop-

field networks, the system has a single asymptotically

stable attractor that, however, changes with changing

visual input. We can assume that the state of the net-

work closely follows the attractor if the network time-

constant is negligible compared to the dynamics of the

input. The appropriate control of the node capacitance

C and the current levels in the implementation can en-

sure a close-to-optimal solution for reasonable input

dynamics.

The characteristics of the model and therefore the

computational behavior of the optical flow network are

determined by the relative weights of the three con-

straints, which are defined by the lateral and vertical

network conductances ρ and σ , respectively. Accord-

ing to the strength of these adjustable conductances, the

network accounts for different models of visual motion

estimation such as normal flow, smooth optical flow or

global flow.

5. Circuit Architecture and Implementation

Figure 3 shows the complete circuit schematics of a

single motion unit (pixel) of the optical flow sensor. All

the transistors are operated in the sub-threshold regime,

except those in the core of the multiplier circuits com-

puting Ex u and Eyv (see Section 5.2). All variables are

differentially encoded because the input (spatiotempo-

ral brightness gradients) and the output (the components

of the local optical flow vector) can take on positive and

negative values. Referencing the voltages U+ and V+ to

the fixed virtual ground V0 substantially reduces the im-

plementation complexity by requiring only two single-

line resistive layers. Note, that in this particular imple-

mentation, the reference motion for the bias constraint

was chosen to be zero, thus Uref, Vref = V0. How-

ever, an independent control of both potentials could be

easily implemented.

5.1. Extraction of the Brightness Gradients

The first stage of processing consists of estimating

the spatiotemporal brightness gradients. Each pixel in-

cludes a logarithmic, adaptive photoreceptor [38] with

adjustable adaptation rate [39].

A hysteretic differentiator circuit [40] provides the

currents Et−, Et+ that represent the rectified tempo-

ral derivative of the photoreceptor signal E0. The ad-

justable source potentials HDtweak+, HDtweak- allow to

control the output current gain of the differentiator.

The spatial derivatives Ex and Ey are estimated as

first-order approximations of the brightness gradients,

thus the central differences between the photorecep-

tor outputs of nearest neighbors in each orthogonal di-

rection. Because the photoreceptor encodes irradiance

logarithmically, the spatial derivatives become indepen-

dent of absolute illumination and basically represent

the irradiance contrast between two neighboring image

locations.3 This property is very useful because it im-

plies that the sensor ideally provides the same response

for the same stimulus, independently of the lighting

conditions.
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Fig. 3. Circuit schematics of a single motion unit.

Fig. 4. Spatial sampling and its effect on the motion response. (a) Spatial sampling of sinusoidal brightness patterns of different spatial frequencies

k (given in units of the Nyquist frequency [π/d]) in one visual dimension. (b) The expected response of the optical flow sensor according to

(8) as a function of the spatial frequency k of a sinewave stimulus moving with velocity v and the fill-factor δ = D/d.The dashed curve is the

time-averaged response (σ = 0.05, δ = 1/3).

While continuous-time temporal differentiation

avoids any temporal sampling artifacts, discrete spatial

sampling of the image brightness affects the visual mo-

tion estimate. This is illustrated in Fig. 4(a): Consider

a simplified, one-dimensional optical flow network that

is presented with a sine-wave grating stimulus moving

with a fixed velocity v. The brightness distribution in

the focal-plane is then given as E(x, t) = sin(kx − ωt)

with x, t ∈ R, where ω = kv and k is the spatial

frequency of the projected stimulus. The spatial gra-

dient at location xi is the central difference operator

�xi = (xi+1 − xi−1) /2d , where d is the sampling dis-

tance (size of pixel). Assuming a non-zero sampling

size D (size of photodiode), the discrete spatial gradi-

ent becomes

Ex (xi , t) =
1

2d

(

1

D

∫ xi +d+D/2

xi +d−D/2

sin(k(ξ − vt)) dξ

−
1

D

∫ xi −d+D/2

xi −d−D/2

sin(k(ξ − vt)) dξ

)

=
2

k Dd
sin(kd) sin(k D/2) cos(k(xi − vt)).

(5)
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Temporal differentiation is continuous, thus the tempo-

ral gradient at location xi simply is

Et (xi , t) =
∂

∂t

1

D

∫ xi +D/2

xi −D/2

sin(k(ξ − vt)) dξ

= −
2v

D
(cos(k(xi − vt)) · sin(k D/2)). (6)

According to (3), the response of a single unit in equi-

librium with no lateral coupling (ρ = 0) approximates

normal flow and reduces to

Vout(xi , t) = −
Et (xi , t)Ex (xi , t) + Vrefσ

σ + Ex (xi , t)2
(7)

Substitution of (6) and (5) in (7) and assuming Vref = 0

leads to

Vout(xi , t) = v
kd

sin(kd)
·

cos(kxi − ωt)2

γ + cos(kxi − ωt)2
with

γ = σ
k2d2 D2

4 sin2(kd) sin2(k D/2)
. (8)

Figure 4(b) shows the predicted peak output response

(8) for different weights of the bias constraint σ and

different fill-factors δ = D/d, as a function of the spa-

tial stimulus frequency k, given in units of the Nyquist

frequency [π/d]. Note that the response strongly de-

pends on k. For low spatial frequencies, the motion

output well approximates the correct velocity. For very

low frequencies, the local stimulus contrast diminishes

and the non-zero σ biases the output response toward

the reference motion Vref = 0. As the stimulus fre-

quency approaches the Nyquist frequency, the response

increases to unrealistically high values and changes sign

at k ∈ Z
+[π/d]. Increasing the fill factor reduces the

effect, although only marginally for reasonable values

of δ and small σ . Clearly, without the bias constraint

(σ = 0), Eq. (8) is not defined at spatial frequencies

k ∈ Z
+, and the motion response approaches ±∞ in

their vicinity.

5.2. Wide-Linear Range Multiplier

The design of the multiplier circuit computing Ex u and

Eyv respectively, is crucial for a successful aVLSI im-

plementation of the optical flow network. It has to op-

erate in four quadrants, providing a wide linear output-

range with respect to each multiplicand. Offsets should

be minimal because they directly impose offsets in the

optical flow estimate. Furthermore, the design needs to

be compact in order to guarantee a small pixel size. The

original Gilbert multiplier circuit [41] meets these re-

quirements fairly well, with the exception of its small

linear range when operated in sub-threshold. In above-

threshold operation, however, its linear range is signif-

icantly increased due to a transconductance change of

the individual differential pairs [27].

The proposed multiplier circuit (shown in detail in

Fig. 5(a)) embeds a Gilbert multiplier in an outer differ-

ential pair. The idea is to operate the Gilbert multiplier

above-threshold to increase the linear range but in addi-

tion, to re-scale the output currents such that the current

level in the feedback loop remains sub-threshold. The

scaling is approximately linear, thus

Iout = Iout+ − Iout− ≈
Ib2

Ib1

I core
out , (9)

if κn ≈ 1, where 1/n is the ideality factor4 of the diodes

D1,2 and κ is the slope factor of the nFETs in the embed-

ding differential pair. Using the base-emitter junction

of bipolar transistors to implement the diodes ensures

an ideal (n = 1) behavior [42]. Also, the voltage drop

across the diodes is such that the gate voltage of the outer

nFETs are typically within one volt below Vdd , meaning

that their gate-bulk potentials are large. At such levels,

κ asymptotically approaches unity because the capac-

itance of the depletion layer becomes negligibly small

compared to the gate-oxide capacitance. Thus, κn ≈ 1

and we can safely assume a linear scaling of the multi-

plier output currents with bias current Ib2.

Base-emitter junctions can be exploited either using

native bipolar transistors in a genuine BiCMOS process

or the vertical bipolar transistors in standard CMOS

technology. Although a CMOS implementation of the

diodes is desirable to avoid the more complex and ex-

pensive BiCMOS process, it is necessary to use a gen-

uine BiCMOS process. The reason is that at current lev-

els above 10−6 A the vertical bipolar starts to deviate

significantly from the desired exponential characteris-

tics due to high-level injection caused by the relative

light doping of the base (well) [42]. These are current

levels that are significantly below the range where the

multiplier core is preferably operated at. The exponen-

tial regime of the native bipolar, however, extends up to

10−3 A. Figure 5(b) displays the measured base-emitter

voltages VB E as a function of the applied emitter current

IE for both, a vertical pnp-bipolar transistor in a typi-

cal p-substrate CMOS process and a native npn-bipolar

transistor in a genuine BiCMOS process.

The output characteristics of the multiplier for sweep-

ing either of the two input voltages are shown in

Figs. 5(c) and (d). For mild above-threshold bias cur-

rents, the linear range reaches approximately ±0.5 V

and is slightly smaller for the upper differential input.

Note, that the measurements were obtained from a test

circuit with identical layout to the one within each pixel.

Offsets are small. The circuit is compact and offers the

possibility to control the linear range and the output-

current level independently by the two bias voltages

Vb1 and Vb2. The disadvantages are the increased power
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Fig. 5. Wide linear-range multiplier. (a) Circuit schematics. (b) The measured emitter currents for a native npn-bipolar transistor and the vertical

pnp-bipolar of a pFET. (c) Measured output currents of the wide linear-range multiplier as a function of the applied input voltage at the lower

differential pair �VA = V2 − V1. Each curve represents the output current for a fixed differential voltage �VB = V4 − V3 = [0, 0.05, 0.1, 0.15,

0.2, 0.3, 0.4, 0.5, 0.75 V]. (d) Same as (c) but now sweeping the upper differential pair input �VB .

consumption caused by the above-threshold operation

and the need for BiCMOS process.

5.3. Output Conductance at the Feedback Node

Consider the current equilibrium at one of the capacitive

nodes in Fig. 2. In steady state, all currents flowing

onto this node represent the violations of the different

constraints according to (3). To be completely true, this

would require the current sources A and B to be ideal.

However, in the aVLSI implementation a small but

present output conductance remains at these feedback

nodes. This conductance can be understood as impos-

ing a second bias constraint on the estimation prob-

lem, causing some extra current that shifts the current

equilibrium. It biases the capacitive node to a refer-

ence voltage that is intrinsic and depends on various

parameters like the strength of the feedback current or

the Early voltages of the transistors. In general, this

reference voltage is not identical with Vref and cannot

be properly controlled. Thus, the superposition of the

two bias currents can have an asymmetric effect on the

final motion estimate. Since the total correction currents

are typically weak, the effect is significant.

The aim, therefore, is to reduce the output conduc-

tance at the feedback nodes as much as possible. The

applied cascode current mirror circuits lead to a sub-

stantial decrease in output conductance compared with

simple current mirrors used in previous related imple-

mentations [23–25].

Neglecting any junction leakages in drain and source,

we find the total output conductance to be

go = goN + goP =
Fx+ · UT

VE,N1 VE,N2

+
Fx− · UT

VE,P1 VE,P2

,

(10)
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where Fx+ − Fx− is the total feedback current of either

one of the two feedback loops, UT the thermal voltage

and VE,X the Early voltages of the different transistors

in the cascode current mirror (see transistor labels in

Fig. 3).

5.4. Effect of Non-Linearities

A linear translation of the network architecture (Fig. 2)

into silicon is hardly possible. In the following, some

important non-linearities of the implementation and

their effect on the optical flow estimate are discussed.

5.4.1. Saturation in the Feedback Loop The first im-

portant non-linearity is caused by the saturation of the

multiplier circuit in the feedback loop. As shown in

Fig. 5, the output current saturates for larger input volt-

ages. What does this mean in terms of the expected

motion output of a single motion unit?

A single motion unit ideally satisfies the brightness

constancy constraint

Ex u + Et = 0 (11)

for a given non-zero spatial brightness gradient Ex .

Now, assume that the multiplication Ex u is replaced

with a non-linear function f (u)|Ex
with Ex constant,

where f describes the saturating output characteris-

tics of the proposed multiplier circuit. For the sake of

simplicity let us assume that the output of the mul-

tiplier core (I+ − I−; see Fig. 5(a)) shows the same

saturation characteristics as if it were operated in sub-

threshold, which is only qualitatively correct because

the characteristics change above-threshold [27]. Then,

the multiplier output (9) can be rewritten as f (u)|Ex
=

cEx
Ib2/Ib1 tanh(u), where the constant cEx

is propor-

tional to a given Ex . Since f (u) is one to one, solv-

ing (11) for the motion response u leads to

u = f −1(−Et ) = −atanh

(

Ib1

Ib2

Et c
−1
Ex

)

. (12)

Figure 6 illustrates the expected motion response

where each curve is for a different value of the bias cur-

rent Ib2. The motion output increasingly over-estimates

the stimulus velocity for increasing speed values. The

more the output of the multiplier circuit saturates and is

below the true multiplication result, the more the feed-

back loop compensates by increasing u in order to make

the equilibrium (11) hold. Increasing Ib2 decreases the

slope of the motion response. Thus, the bias current

of the outer differential pair acts as gain control that

permits to match the limited linear output range to the

expected maximal motion range.

Fig. 6. Expected motion response due to saturation of the multi-

plier circuit. The figure illustrates the expected speed tuning curves

according to (12). The different curves correspond to different values

of the bias current Ib2.

5.4.2. Non-Linear Bias Conductance The quadratic

measure of the bias constraint in the cost function (2)

results in an ohmic bias current that is proportional

to the constant conductance σ . Sufficiently low and

compact ohmic conductances, however, are difficult to

implement in CMOS technology. The bias conduc-

tance of the optical flow unit is implemented using the

transconductance gm of a simple amplifier circuit (see

Fig. 3). Its characteristics are ideally given as

I (�V ) = Ib tan h

(

κ

2UT

�V

)

, (13)

with Ib being the bias current controlled by the volt-

age BiasOP, UT the thermal voltage and κ the com-

mon slope factor. Figure 7(a) illustrates the output of a

saturating resistor according to (13). The transconduc-

tance gm =
Ibκ

2UT
characterizes the small ohmic regime

(<100 mV) and the bias current Ib determines the satu-

ration current level of the circuit. Changing the resistor

from an ohmic to a saturating behavior changes the bias

constraint (1) from a quadratic toward an absolute-value

function, precisely given as the electrical co-content

(Fig. 7(b)). From a computational point of view, this

implies that the optical flow estimate is no longer penal-

ized proportionally to the amplitude of its components.

Rather, beyond the small ohmic regime, a constant bias

current is applied. Therefore, the bias constraint rather

has a subtractive than a divisive effect on the optical

flow estimate. As discussed earlier, it seems reasonable

to strengthen the bias constraint locally according to the

degree of ambiguity. Only, the degree of ambiguity is

not reflected by the amplitude of the motion estimate.

Thus, it seems most sensible to penalized the motion

estimate independently of its amplitude, which actually
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Fig. 7. Ohmic versus saturating resistor. (a) The characteristic curves for an ohmic (dashed line) and a saturating resistor. (b) The electrical

co-contents (integrals).

means to apply a constant bias current. Just recently,

we have shown that the human visual system uses a

bias that penalizes high speeds even less [43]. As pre-

sented later, the non-linear bias conductance improves

the output behavior of the optical flow sensor for low

contrast and low spatial frequency stimuli compared to

a quadratic formulation of the bias constraint. Global

asymptotic stability of the optical flow network is still

guaranteed because the cost function remains convex.

5.4.3. Non-Linear Smoothing of the Optical Flow The

smoothness constraint is enforced by HRes circuits [40],

which have characteristics equivalent to (13). The sat-

uration current level is controlled by the bias voltage

BiasHR. Similarly to the bias constraint, the smoothness

constraint turns from a quadratic (for small voltage dif-

ferences) to an absolute-value cost function. Saturating

resistors privilege smoothing across small voltage dif-

ferences, thus between image locations that show only

little differences in the components of their optical flow

vectors. If the difference becomes too big, the smooth-

ing conductance is continuously reduced in proportion

to the local gradient of the optical flow components.

Consequently, smoothing is reduced at boundaries of

different motion sources where the optical flow is likely

to differ substantially, which partially preserves motion

discontinuities. Because the non-linear smoothing is in-

dependent in each component of the optical flow esti-

mate, smoothing is not rotationally invariant but rather

slightly increased for visual motion along the diagonal

of the intrinsic coordinate frame of the array. In con-

trast to resistive fuse circuits [44], non-linear smoothing

conductances preserve the convexity of the cost func-

tion (2), thus ensure global asymptotic stability.

6. Sensor Measurements

The optical flow sensor has been fully characterized

using two array implementations. Both share the same

technology and an identical pixel design, and they only

Fig. 8. Micro-photograph of the optical flow sensor. Scanning cir-

cuitry allows to read-out the optical flow field as well as the photore-

ceptor signals. The global optical flow estimate is directly accessable

(scanning circuitry de-activated) at separate output pads when the

smoothness conductance is set high (BiasH R > 0.8 V).

differ in their array sizes. Figure 8 shows a micro-

photograph of the larger array. Speed-tuning, contrast

and spatial frequency dependence are based on mea-

surements from the smaller array while the flow fields

are recorded from the larger array. Specifications are

summarized in Table 1.

Stimuli were visual and directly projected onto the

sensor via an optical lens system. They were either

generated electronically and displayed on a computer

screen, or were physically moving objects (e.g. for high

temporal frequencies). Using a dark-room test environ-

ment including an optical bench permitted the precise

control over all relevant parameters. On-chip irradiance

during all experiments was within one order of magni-

tude with a minimal value of 9 mW/m2 for low contrast

computer screen displays. At such low values, the rise

time of the photoreceptor circuit is in the order of a few
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Table 1. Sensor specifications.

Chip:

Technology AMS 0.8 µm BiCMOS, 2M, 2P

Threshold voltage 20/20 0.8 (−0.84) V

Supply voltage 5 V

Die size(s) 2.55 × 2.55 mm2/4.72 × 4.5 mm2

Array size(s) (motion units) 10 × 10/30 × 30

Pixel:

Size 124 × 124 µm2

Active elements 119

Power dissipation 52 µW

Outputs (scanned) optical flow, photoreceptor

milliseconds [45]. This is sufficiently fast with respect

to the applied stimulus speeds in those particular mea-

surements. Unless indicated differently, all circuits were

biased in the sub-threshold regime. The shown optical

flow signals are always referenced to the virtual ground

potential V0, which was typically set around 2 V.

Fig. 9. Speed tuning of the optical flow sensor. (a) Speed tuning of the optical flow sensor for sinewave and squarewave gratings (spatial frequency

0.08 cycles/pixel, contrast 0.8). (b) Speed tuning for the sinewave grating for different values of the multiplier bias voltage (BiasVVI2 = [0.5, 0.53,

0.56, 0.59, 0.62 V]). Values in inlets indicate the slopes of the linear fits. (c) Output in the low gain limit (BiasVVI2 = 0.67 V). (d) Same as (b) but

squarewave gratings.

6.1. Response Characteristics

Moving sinewave and squarewave gratings were ap-

plied to characterize the motion response for vary-

ing speeds, contrasts and spatial frequencies. Orienta-

tion tuning and the ability to find the intersection-of-

constraints solution were also tested. The presented data

in this section constitute the global motion signal, thus

the unique, collectively computed solution provided by

all units of the array. Unless indicated differently, each

data point represents the mean value of 20 measure-

ments, each being the average output over one cycle

of a grating. Standard deviations are only shown where

they exceed the size of the data points.

6.1.1. Speed Tuning Figure 9(a) shows the speed-

tuning of the optical flow sensor for sinewave and

squarewave gratings of equal contrast and fundamental
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Fig. 10. Contrast dependence of the motion output. (a) The motion output was measured as a function of stimulus contrast for sinewave and

squarewave gratings. (b) Increasing the bias voltage BiasOP = [0.15, 0.23, 0.26, 0.29, 0.32, 0.35, 0.45 V] leads to an increased contrast dependence

of the motion output, here measured for sinewave grating stimuli.

spatial frequency. Negative speed values indicate mo-

tion in the opposite direction. The tuning is almost iden-

tical for both type of gratings. It clearly exhibits the

qualitatively predicted behavior due to the saturation

of the multipliers in the feedback loop (compare with

Fig. 6). The tuning is linear in a range of approximately

±0.5 V as indicated by the dash-dotted lines. Beyond

the linear range, the output quickly increases/decreases

and finally hits the voltage rails on either side. Due to

the above-threshold operation of the wide linear-range

multiplier core, the tuning reveals a more pronounced

linear-range and a sharper transition to the super-linear

behavior than predicted by the simplified qualitative

analysis (12).

Figures 9(b) and (d) illustrate how the bias current

of the wide linear-range multiplier affects the sensi-

tivity of the optical flow sensor. Increasing the volt-

age BiasVVI2 leads to a smaller response gain and thus

maps the linear output-range to a larger maximal speed

range. The solid lines represent the linear fits to the

individual measurements. The slope of the fits approx-

imately scales by a factor of one half for a fixed in-

crease in bias voltage BiasVVI2 of 30 mV (see mea-

sured gain values in inlets), and thus is inversely pro-

portional to the bias current. Comparing the measured

responses for sinewave (Fig. 9(b)) and squarewave grat-

ings (Fig. 9(d)) does not reveal any significant dif-

ferences. Setting BiasVVI2 high (0.67 volts) permits to

measure speeds up to 5000 pixels/sec (Fig. 9(c)).

However, the response becomes slightly asymmetric

because the output conductances increase with increas-

ing current densities in the feedback loop, and inter-

fere with the explicit bias conductances of the circuit

(10).

6.1.2. Contrast Dependence The output of the optical

flow sensor depends continuously on stimulus contrast,

measured as (E1 − E2)/(E1 + E2) where E1 represents

the brightest and E2 the darkest intensity level of the

gratings. Figure 10(a) shows the contrast dependence of

sinewave and squarewave gratings with identical spatial

frequency (0.08 cycles/pixel) and constant speed (30

pixels/s).

Below a contrast value of about 0.3, the output signal

continuously decreases towards the reference motion

Vref with decreasing contrast. The squarewave stimulus

shows a slightly sustained resistance against this drop-

off. A least-squares fit according to 7 was applied to the

response to the sinewave grating. Although it well de-

scribes the overall response, the measured output curves

rise faster and exhibit a more extended plateau towards

lower contrast. This improved output behavior origi-

nates from the non-linear implementation of the bias

conductance. The effective conductance decreases with

increasing motion output signal while 7 assumes a con-

stant σ that leads to a stronger bias at high contrast.

Figure 10(b) shows the influence of the bias strength

on the contrast tuning using the same sinewave grat-

ing stimuli as before. Increased values of the voltage

BiasOP lead to a contrast dependent output over the com-

plete contrast range. For high values of BiasOP the bias

conductance dominates the denominator in 7 and the

motion estimate becomes quadratically dependent on

contrast. It reduces to the multiplication of the spatial

and temporal brightness gradients, hence v ≈ Ex Et . In

fact, such simple spatiotemporal gradient multiplica-

tion does not need the costly feedback architecture and

can be implemented in a compact feed-forward way

[10, 11]. However, the expected quadratic dependence

can be observed only for very low contrasts because

the pFET Gilbert multipliers computing the product of

the spatial and temporal gradient quickly saturate for

higher contrast levels.

6.1.3. Spatial Frequency Tuning The third stimulus

parameter tested was spatial frequency. Figure 11(a)
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Fig. 11. Spatial frequency tuning (a) The spatial frequency response was measured for sinewave and squarewave gratings moving with constant

speed. Spatial frequency k is given in units of the Nyquist frequency [π/d]. For frequencies k < 1, the response closely follows the expected

response (8). The non-linear bias conductance extends the range for accurate estimation at low spatial frequencies (gray area). (b) Increasing the

bias voltage BiasOP = [0.1, 0.15, 0.2, 0.25, 0.30, 0.35, 0.40 V] reduces the overall response amplitude and shifts the peak towards k = 0.5.

Fig. 12. Solving the aperture problem. (a) The optical flow sensor exhibits the expected cosine and sinewave tuning curves for the components

U and V . The sinusoidal plaid stimulus (spatial frequency 0.8 cycles/pixel, contrast 0.8) was moving at a velocity of 30 pixels/s. (b) The output

is also shown for a triangular object moving only in orthogonal directions. The optical flow sensor approximately solves the aperture problem.

Data points along each trajectory correspond to particular bias voltages BiasOP = [0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48,

0.51, 0.75 V].

shows the motion output to sinewave and squarewave

gratings (0.8 contrast, 30 pixels/s) as a function of spa-

tial frequency. The waveform difference has only a min-

imal effect on the tuning curve. A least-squares fit ac-

cording to (7) was performed to the response to the

sinewave grating for frequencies k < 0.75. For spatial

frequencies k < 0.06, the spatial brightness gradients

on the chip surface become very small and thus the

bias constraint dominates. Again, the non-ohmic im-

plementation significantly improves the response. The

range for correct motion estimation is extended down

to frequencies as low as k = 0.06. The shaded area

indicates the improvement compared to the fit, which

assumes an ohmic conductance. As spatial frequencies

exceed the Nyquist frequency (k > 1), the responses

rapidly drop below zero and remain small negative. Be-

cause the test-setup did not allow to project high spatial

frequency stimuli with sufficiently high contrast, the

response beyond the Nyquist frequency could not be

properly measured.

As shown in Figure 11(b), the strength of the bias

voltage BiasOP affects the amplitude of the motion out-

put as well as the spatial frequency for which the motion

response is maximal. Recall that increasing BiasOP de-

creases the motion output the more, the smaller the local

spatial gradient is. Because Ex is largest at k = i + 0.5

where i ∈ Z
+ the spatial frequency for which the mo-

tion output is maximal shifts towards this value with

increasing values of BiasOP (see Fig. 4(a)).

6.1.4. Spatial Integration A key property of the op-

tical flow sensor is its ability to accurately estimate

two-dimensional visual motion. Figure 12(a) shows

the orientation tuning of the optical flow sensor when
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Fig. 13. Flow field offsets. (a) The measured time-averaged optical flow for uniform visual motion (ρ = 0). (b) Histograms for both components

of the optical flow vectors with mean values of Ū = 0.25 V and V̄ = −0.24 V and standard deviations of 0.09 V and 0.04V, respectively.

presented with an orthogonal sinusoidal plaid stimu-

lus. The output fits well the expected sine and cosine

functions.

Also, the optical flow sensor approximately solves

the aperture problem for a single motion source (sin-

gle object moving on a non-structured background).

To demonstrate this, the sensor was biased to compute

global motion. A high contrast stimulus was presented,

consisting of a dark triangle on a light background

moving in either of the four orthogonal directions.

Its particular object shape requires to compute the

intersection-of-constraints solution in order to correctly

estimate object motion. Figure 12(b) shows the applied

stimulus and the global motion estimates of the sensor

for a constant positive or negative object motion in the

two orthogonal directions. Each data point represents

the estimate for a particular value of the bias conduc-

tance. For BiasOP < 0.25 V, the optical flow sensor

almost perfectly reports the true object motion in ei-

ther of the four tested directions although with a small

amplitude asymmetry. The remaining directional devi-

ation of less than 10 degrees is the result of the output

conductance at the feedback nodes. Note, that the vec-

tor average of normal flow would lead to a much larger

deviation in direction (22.5 degrees) for this particu-

lar stimulus. As BiasOP increases, the reported speed

decreases rapidly while the direction of the global mo-

tion estimate shifts more and more toward the vector

average.

6.1.5. Array Offsets To conclude the characterization

of the optical flow sensor, the fabrication induced out-

put variations between the individual units of the opti-

cal flow network were investigated. A diagonally ori-

ented moving sinewave grating was applied such that

both components (u, v) of the normal flow vector were

equally large in amplitude. Each unit of the sensor was

recorded in isolation with the smoothness constraint be-

ing completely disabled (BiasHR = 0 V). The stimulus

speed and the bias settings were chosen such that the

output values were clearly within the linear range of the

optical flow units.

Figure 13(a) shows the resulting time-averaged (20

stimulus cycles) optical flow field. It reveals some off-

sets between the optical flow vectors of the different

units in the array. Units that exhibit the most variations

seem to be located preferably at the array boundaries

where device mismatch is usually pronounced due to

asymmetries in the layouts. Because motion is com-

puted component-wise, deviations due to mismatch are

causing errors in speed as well as orientation of the op-

tical flow estimate. Figure 13(b) shows the histogram

of the output voltages of all motion units. Very similar

results were found for other chips of the same fabrica-

tion batch. The outputs consistently approximate nor-

mal distributions as long as the motion signals are within

the linear range of the circuit, which is in agreement

with randomly induced mismatch due to the fabrication

process. Offset values were measured for completely

isolated motion units. Already weak coupling among

the units noticeably increases the homogeneity of the

individual responses.

6.2. Flow Field Estimation

On-chip scanning circuitry allows to simultaneously

read-out the optical flow estimate (voltages U+, V+) as

well as the photoreceptor voltage at each pixel. Scan-

ning was performed at 67 frames/s (100kHz clock fre-

quency) but can be as high as 1000 frames/s before the

cut-off frequency of the follower based scanning cir-

cuitry starts to significantly impair the signals. In both

examples BiasOP was 0.35 V.

Figure 14 demonstrates how different bias values of

the HRes circuits can control smoothness of the op-

tical flow estimate. The same “triangle” stimulus as in

Fig. 12(b) was presented, moving from right to left with

constant speed. Optical flow was recorded for three
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Fig. 14. Varying the smoothness of the optical flow estimate. (a) The photoreceptor signal represented as gray-value image. (b-d) Sampled optical

flow estimates for increasing weights of the smoothness constraint (BiasH R = [0.25, 0.38 and 0.8 V]).

different smoothness strengths and snap-shots repre-

senting the momentary optical flow estimate are shown

when the object approximately passed the center of

the visual field. Figure 14(a) represents the photore-

ceptor output voltages while (b–d) display the optical

flow fields defined by the voltage distributions Ui j and

Vi j (relative to V0) for increasing values of BiasHR. For

low values, spatial interaction amongst motion units

was limited and the result is a noisy normal flow es-

timate. As the voltage is increased, the optical flow es-

timate becomes smoother and finally represents an al-

most global estimate that well approximates the correct

two-dimensional object motion.

The last example illustrates how the sensor be-

haves for “natural” stimuli under real-world conditions.

Figure 15 shows a sampled sequence of the optical flow

sensor’s output while observing two tape rolls passing

each other on an office table from opposite directions.

Again, each frame (a–i) is a snap-shot in chronological

order (every forth frame is shown) that represents the

instantaneous outputs of the sensor. The photoreceptor

output is encoded as gray-scale image and overlaid with

the estimated optical flow field.

The optical flow estimate matches well the quali-

tative expectations according to the previous analysis.

Rotation of the rolls could not be perceived because of

the missing spatial brightness structures on their sur-

faces. The flow fields are mildly smooth leading to

perceived motion also e.g. in the center-hole of each

roll. The chosen value for the smoothness conductance

(BiasHR = 0.41 V) permits the sensor to estimate the

perceptually correct object motion in the middle of the

tape rolls, whereas at the outer borders of the rolls, the

smoothness kernel is not large enough to cover areas

with spatial brightness gradients sufficiently distinct

orientation. The aperture problem holds and the esti-

mated optical flow field tends toward a normal flow

estimate.

The “tape rolls” sequence (and to some degree also

the “triangle” sequence) demonstrates another interest-

ing behavior of the sensor. The optical flow field seems

partially sustained and trailing the trajectory of the rolls

(see e.g. the optical flow field on the left-hand side

in Fig. 15(c)), indicating a long decay time-constant

of the optical flow signal. The time-constant is deter-

mined by the capacitance and the total conductance at

the capacitive nodes of each motion unit. The total con-

ductance, however, is not constant and is given mainly

by the transconductance of the feedback loop and the

bias conductance5. It follows from the network dynam-

ics (3) that the transconductance in each feedback loop

is approximately proportional to the square of the spa-

tial brightness gradient. Because the background and

the table in the tape rolls sequence are unstructured the

transconductance is dropping low once the high con-

trast boundary of the tape rolls has passed. Thus, the
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Fig. 15. Output sequence of the optical flow sensor for a real-world scene. The scene–two tape rolls rolling over a flat surface from opposite

directions–was observed by the optical flow sensor. The individual frames show the output of the sensor sampled at 67 Hz (every forth frame is

shown). The frames are in chronological order (a-i) where the gray-scale images represent the photoreceptor signals. The instantaneous estimate

of the optical flow field is superimposed.

time-constant becomes long because it is now solely

determined by the bias conductance σ—which is typ-

ically small. This leads to the slow decay of the esti-

mated optical flow fields. Consequently, a fast decay

should result in situations where strong spatial bright-

ness gradients are present right after the moving ob-

ject has passed. This can be observed in Figure 15(f)

where after occlusion, the high-contrast back edge

of the second roll immediately induced new motion

information.6 In subsequent frames (Figs. 15(g)–(i)) the

trailing flow field is building up again.

7. Discussion

The presented optical flow sensor is a successful ex-

ample of a collective and distributed visual processing

system implemented in aVLSI. The sensor’s nearest-

neighbor connected network architecture applies an er-

ror correction strategy. Each optical flow unit in the net-

work acts in a feedback loop, comparing its own local

visual information with the result of a collective esti-

mate of the optical flow field and subsequentially cor-

rects the estimate to match the local observation. The

optical flow sensor is one of the very few aVLSI im-

plementations that follows such strategy. It proves that

there is no conceptual reason why such an approach

cannot be successfully implemented in aVLSI circuits

known for their inherent susceptibility to device mis-

match and noise. Mathematically, the sensor solves a

constraint satisfaction (optimization) problem. It finds

the optical flow estimate that optimally matches the vi-

sual information with respect to the implicit optical flow

model defined by different constraints on the visual in-

formation and the desired estimate. Such optimization
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problems can be computationally very expensive to im-

plement on sequentially computing, digital hardware.

The optical flow sensor embeds a motion model

that exceeds the complexity of models applied in other

aVLSI motion sensors. Spatial integration of visual in-

formation provides a robust and perceptually more cor-

rect optical flow estimate. Also, the bias constraint guar-

antees that the optimization problem is well-posed and

that the sensors response degrades gracefully at very

low stimulus contrasts. Interestingly, many illusions in

visual motion perception of humans can be qualitatively

well explained by a bias constraint [32, 43]. Such simi-

larities should not be over-emphasized; the optical flow

sensor is at most a functional model of human visual

motion processing. Nevertheless, they indicate that the

model seems a valuable choice for real-world visual

conditions. The non-linear aVLSI implementation of

the network conductances has a positive effect on the

optical flow model. The optical flow estimate becomes

less biased for high contrast stimuli without reducing

robustness (see Fig. 11(a)) compared with a linear bias

conductance (thus a quadratic constraint formulation).

And the non-linear smoothness conductance reduces

smoothing across motion discontinuities.

The logarithmic photoreceptor circuit substantially

participates in the robust behavior of the sensor. Be-

cause of the logarithmic compression, the spatial gradi-

ents of the image brightness basically encode the lo-

cal contrast in the image. In principal, this property

makes the behavior of the optical flow sensor indepen-

dent of the absolute illumination in the observed visual

scene.

Another feature of the model is its adaptive dynami-

cal behavior. The non-zero time-constant of the optical

flow sensor leads to the integration of visual motion in-

formation over time. Since the time-constant depends

on the amplitude of the spatial brightness gradients and

thus on the confidence in the visual information present,

the actual temporal integration window becomes large

for weak and short for reliable visual input (see Fig. 15).

At any time the model assumes the optical flow to

change smoothly over time with an integration window

adapted to the confidence and thus the signal/noise ratio

of the visual input.

A few examples already demonstrate the potential of

the sensor for smart visual interfaces [46] or robotics

applications [47], in particular when tuned to provide

a global optical flow estimate. The low dimensional

signal of a global optical flow estimate eliminates the

need for high transmission bandwidth and complex

interfaces to further processing stages, allowing the

construction of simple yet powerful systems. Other

applications for surveillance and navigation tasks are

imaginable.

The network architecture can be further evolved by

including mechanisms that locally control the con-

ductances σi j (t) and ρi j (t). This can permit a richer,

more object related computational behavior of the sys-

tem [27]. We have already shown approaches where

the local smoothness conductances are dynamically

adapted to limit spatial integration to the extents of indi-

vidual motion sources [28]. Also the local control of the

bias conductance σi j (t) permits interesting attentionally

guided visual motion processing [29]. Motion units not

belonging to the attentional focus can be suppressed

by increasing σi j , thus literally shunting the units. We

know that such attentional inhibition is involved in the

processing of visual motion in primate’s visual motion

system [48], for example. Although in detail not bio-

logical plausible, such extended aVLSI systems of the

optical flow sensor would give us the possibility to study

in a more systematic way the bottom-up and top-down

interplay in a real-time perceptional system.
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Notes

1. This is for the ideal and noise-free case. In reality, the local con-

straints will impose an optimization problem of finding the solution

that best fits the local constraints.

2. The discrete gradients are defined as e.g. (�ui j )
2 = (

ui j −ui+1, j

h
)2+

(
ui, j −ui, j+1

h
)2, where h is the grid constant.

3. The difference in log-space turns into a ratio in linear space.

4. Shockley equation: Idiode = I0(exp( 1
n

Vd
q

kT
) − 1).

5. Neglecting the smoothness conductance.

6. Note, that a static background provides motion information (zero

motion) as long as it has spatial structure.

7. University and ETH Zürich, Winterthurerstrasse 190, CH-8057

Zürich, Switzerland
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