
Analog Logic: Continuous-Time Analog Circuits

for Statistical Signal Processing

by

Benjamin Vigoda

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c© Massachusetts Institute of Technology 2003. All rights reserved.

Author .
Program in Media Arts and Sciences,
School of Architecture and Planning

August 15, 2003

Certified by. .
Neil Gershenfeld

Associate Professor
Thesis Supervisor

Accepted by .
Andrew B. Lippman

Chair, Department Committee on Graduate Students

2

Analog Logic: Continuous-Time Analog Circuits for

Statistical Signal Processing

by

Benjamin Vigoda

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 15, 2003, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

This thesis proposes an alternate paradigm for designing computers using continuous-
time analog circuits. Digital computation sacrifices continuous degrees of freedom.
A principled approach to recovering them is to view analog circuits as propagat-
ing probabilities in a message passing algorithm. Within this framework, analog
continuous-time circuits can perform robust, programmable, high-speed, low-power,
cost-effective, statistical signal processing. This methodology will have broad appli-
cation to systems which can benefit from low-power, high-speed signal processing and
offers the possibility of adaptable/programmable high-speed circuitry at frequencies
where digital circuitry would be cost and power prohibitive.

Many problems must be solved before the new design methodology can be shown
to be useful in practice: Continuous-time signal processing is not well understood.
Analog computational circuits known as “soft-gates” have been previously proposed,
but a complementary set of analog memory circuits is still lacking. Analog circuits
are usually tunable, rarely reconfigurable, but never programmable.

The thesis develops an understanding of the convergence and synchronization of
statistical signal processing algorithms in continuous time, and explores the use of
linear and nonlinear circuits for analog memory. An exemplary embodiment called
the Noise Lock Loop (NLL) using these design primitives is demonstrated to perform
direct-sequence spread-spectrum acquisition and tracking functionality and promises
order-of-magnitude wins over digital implementations. A building block for the con-
struction of programmable analog gate arrays, the “soft-multiplexer” is also pro-
posed.

Thesis Supervisor: Neil Gershenfeld
Title: Associate Professor

3

4

Hans-Andrea Loeliger Thesis Reader

Professor of Signal Processing

Signal Processing Laboratory of ETH

Zurich, Switzerland

5

6

Anantha Chandrakasan Thesis Reader

Professor

Department of Electrical Engineering and Computer Science, MIT

Jonathan Yedidia Thesis Reader

Research Scientist

Mitsubishi Electronics Research Laboratory

Cambridge, MA

7

8

Acknowledgments

Thank you to the Media Lab for having provided the most interesting context possible

in which to conduct research. Thank you to Neil Gershenfeld for providing me with

the direction opportunity to study what computation means when it is analog and

continuous-time; a problem which has intrigued me since I was 13 years old. Thank

you to my committee, Anantha Chandrakasan, Hans-Andrea Loeliger, and Jonathan

Yedidia for their invaluable support and guidance in finishing the dissertation. Thank

you to professor Loeliger’s group at ETH in Zurich, Switzerland for many of the ideas

which provide prior art for this thesis, for your support, and especially for your shared

love for questions of time and synchronization. Thank you to the Physics and Media

Group for teaching me how to make things and to our fearless administrators Susan

Bottari and Mike Houlihan for their work which was crucial to the completion of

the physical implementations described herein. Thank you to Bernd Schoner for

being a role model and to Matthias Frey, Justin Dauwels, and Yael Maguire for your

collaboration and suggestions.

Thank you to Saul Griffith, Jon Feldman, and Yael Maguire for your true friend-

ship and camaraderie in the deep deep trenches of graduate school. Thank you to Bret

Bjurstrom, Dan Paluska, Chuck Kemp, Nancy Loedy, Shawn Hershey, Dan Overholt,

John Rice, Rob McCuen and the Flying Karamazov Brothers, Howard, Kristina,

Mark, Paul and Rod for putting on the show. Thank you to my parents for all of the

usual reasons and then some.

Much of the financial resources for this thesis were provided through the Center

for Bits and Atoms NSF research grant number NSF CCR-0122419.

9

10

Contents

1 Introduction 25

1.1 A New Way to Build Computers . 25

1.1.1 Digital Scaling Limits . 25

1.1.2 Analog Scaling Limits . 26

1.2 Statistical Inference and Signal Processing 27

1.3 Application: Wireless Transceivers 29

1.4 Road-map: Statistical Signal Processing by Simple Physical Systems . 31

1.5 Analog Continuous-Time Distributed Computing 32

1.5.1 Analog VLSI Circuits for Statistical Inference 33

1.5.2 Analog, Un-clocked, Distributed Computing 34

1.6 Prior Art . 38

1.6.1 Entrainment for Synchronization 38

1.6.2 Neuromorphic and Translinear Circuits 41

1.6.3 Analog Decoders . 42

1.7 Contributions . 43

2 Probabilistic Message Passing on Graphs 47

2.1 The Uses of Graphical Models . 47

2.1.1 Graphical Models for Representing Probability Distributions . 47

2.1.2 Graphical Models in Different Fields 48

2.1.3 Factor Graphs for Engineering Complex Computational Systems 50

2.1.4 Application to Signal Processing 51

2.2 Review of the Mathematics of Probability 52

11

2.2.1 Expectations . 52

2.2.2 Bayes’ Rule and Conditional Probability Distributions 53

2.2.3 Independence, Correlation . 53

2.2.4 Computing Marginal Probabilities 53

2.3 Factor Graph Tutorial . 55

2.3.1 Soft-Inverter . 56

2.3.2 Factor Graphs Represent a Factorized Probability Distribution 57

2.3.3 Soft-xor . 58

2.3.4 General Soft-gates . 59

2.3.5 Marginalization on a Tree: The Message Passing Metaphor . . 61

2.3.6 Marginalization on Tree: Variable Nodes Multiply Incoming

Messages . 62

2.3.7 Joint Marginals . 63

2.3.8 Graphs with Cycles . 64

2.4 Probabilistic Message Passing on Graphs 66

2.4.1 A Lower Complexity Way to Compute Marginal Probabilities 66

2.4.2 The Sum-Product Algorithm 68

2.5 Other Kinds of Probabilistic Graphical Models 70

2.5.1 Bayesian Networks . 71

2.5.2 Markov Random Fields . 73

2.5.3 Factor Graphs . 74

2.5.4 Forney Factor Graphs (FFG) 74

2.5.5 Circuit Schematic Diagrams 76

2.5.6 Equivalence of Probabilistic Graphical Models 76

2.6 Representations of Messages: Likelihood Ratio and Log-likelihood Ratio 79

2.6.1 Log-Likelihood Formulation of the Soft-Equals 79

2.6.2 Log-Likelihood Formulation of the Soft-xor 79

2.7 Derivation of Belief Propagation from Variational Methods 81

12

3 Examples of Probabilistic Message Passing on Graphs 83

3.1 Kalman Filter . 83

3.2 Soft Hamming Decoder . 86

3.2.1 Encoding . 87

3.2.2 Decoding with Sum Product Algorithm 90

3.3 Optimization of Probabilistic Routing Tables in an Adhoc Peer-to-Peer

Network . 93

4 Synchronization as Probabilistic Message Passing on a Graph 101

4.1 The Ring Oscillator . 101

4.1.1 Trellis Decoding for Ring Oscillator Synchronization 103

4.1.2 Forward-only Message Passing on the Ring Oscillator Trellis . 106

4.2 Synchronization to a Linear Feedback Shift Register (LFSR) 108

4.2.1 LFSRs Generate PN-Sequences 108

4.2.2 Applications of LFSR Synchronization 110

4.3 Maximum Likelihood LFSR Acquisition 113

4.3.1 Trellis for Maximum-Likelihood LFSR Synchronization 113

4.3.2 Converting a the Trellis to a Factor Graph 114

4.3.3 The Sum Product (Forward-Backward) Algorithm on the LFSR

Trellis . 115

4.3.4 The Max Product (Viterbi’s) Algorithm 117

4.4 Low-Complexity LFSR Acquisition 117

4.4.1 The LFSR Shift Graph . 117

4.4.2 “Rolling Up the Shift Graph: The Noise Lock Loop 118

4.4.3 Performance of the Noise Lock Loop (NLL) 119

4.5 Joint Marginals Generalize Between the NLL and the trellis 120

4.6 Scheduling . 126

4.7 Routing . 127

5 Analog VLSI Circuits for Probabilistic Message Passing 131

5.1 Introduction: The Need for Multipliers 131

13

5.2 Multipliers Require Active Elements 133

5.3 Active Elements Integrated in Silicon: Transistors 135

5.3.1 BJTs . 135

5.3.2 JFETs . 136

5.3.3 MOSFETs . 137

5.4 Single-Quadrant Multiplier Circuits 138

5.4.1 Multiply by Summing Logarithms 138

5.4.2 Multiply by Controlling Gain: The Differential Pair 139

5.5 General Theory of Multiplier Circuits 141

5.5.1 Nonlinearity Cancellation . 141

5.5.2 The Translinear Principle . 145

5.5.3 Companding Current-Mirror Inputs 146

5.6 Soft-Gates . 147

5.7 Figures of Merit . 148

5.7.1 Resolution and Power Consumption of Soft-Gates at 1GHz . . 151

6 The Sum Product Algorithm in Continuous-Time 155

6.1 Differential Message Passing . 155

6.1.1 Damping . 157

6.1.2 Von Neuman Stability Analysis of Finite Differences 157

6.1.3 Filtering Probabilities and Likelihoods is Equivalent to Damping160

6.1.4 Filtering Log-Likelihoods . 161

6.2 Analog Memory Circuits for Continuous-Time Implementation 162

6.2.1 Active Low-Pass Filters . 164

6.3 Continuous-Time Dynamical Systems 166

6.3.1 Simple Harmonic Oscillators 166

6.3.2 Ring Oscillator . 168

6.3.3 Continuous-Time LFSR Signal Generator 169

6.4 Continuous-Time Synchronization by Injection Locking as Statistical

Estimation . 174

14

6.4.1 Synchronization of Simple Harmonic Oscillator by Entrainment 174

6.4.2 Noise Lock Loop Tracking by Injection Locking 177

7 Systems 183

7.1 Extending Digital Primitives with Soft-Gates 183

7.1.1 Soft-Multiplexer (soft-MUX) 184

7.1.2 Soft Flip-Flop . 186

7.2 Application to Wireless Transceivers 191

7.2.1 Conventional Wireless Receiver 191

7.2.2 Application to Time-Domain (Pulse-based) Radios 194

8 Biographies 201

8.1 Anantha P. Chandrakasan, MIT EECS, Cambridge, MA 201

8.2 Hans-Andrea Loeliger, ETH, Zurich, Switzerland 202

8.3 Jonathan Yedidia, Mitsubishi Electronics Research Lab, Cambridge, MA202

8.4 Neil Gershenfeld, MIT Media Lab, Cambridge, MA 203

8.5 Biography of Author . 204

15

16

List of Figures

1-1 Analog, distributed and un-clocked design decisions reinforce each other 35

1-2 A design space for computation. The partial sphere at the bottom rep-

resents digital computation and the partial sphere at the top represents

our approach. 39

1-3 Chaotic communications system proposed by Mandal et al. [30] . . . 40

2-1 Gaussian distribution over two variables 48

2-2 Factor graph for computer vision . 49

2-3 Factor graph model for statistical physics 50

2-4 Factor graph for error correction decoding 51

2-5 Visualization of joint distribution over random variables x1, x2, x3 . . 54

2-6 Visualization of marginalization over random variables x2, x3 to find

p(x1 = 1) . 55

2-7 Visualization of marginalization over 2-dimensional gaussian distribution 56

2-8 Factor graph expressing that binary variables x and y are constrained

to be opposite in value . 56

2-9 Factor graph expressing that binary variables x, y, and z are con-

strained to sum to zero mod 2 . 60

2-10 Factor graph containing a variable node more than one incident edge 61

2-11 Factor graph with more than one kind of constraint node 62

2-12 Factor graph with incomplete marginalization leaving a “region” node:

The basis of Generalized Belief Propagation 63

2-13 Factor graph with a frustrated cycle 65

17

2-14 Factor graph with a frustrated cycle and a local evidence node 65

2-15 Simple acyclic graph . 67

2-16 Left to right: factor graph, MRF, Bayesian network 70

2-17 The fictional “Asia” example of a Bayesian network, taken from Lau-

ritzen and Spiegelhalter 1988 . 71

2-18 Message passing with a single equals gate 76

2-19 Converting a factor graph to a pairwise MRF 77

2-20 Converting a a factor graph to a Bayesian network 77

2-21 Converting a MRF to a factor graph 78

2-22 Converting a Bayesian network to a factor graph 78

3-1 System state update . 84

3-2 System state update combined with measurements 84

3-3 Kalman filter update . 85

3-4 A communications system . 86

3-5 Graph representing the codeword constraints 89

3-6 Graph representing the same codeword constraints 89

3-7 Mod 2 sum . 90

3-8 Receiver graph implementing the codeword constraints 91

3-9 Symbol for the soft-xor gate . 91

3-10 Random ad hoc peer-to-peer network. There are four interfaces {1, 2, 3, 4}
on nodes 1 and 4, and three interfaces{1, 2, 3} on nodes 2 and 3. . . 93

3-11 Factor graph derived from ad hoc peer-to-peer network. 97

3-12 Factor graph derived from ad hoc peer-to-peer network. There are four

interfaces {1, 2, 3, 4} on nodes 1 and 4, and three interfaces{1, 2, 3} on

nodes 2 and 3. 98

4-1 Schematic diagram for a ring (relaxation) oscillator 102

4-2 Factor graph for a ring (relaxation) oscillator 102

4-3 Factor graph for trellis for synchronization of a ring oscillator 103

4-4 Trellis section for a ring oscillator . 104

18

4-5 Factor graph for transmit and receive ring oscillators 107

4-6 4-bin, 2-tap LFSR . 108

4-7 State cycle of a 4-bin, 2-tap LFSR . 110

4-8 Mod 2 sum . 111

4-9 DS/CDMA modulation with PN-sequence generated by an LFSR . . 113

4-10 DS/CDMA demodulation with PN-sequence generated by an LFSR . 113

4-11 Trellis section for a 4-bin, 2-tap LFSR 114

4-12 Factor graph for a trellis . 115

4-13 Shift graph for a linear feedback shift register 118

4-14 Forward-only message passing on shift graph for a linear feedback shift

register . 119

4-15 Section of the shift graph for a linear feedback shift register 120

4-16 System to recursively implement section of the shift graph 121

4-17 The Noise Lock Loop (NLL) . 121

4-18 The Noise Lock Loop (NLL) . 122

4-19 2 time-step joint message on the LFSR shift graph 123

4-20 3 time-step joint message on the LFSR shift graph (recovers the trellis) 124

4-21 Block diagram for a binary counter 128

4-22 Shift graph for a binary counter . 129

5-1 Signal consisting of successive analog samples represented by, respec-

tively, NRZ analog levels with smooth transitions, RZ analog levels

with a soliton-like waveform, and RZ antipodal soliton waveforms . . 132

5-2 Resistor divider performs scalar multiplication, Vout = Vin(R1/R1 + R2).133

5-3 Bipolar Transistors . 135

5-4 MOSFET transistors . 137

5-5 Logarithmic Summing Circuit . 138

5-6 Logarithmic Summing Circuit . 139

5-7 Differential pair . 140

5-8 multiplier using a nonlinearity . 142

19

5-9 operational transconductance amplifier (OTA) 142

5-10 OTA with additional bias current i2 143

5-11 Controlling i2 from v2 . 143

5-12 cancelling k2v1 with a third transconductor 144

5-13 fully differential design . 144

5-14 Translinear Loop Circuit . 146

5-15 Current Controlled Current Divider 146

5-16 Gilbert Multiplier Implements Softxor Function 147

5-17 Modified Gilbert Multiplier Implements Softequals Function 148

5-18 2 transistor multiply single-quadrant multiply (component of a soft-gate)152

6-1 A two-tap FIR filter with tap weights a1 and a2 160

6-2 Schematic of sample-and-hold delay line circuit 163

6-3 Sample-and-hold delay line circuit operating on sinusoidal signal . . . 163

6-4 Spice simulations of serial delay line composed of 10 Chebyshev filters 165

6-5 Oscilloscope traces of input to (top) and output from (bottom) a fifth

order Chebychev filter delay line . 166

6-6 Schematic diagram of Chebychev continuous-time delay circuit 166

6-7 Poles of Chebychev delay filter . 167

6-8 Frequency response of Chebychev delay filter 168

6-9 Phase response of Chebychev delay filter 169

6-10 Group delay of Chebychev delay filter 170

6-11 “W” shaped (nonlinear) energy potential with ball trapped in one minima170

6-12 Continuous-time LFSR . 171

6-13 Output of continuous-time LFSR circuit 171

6-14 Continuous-time LFSR circuit with mapper and limiter 172

6-15 Block diagram of noise lock loop (NLL) transmit system 172

6-16 Output of filter 1 and XOR in NLL transmit system 173

6-17 Phase space lag plot of output of filter1 in NLL transmit system . . . 174

6-18 Factor graph for two coupled simple harmonic oscillators 176

20

6-19 Block diagram of noise lock loop (NLL) receiver system 178

6-20 Performance of NLL and comparator to perform continuous-time es-

timation of transmit LFSR in AWGN. The comparator (second line)

makes an error where the NLL (third line) does not. The top line

shows the transmitted bits. The fourth line shows the received bits

with AWGN. The fifth line shows the received bits after processing by

the channel model. The other lines below show aspects of the internal

dynamics of the NLL. 180

6-21 Block diagram of Spice model of noise lock loop (NLL) receiver system 181

7-1 One bit multiplexer . 184

7-2 A modified soft-and gate for the soft-MUX 186

7-3 RS flip flop . 187

7-4 D flip-flop . 187

7-5 Edge-triggered D flip-flop . 188

7-6 Time course of outputs Q and Q with inputs (R,S)= (1,1) and initial

internal states = (.5,.5) . 189

7-7 Time course of outputs Q and Q with inputs (R,S)= (1,0) and initial

internal states = (.5,.5) . 190

7-8 Time course of outputs Q and Q with inputs (R,S)= (0,1) and initial

internal states = (.5,.5) . 191

7-9 Time course of outputs Q and Q with inputs (R,S)= (.5,.5) and initial

internal states = (.5,.5) . 192

7-10 Map of final output Q for all possible inputs (R,S) and initial internal

states = (1,1) . 193

7-11 Map of final output Q for all possible inputs (R,S) and initial internal

states = (0,1) . 193

7-12 Map of final output Q for all possible inputs (R,S) and initial internal

states = (1,0) . 194

21

7-13 Map of final output Q for all possible inputs (R,S) and initial internal

states = (0,0) . 194

7-14 Map of final output Q for all possible inputs (R,S) and initial internal

states = (.5,.5) . 195

7-15 Conventional radio receiver signal chain 195

7-16 Conceptual sketch of CT softgate array in a radio receiver 196

7-17 Time-domain (pulse) radio communications system 197

7-18 Chaotic communications system proposed by Mandal et al. [30] . . . 197

8-1 Benjamin Vigoda . 204

22

“From discord, find harmony.”

-Albert Einstein

“It’s funny funny funny how a bear likes honey,

Buzz buzz buzz I wonder why he does?”

-Winnie the Pooh

23

24

Chapter 1

Introduction

1.1 A New Way to Build Computers

This thesis suggests a new approach to building computers using analog, continuous-

time electronic circuits to make statistical inferences. Unlike the digital computing

paradigm which presently monopolizes the design of useful computers, this new com-

puting methodology does not abstract away from the continuous degrees of freedom

inherent in the physics of integrated circuits. If this new approach is successful, in

the future, we will no longer debate about “analog vs. digital” circuits for computing.

Instead we will always use “continuous-time statistical” circuits for computing.

1.1.1 Digital Scaling Limits

New paradigms for computing are of particular interest today. The continued scaling

of the digital computing paradigm is imperiled by severe physical limits. Global clock

speed is limited by the speed-of-light in the substrate, power consumption is limited

by quantum mechanics which determines that energy consumption scales linearly with

switching frequency E = hf [18], heat dissipation is limited by the surface-area-to-

volume ratio given by life in 3-dimensions, and on-off ratios of switches (transistors)

are limited by the classical (and eventually quantum) statistics of fermions (electrons).

But perhaps the most immediate limit to digital scaling is an engineering limit, not

25

a physical limit. Designers are now attempting to place tens of millions of transistors

on a single substrate. In a digital computer, every single one of these transistors must

work perfectly or the entire chip must be thrown away. Building in redundancy to

avoid catastrophic failure is not a cost-effective option when manufacturing circuits

on a silicon wafer, because although doubling every transistor would make the overall

chip twice as likely to work, it comes at the expense of producing half as many chips

on the wafer: a zero-sum game. Herculean efforts are therefore being expended on

automated design software and process technology able to architect, simulate and

produce so many perfect transistors.

1.1.2 Analog Scaling Limits

In limited application domains, analog circuits offer solutions to some of these prob-

lems. When performing signal processing on a smooth waveform, digital circuits

must, according to the Nyquist sampling theorem, first discretize (sample) the signal

at a frequency twice as high as the highest frequency component that we ever want

to observe in the waveform [37]. Thereafter, all downstream circuits in the digital

signal processor must switch at this rate. By contrast, analog circuits have no clock.

An analog circuit transitions smoothly with the waveform, only expending power on

fast switching when the waveform itself changes quickly. This means that the effec-

tive operating frequency for analog circuit tends to be lower than for a digital circuit

operating on precisely the same waveform. In addition, a digital signal processor rep-

resents a sample as a binary number, requiring a separate voltage and circuit device

for every significant bit while an analog signal processing circuit represents the wave-

form as a single voltage in a single device. For these reasons analog signal processing

circuits tend to use ten to a hundred times less power and several times higher fre-

quency waveforms than their digital equivalents. Analog circuits also typically offer

much greater dynamic range than digital circuits.

Despite these advantages, analog circuits have their own scaling limits. Analog

circuits are generally not fully modular so that redesign of one part often requires

redesign of all the other parts. Analog circuits are not easily scalable because a new

26

process technology changes enough parameters of some parts of the circuit that it

triggers a full redesign. The redesign of an analog circuit for a new process tech-

nology is often obsolete by the time human designers are able to complete it. By

contrast, digital circuits are modular so that redesign for a new process technology

can be as simple as redesigning a few logic gates which can then be used to cre-

ate whatever functionality is desired. Furthermore, analog circuits are sometimes

tunable, rarely reconfigurable and never truly programmable so that a single hard-

ware design is generally limited to a single application. The rare exception such as

“Field-Programmable Analog Arrays”, tend to prove the rule with limited numbers

of components (ten or so), low-frequency operation (10-100kHz), and high power

consumption limiting them to laboratory use.

Perhaps most importantly, analog circuits do not benefit from device scaling the

same way that digital circuits do. Larger devices are often used in analog even when

smaller devices are available in order to obtain better noise performance or linearity.

In fact, one of the most ubiquitous analog circuits, the analog-to-digital converter has

lagged far behind Moore’s Law, doubling in performance only every 8 years [47]. All

of these properties combine to make analog circuitry expensive. The trend over the

last twenty to thirty years has therefore been to minimize analog circuitry in designs

and replace as much of it as possible with digital approaches. Today, extensive analog

circuitry is only found where it is mission critical, in ultra-high-frequency or ultra-

low-power signal processing such as battery-powered wireless transceivers or hearing

aids.

1.2 Statistical Inference and Signal Processing

Statistical inference algorithms involve parsing large quantities of noisy (often analog)

data to extract digital meaning. Statistical inference algorithms are ubiquitous and

of great importance. Most of the neurons in your brain and a growing number of

CPU cycles on desk-tops are spent running statistical inference algorithms to perform

compression, categorization, control, optimization, prediction, planning, and learning.

27

For example, we might want to perform statistical inference to identify proteins

in the human genome. Our data set would then consist of a DNA sequence measured

from a gene sequencer; a character string drawn from an alphabet of 4 symbols

{G,C, T, A} along with (hopefully) confidence information indicating how accurate

each symbol in the string is thought to be:

DNA Sequence: T A T A T G G G C G . . .

Measurement certainty: .9 .9 .9 .9 .1 .9 .9 .9 .9 .9 . . .

The goal of inference is to look for subsequences or groups of subsequences within

this data set which code for a protein. For example we might be looking for a marker

which identifies a gene such as “TATAA”. In that case, we can see from inspection

that it is quite likely that this gene marker is present in the DNA measurements.

An inference algorithm is able do this, because it has a template or model that

encodes expectations about what a protein subsequence looks like [26]. The algorithm

compares its model to the measured data to make a digital decision about which

protein was seen or if a protein was seen. A model is often expressed in terms of a

set of constraints on the data. Statistical inference is therefore actually a constraint

satisfaction problem. Recent work in machine learning and signal processing has led

to the generalization of many of these algorithms into the language of probabilistic

message passing algorithms on factor graphs.

Increasingly, digital signal processors (DSP) are being called upon to run statistical

inference algorithms. In a DSP, an analog-to-digital converter (ADC) first converts

an incoming analog waveform into a time-series of binary numbers by taking discrete

samples of the waveform. Then the processor core of the DSP applies the model to

the sampled data.

But the ADC in effect makes digital decisions about the data, before the processor

core applies the model to analyze the data. In so doing the ADC creates a huge

number of digital bits which must be dealt with, when really we are only interested

in a few digital bits - namely the answer to the inference problem.

The ADC operates at the interface between analog information coming from the

28

world and a digital processor. One might think that it would make more sense to

apply the model before making digital decisions about it. We could envision a smarter

ADC which incorporates into its conversion process a model of the kind of signals it

is likely to see into its conversion process. Such an ADC could potentially produce a

more accurate digital output while consuming less resources. For example, in a radio

receiver, we could model the effects of the transmitter system on the signal such as

compression, coding, and modulation and the effect of the channel on the signal such

as noise, multi-path, multiple access interference (MAI), etc. We might hope that the

performance of the ADC might then scale with the descriptive power (compactness

and generality) of our model.

1.3 Application: Wireless Transceivers

In practice replacing digital computers with an alternative computing paradigm is

a risky proposition. Alternative computing architectures, such as parallel digital

computers have not tended to be commercially viable, because Moore’s Law has

consistently enabled conventional von Neumann architectures to render alternatives

unnecessary. Besides Moore’s Law, digital computing also benefits from mature tools

and expertise for optimizing performance at all levels of the system: process technol-

ogy, fundamental circuits, layout and algorithms. Many engineers are simultaneously

working to improve every aspect of digital technology, while alternative technolo-

gies like analog computing do not have the same kind of industry juggernaut pushing

them forward. Therefore, if we want to show that analog, continuous-time, distributed

computing can be viable in practice, we must think very carefully about problems for

which it is well suited.

There is one application domain which has consistently resisted the allure of digital

scaling. High-speed analog circuits today are used in radios to create, direct, filter,

amplify and synchronize sinusoidal waveforms. Radio transceivers use oscillators to

produce sinusoids, resonant antenna structures to direct them, linear systems to filter

them, linear amplifiers to amplify them, and an oscillator or a phase-lock loop to

29

synchronize them. Analog circuits are so well-suited to these tasks in fact, that it is a

fairly recent development to use digital processors for such jobs, despite the incredible

advantages offered by the scalability and programmability of digital circuits. At lower

frequencies, digital processing of radio signals, called software radio is an important

emerging technology. But state-of-the-art analog circuits will always tend to be five to

ten times faster than the competing digital technology and use ten to a hundred times

less power. For example, at the time of writing, state-of-the-art analog circuits operate

at approximately 10Ghz while state-of-the-art digital operate at approximately 2GHz.

Radio frequency (RF) signals in wireless receivers demand the fastest possible signal

processing. Portable or distributed wireless receivers need to be small, inexpensive,

and operate on an extremely limited power budget. So despite the fast advance of

digital circuits, analog circuits have continued to be of use in radio front-ends.

Despite these continued advantages, analog circuits are quite limited in their com-

putational scope. Analog circuits have a difficult time producing or detecting arbi-

trary waveforms, because they are not programmable. Furthermore, analog circuit

design is limited in the types of computations it can perform compared to digital,

and in particular includes little notion of stochastic processes.

The unfortunate result of this inflexibility in analog circuitry is that radio trans-

mitters and receivers are designed to conform to industry standards. Wireless stan-

dards are costly and time-consuming to establish, and subject to continued obsoles-

cence. Meanwhile the Federal Communications Commission (FCC) is over-whelmed

by the necessity to perform top-down management of a menagerie of competing stan-

dards. It would be an important achievement to create radios that could adapt to

solve their local communications problems enabling bottom-up rather than top-down

management of bandwidth resources. A legal radio in such a scheme would not be one

that broadcasts within some particular frequency range and power level, but instead

would “play well with others”. The enabling technology required for a revolution in

wireless communication is programmable statistical signal processing with the power,

cost and speed performance of state-of-the-art analog circuits.

30

1.4 Road-map: Statistical Signal Processing by Sim-

ple Physical Systems

When oscillators hang from separate beams, they will swing freely. But when oscil-

lators are even slightly coupled, such as by hanging them from the same beam, they

will tend to synchronize their respective phase. The moments when the oscillators

instantaneously stop and reverse direction will come to coincide. This is called en-

trainment and it is an extremely robust physical phenomena which occurs in both

coupled dissipative linear oscillators as well as coupled nonlinear systems.

One kind of statistical inference - statistical signal processing - involves estimating

parameters of a transmitter system when given a noisy version of the transmitted

signal. One can actually think of entraining oscillators as performing this kind of

task. One oscillator is making a decision about the phase of the other oscillator given

a noisy received signal.

Oscillators tend to be stable, efficient building blocks for engineering, because they

derive directly from the underlying physics. To borrow an analogy from computer

science, building an oscillator is like writing “native” code. The outcome tends to

execute very fast and efficiently, because we make direct use of the underlying hard-

ware. We are much better off using a few transistors to make a physical oscillator

than simulating an oscillator in a digital computer language running in an operating

system on a general purpose digital processor. And yet this circuitous approach is

precisely what a software radio does.

All of this might lead us to wonder if there is a way get the efficiency and elegance

of a native implementation combined with the flexibility of a more abstract implemen-

tation. Towards this end, this dissertation will show how to generalize a ring-oscillator

to produce native nonlinear dynamical systems which can be programmed to create,

filter, and synchronize arbitrary analog waveforms and to decode and estimate the

digital information carried by these waveforms. Such systems begin to bridge the gap

between the base-band statistical signal processing implemented in a digital signal

processor and analog RF circuits. Along the way, we learn how to understand the

31

synchronization of oscillators by entrainment as an optimum statistical estimation

algorithm.

The approach I took in developing this thesis was to first try to design oscilla-

tors which can create arbitrary waveforms. Then I tried to get such oscillators to

entrain. Finally I was able to find a principled way to generalize these oscillators to

perform general-purpose statistical signal processing by writing them in the language

of probabilistic message-passing on factor graphs.

1.5 Analog Continuous-Time Distributed Comput-

ing

The digital revolution with which we are all familiar is predicated upon the digital

abstraction, which allows us to think of computing in terms of logical operations on

zeros and ones (or bits) which can be represented in any suitable computing hardware.

The most common representation of bits, of course, is by high and low voltage values

in semiconductor integrated circuits.

The digital abstraction has provided wonderful benefits, but it comes at a cost:

The digital abstraction means discarding all of the state space available in the voltage

values between a low voltage and a high voltage. It also tends to discard geographical

information about where bits are located on a chip. Some bits are actually, physically

stored next to one another while other bits are stored far apart. The von Neumann

architecture requires that any bit is available with any other bit for logical combination

at any time; All bits must be accessible within one operational cycle. This is achieved

by imposing a clock and globally synchronous operation on the digital computer. In

an integrated circuit (a chip), there is a lower bound on the time it takes to access

the most distant bits. This sets the lower bound on how short a clock cycle can be.

If the clock were to switch faster than that, a distant bit might not arrive in time to

be processed before the next clock cycle begins.

But why should we bother? Moore’s Law tells us that if we just wait, transis-

32

tors will get smaller and digital computers will eventually become powerful enough.

But Moore’s Law is not a law at all, and digital circuits are bumping up against

the physical limits of their operation in nearly every parameter of interest: speed,

power consumption, heat dissipation, “clock-ability”,“simulate-ability” [17], and cost

of manufacture [45]. One way to confront these limits is to challenge the digital ab-

straction and try to exploit the additional resources that we throw away when we use

what are inherently analog CT distributed circuits to perform digital computations.

If we make computers analog then we get to store on the order of 8 bits of information

where once we could only store a single bit. If we make computers asynchronous the

speed will no longer depend on worst case delays across the chip [12]. And if we make

use of geographical information by storing states next to the computations that use

them, then the clock can be faster or even non-existent [33]. The asynchronous logic

community has begun to understand these principles. Franklin writes,

“In clocked digital systems, speed and throughput is typically limited

by worst case delays associated with the slowest module in the system.

For asynchronous systems, however, system speed may be governed by

actual executing delays of modules, rather than their calculated worst

case delays, and improving predicted average delays of modules (even

those which are not the slowest) may often improve performance. In

general, more frequently used modules have greater influences on overall

performance [12].”

1.5.1 Analog VLSI Circuits for Statistical Inference

Probabilistic message-passing algorithms on factor graphs tend to be distributed,

asynchronous computations on continuous valued probabilities. They are therefore

well suited to “native” implementation in analog, continuous-time Very-Large-Scale-

Integrated (VLSI) circuitry. As Carver Mead predicted, and Loeliger and Lusten-

berger have further demonstrated, such analog VLSI implementations may promise

more than two orders of magnitude improvement in power consumption and silicon

33

area consumed [29].

The most common objection to analog computing is that digital computing is

much more robust to noise, but in fact all computing is sensitive to noise. Conven-

tional analog computing has not been robust against noise because it never performs

error correction. Digital computing avoids errors by performing ubiquitous local error

correction - every logic gate always thresholds its inputs to 0s and 1s even when it is

not necessary. The approach advocated here offers more “holographic” error correc-

tion; the factor graph implemented by the circuit imposes constraints on the likely

outputs of the circuit. In addition, by representing all analog values differentially

(with two wires) and normalizing these values in each ”soft-gate”, there is a degree

of ubiquitous local error correction as well.

1.5.2 Analog, Un-clocked, Distributed Computing

Philosophically it makes sense that if we are going to recover continuous degrees-of-

freedom in state we should also try to recover continuous degrees-of-freedom in time.

But it also seems that analog CT and distributed computing go hand in hand since

each of these design choices tends to reinforce the others. If we choose not to have

discrete states, we should also discard the requirement that states occur at discrete

times, and independently of geographical proximity.

Analog imply Un-clocked

Clocks tend to interfere with analog circuits. More generally, highly dis-

crete time steps are incompatible with analog state, because sharp state

transitions add glitches and noise to analog circuits.

Analog imply Distributed

Analog states are more delicate than digital states so they should not risk

greater noise corruption by travelling great distances on a chip.

Un-clocked implies Analog

34

Distributed Un-clocked

Analog

Delicate

states Abrupt transitions cause

 glitches in analog

Analog

can self-

synchronize

Analog reduces

interconnect

overhead

Distributed is

robust to global

asynchrony, and

clock is costly

If we have no global clock,

short-range distributed interactions

will provide more stable synchronization

Figure 1-1: Analog, distributed and un-clocked design decisions reinforce each other

Digital logic designs often suffer from race conditions where bits reach a

gate at different times. Race conditions are a significant problem which

can be costly in development time.

By contrast, analog computations tend to be robust to distributed asyn-

chrony, because state changes tend to be gradual rather than abrupt, and

as we shall see, we can design analog circuits that tend to locally self-

synchronize.

Un-clocked implies Distributed

Centralized computing without a clock is fragile. For example, lack of a

good clock is catastrophic in a centralized digital Von Neumann archi-

tecture where bits need to be simultaneously available for computation

but are coming from all over the chip across heterogeneous delays. Asyn-

chronous logic, an attempt to solve this problem without a clock by invent-

ing digital logic circuits which are robust to bits arriving at different times

35

(so far) requires impractical overhead in circuit complexity. Centralized

digital computers therefore need clocks.

We might try to imagine a centralized analog computer without a clock

using emergent synchronization via long-range interactions to synchronize

distant states with the central processor. But one of the most basic results

from control theory tells us that control systems with long delays have

poor stability. So distributed short-range interactions are more likely to

result in stable synchronized computation. To summarize this point: if

there isn’t a global synchronizing clock, then longer delays in the system

will lead to larger variances in timing inaccuracies.

Distributed weakly implies Analog

Distributed computation does not necessarily imply the necessity of ana-

log circuits. Traditional parallel computer architectures, for example, are

collections of many digital processors. Extremely fine grained parallelism,

however, can often create a great deal of topological complexity for the

computer’s interconnect compared to a centralized architecture with a

single shared bus. (A centralized bus is the definition of centralized com-

putation - it simplifies the topology but creates the so called von Neumann

“bottleneck”).

For a given design, Rents rule characterizes the relationship between the

amount of computational elements (e.g. logic blocks) and the number of

wires associated with the design. Rent’s rule is

N = KGp, (1.1)

where N is the number of wires emanating from a region, G is the num-

ber of circuit components (or logic blocks), K is Rent’s constant, and

p is Rent’s exponent. Lower N means less area devoted to wiring. For

message passing algorithms on relatively “flat” graphs with mostly local

36

interconnections, we can expect p ≈ 1. For a given amount of computa-

tional capacity G, the constant K (and therefore N) can be reduced by

perhaps half an order of magnitude by representing between 5 and 8 bits

of information on a single analog line instead of on a wide digital bus.

Distributed weakly implies Un-clocked

Distributed computation does not necessarily imply the necessity of un-

clocked operation. For example, parallel computers based on multiple Von

Neumann processor cores generally have either global clocks or several

local clocks. But a distributed architecture makes clocking less necessary

than in a centralized system and combined with the costliness of clocks,

this would tend to point toward their eventual elimination.

The clock tree in a modern digital processor is very expensive in terms

of power consumption and silicon area. The larger the area over which

the same clock is shared, the more costly and difficult it is to distribute

the clock signal. An extreme illustration of this is that global clocking

is nearing the point of physical impossibility. As Moore’s law progresses,

digital computers are fast approaching the fundamental physical limit on

maximum global clock speeds imposed by the minimum time it takes for

a bit to traverse the entire chip travelling at the speed of light on a silicon

dielectric.

A distributed system, by definition, has a larger number of computa-

tional cores than a centralized system. Fundamentally, each core need

not be synchronized to the others in order to compute, as long as they

can share information when necessary. Communication between two com-

puting cores always requires synchronization. This thesis demonstrates a

very low-complexity system in which multiuser communication is achieved

by the receiver adapting to the rate at which data is sent, rather than by

a shared clock. Given this technology, multiple cores could share common

channels to accomplish point-to-point communication without the aid of

37

a global clock. In essence, processor cores could act like nearby users in a

cell phone network. The systems proposed here make this thinkable.

Let us state clearly that this is not an argument against synchrony in

computing systems, just the opposite. Synchronization seems to increase

information sharing between physical systems. Coherence, the general-

ization of synchrony, may even be a fundamental resource for computing,

although this is a topic for another thesis. The argument here is only that

coherence in the general sense may be achieved by systems in other ways

than imposing an external clock.

Imagine a three dimensional space with axes representing continuous (un-clocked)

vs. discrete (clocked) time, continuous (analog) vs. discrete (digital) state, and dis-

tributed vs. centralized computation. Conventional digital computing inhabits the

corner of the space where computing is digital, discrete-time (DT), and centralized.

Digital computing has been so successful and has so many resources driving its devel-

opment, that it competes extremely effectively against alternative approaches which

are not alternative enough. If we are trying to find a competitive alternative to digital

computing, chances are that we should try to explore parts of the space which are

as far as possible from the digital approach. So in retrospect, perhaps it should not

come as a surprise that we should make several simultaneous leaps of faith in order to

produce a compelling challenge to the prevailing digital paradigm. This thesis there-

fore moves away from several aspects of digital computing at once, simultaneously

becoming continuous state, continuous-time (CT), and highly distributed.

1.6 Prior Art

1.6.1 Entrainment for Synchronization

There is vast literature on coupled nonlinear dynamic systems - whether periodic or

chaotic. The work presented in this dissertation originally drew inspiration from, but

ultimately departed from, research into coupled chaotic nonlinear dynamic systems

38

analog distributed

u
n
-c

lo
ck

e
d

Digital Logic

Analog Logic

Figure 1-2: A design space for computation. The partial sphere at the bottom repre-
sents digital computation and the partial sphere at the top represents our approach.

for communications. Several canonical papers were authored by Cuomo and Oppen-

heim [7]. This literature generally presents variations on the same theme. There

is a transmitter system of nonlinear first order ordinary differential equations. The

transmitter system can be arbitrarily divided into two subsystems, g and h,

dv

dt
= g(v, w)

dw

dt
= h(v, w).

39

There is a receiver system which consists of one subsystem of the transmitter,

dw′

dt
= h(v, w′)

The transmitter sends one or more of its state variables through a noisy channel

to the receiver. Entrainment of the receiver subsystem h to the transmitter system

will proceed to minimize the difference between the state of the transmitter, w and

the receiver w′ at a rate

d∆w′

dt
= J [h(v, w′)] · ∆w

where J is the Jacobian of the subsystem, h and ∆w = w − w′.

Chaotic

Source

Delay

Data

Delay

Signal Out

Signal In Σ

Accumulator

Correlator

Data

Figure 1-3: Chaotic communications system proposed by Mandal et al. [30]

There is also an extensive literature on the control of chaotic nonlinear dynamical

systems. The basic idea is that when the system is close to a bifurcation point, it is

easy to control it toward one of several divergent state space trajectories. Recently,

there have been a rapidly growing number of chaotic communication schemes based

on exploiting these principles of chaotic synchronization and/or control [9]. Although

40

several researchers have been successful in implementing transmitters based on chaotic

circuits, the receivers in such schemes generally consist of some kind of matched filter.

For example, Mandel et al. proposed a transmitter based on a controlled chaotic

system and a receiver with a correlator as shown in figure 1-3. They called this

scheme modified differential chaos shift keying (M-DCSK) [30].

Chaotic systems have some major disadvantages as engineering primitives for com-

munication systems. They are non-deterministic which makes it hard to control and

detect their signals. Chaotic systems are also not designable in that we do not have

a principled design methodology for producing a chaotic nonlinear dynamic system

which has particular desired properties such as conforming to a given spectral enve-

lope.

1.6.2 Neuromorphic and Translinear Circuits

Carver Mead first coined the term “neuromorphic” to mean implementing biolog-

ically inspired circuits in silicon. There is a long history and broad literature on

neuromorphic circuits including various kinds of artificial neural networks for vision

or speech processing as well as highly accurate silicon versions of biological neurons,

for example, implementing the frog’s leg control circuitry.

In 1975, Barrie Gilbert coined the term “translinear” circuits to mean circuits that

use the inherent nonlinearity available from the full dynamic range of a semiconductor

junction. The most useful and disciplined approaches to neuromorphic circuits have

generally been based on translinear circuits. Applications of translinear circuits have

included hearing aids and artificial cochlea (Sarpeshkar et al.), low level image process-

ing vision chips (Carver Mead et al., Dan Seligson at Intel), Viterbi error correction

decoders in disk drives (IBM, Loeliger et al., Hagenauer et al.), as well as multipliers

[21], oscillators, and filters for RF applications such as a PLL [35]. Translinear cir-

cuits have only recently been proposed for performing statistical inference. Loeliger

and Lustenberger have demonstrated BJT and sub-threshold CMOS translinear cir-

cuits which implement the sum-product algorithm in probabilistic graphical models

for soft error correction decoding [29]. Similar circuits were simultaneously proposed

41

by Hagenauer et al. [19] and are the subject of recent research by Dai [8].

1.6.3 Analog Decoders

When analog circuits settle to an equilibrium state, they minimize an energy or

action, although this is not commonly how the operation of analog circuits has been

understood. One example where this was made explicit is based on Minty’s elegant

solution to the shortest-path problem. The decoding of a trellis code is equivalent

to the shortest-path problem in a directed graph. Minty assumes a net of flexible,

variable length strings which form a scale model of an undirected graph in which we

must find the shortest path. If we hold the source node and the destination node

and pull the nodes apart until the net is tightened, we find the solution along the

tightened path.

“An analog circuit solution to the shortest-path problem in directed graph

models has been found independently by Davis and much later by Loeliger.

It consists of an analog network using series-connected diodes. Accord-

ing to the individual path section lengths, a number of series-connected

diodes are placed. The current will then flow along the path with the least

number of series-connected, forward biased diodes. Note however that the

sum of the diode threshold voltages fundamentally limits practical applica-

tions. Very high supply voltages will be needed for larger diode networks,

which makes this elegant solution useless for VLSI implementations.” [29]

There is a long history and a large literature on analog implementations of error

correction decoders. Lustenberger provides a more complete review of the field in

his doctoral thesis [29]. He writes, “the new computationally demanding iterative

decoding techniques have in part driven the search for alternative implementations

of decoders.” Although there had been much work on analog implementations of

the Viterbi algorithm [43], Wiberg et al. were the first to think about analog im-

plementations of the more general purpose sum-product algorithm. Hagenauer et al.

42

proposed the idea of an analog implementation approach for the maximum a poste-

riori (MAP) decoding algorithm, but apparently did not consider actual transistor

implementations.

1.7 Contributions

Continuous-Time Analog Circuits for Arbitrary Waveform Generation and

Synchronization

This thesis generally applies statistical estimation theory to the entrainment of dy-

namical systems. This research program resulted in

• Continuous-time dynamical systems that can produce designable arbitrary wave-

forms.

• Continuous-time dynamical systems that perform maximum-likelihood synchro-

nization with the arbitrary waveform generator.

• A principled methodology for the design of both from the theory of finite state

machines

Reduced-Complexity Trellis Decoder for Synchronization

By calculating joint messages on the shift graph formed from the state transition

constraints of any finite state machine, we derive a hierarchy of state estimators of

increasing complexity and accuracy.

Since convolutional and turbo codes employ finite state machines, this directly

suggests application to decoding. I show a method for making a straight-forward

trade-off between quality of decoding versus computational complexity.

Low-Complexity Spread Spectrum Acquisition

I derive a probabilistic graphical model for performing maximum-likelihood estima-

tion of the phase of a spreading sequence generated by an LFSR. Performing the

43

sum-product algorithm on this graph performs improved spread spectrum acquisi-

tion in terms of acquisition time and tracking robustness when bench-marked against

conventional direct sequence spread spectrum acquisition techniques. Furthermore,

this system will readily lend itself to implementation with analog circuits offering

improvements in power and cost performance over existing implementations.

Low-Complexity Multiuser Detection

Using CT analog circuits to produce faster, lower power, or less expensive statistical

signal processing would be useful in a wide variety of applications. In this thesis,

I demonstrate analog circuits which perform acquisition and tracking of a spread

spectrum code and lay the groundwork for performing multiuser detection the same

class of circuits.

Theory of Continuous-Time Statistical Estimation

Injection Locking Performs Maximum-Likelihood Synchronization.

New Circuits

• Analog Memory: Circuits for Continuous-Time Analog State Storage.

• Programmability: Circuit for Analog Routing/Multiplexing, soft-MUX

• Design Flow for Implementing Statistical Inference Algorithms with Continuous-

Time Analog Circuits

– Define data structure and constraints in language of factor graphs (MAT-

LAB)

– Compile to circuits

– Layout or Program gate array

44

Probabilistic Message Routing

• Learning Probabilistic Routing Tables in ad hoc Peer-to-Peer Networks Using

the Sum Product Algorithm

• Propose “Routing” as a new method for low complexity approximation of joint

distributions in probabilistic message passing

45

46

Chapter 2

Probabilistic Message Passing on

Graphs

“I basically know of two principles for treating complicated systems in

simple ways; the first is the principle of modularity and the second is the

principle of abstraction. I am an apologist for computational probability

in machine learning, and particularly for graphical models and variational

methods, because I believe that probability theory implements these two

principles in deep and intriguing ways – namely through factorization and

through averaging. Exploiting these two mechanisms as fully as possible

seems to me to be the way forward in machine learning.”

Michael I. Jordan Massachusetts Institute of Technology, 1997.

2.1 The Uses of Graphical Models

2.1.1 Graphical Models for Representing Probability Distri-

butions

When we have a probability distribution over one or two random variables, we often

draw it on axes as in figure 2-1, just as we might plot any function of one or two

variables. When more variables are involved in a probability distribution, we can-

47

�✂✁☎✄✝✆✟✞ ✄✡✠☞☛

✄✌✆

✄✡✠

Figure 2-1: Gaussian distribution over two variables

not easily draw the distribution on paper. If we cannot visually represent the shape

of the entire distribution over many variables, we can at least represent the depen-

dencies between the random variables, ie. which variables depend on which others.

Probabilistic graphical models such as factor graphs do just that.

2.1.2 Graphical Models in Different Fields

The mathematics of probabilistic message passing on graphs is perhaps most often

applied to the problem of extracting information from large data sets. Since many

different research fields deal with large data sets, probabilistic message passing on

graphs has been independently reinvented several times in different research commu-

nities. Many well known algorithms from different research communities are actually

examples of probabilistic message passing on different graph topologies or with differ-

ent kinds of random variables. In the machine inference and learning community the

graphs are called Bayesian networks and probabilistic message passing is known as

belief propagation. In machine vision, researchers deal with pixels and so use graphs

with a lattice structure called Markov Random Fields (MRF). In the signal processing

community, Kalman filters or Hidden Markov Model algorithms can be very helpfully

represented as graphs. When so represented, the Baum-Welch and Forward-Backward

48

Figure 2-2: Factor graph for computer vision

algorithms constitute probabilistic message passing. In the communication and cod-

ing community, the graphs were called a trellis, a Tanner graph, or a factor graph and

the algorithm is known as Viterbi’s algorithm, BCJR, or sum product/max product

respectively. Finally, the spin glass model in statistical physics is a lattice graphical

model which closely resembles an MRF, and the variational methods for solving them

are closely related to message passing.

The ability to understand all of these algorithms within a single mathematical

framework has been very helpful for catalyzing cross-fertilization between these or-

dinarily separate research communities. Previously disparate research communities

have been able to share algorithms and extend them. Furthermore, studying how

probabilistic message passing algorithms perform on different graph topologies has

provided information about the conditions under which message passing works well

and how it may be extended to work better.

But all of these algorithms took years to develop in their respective research

communities. Researchers painstakingly developed and proved algorithms for each

49

Figure 2-3: Factor graph model for statistical physics

particular problem of interest. As we will see, if we know the random variables we

are dealing with and their mutual constraints, then it is a simple matter to draw the

factor graph which represents the constrained joint probability over the variables. We

then derive the messages for every node in the graph. Implementing the inference

algorithm then becomes simply iteratively passing messages on the graph. In other

words, if we know the structure of the problem, we get the algorithm for free. This

is one of the most important contributions of message passing on graphs.

2.1.3 Factor Graphs for Engineering Complex Computational

Systems

Digital design offers us abstraction and modularity. Abstraction means that we don’t

need to know how a component actually works, we can specify everything about

it by its inputs and outputs. The related principle of modularity means that the

system can be decomposed into subsystems which can be abstracted. These modules

can be combined without affecting one another except via their inputs and outputs.

50

�✂✁ �☎✄�✝✆�✟✞ �☎✠ �☎✡

☛ ✁ ☛ ✄☛ ✆☛☞✞ ☛ ✠ ☛ ✡

Figure 2-4: Factor graph for error correction decoding

Modularity and abstraction enable engineers to design robust complex systems.

As the quote by Michael Jordan at the beginning of the chapter indicates, and

as we will begin to see in this chapter, factor graphs also offer these properties. In

fact factor graphs can represent, not only statistical inference algorithms, but any

constraint satisfaction problem. Factor graphs are therefore promising as a new way

of representing rather general purpose, complex computing architectures.

2.1.4 Application to Signal Processing

Statistical signal processing algorithms involve parsing large quantities of noisy analog

data to extract digital meaning. In this thesis, the data sets from which we wish to

extract information are analog electrical signals, the kinds of signals for example,

that a cell phone receives with its antenna. Signal processing often involves making

educated guesses from data; a signal processor sees an incoming signal and makes

a guess about what the signal is saying. A signal processor that performs speech

recognition, for example, receives an audio signal from a person speaking into a

microphone and decides what words have been spoken. The decision is an educated

guess, because the signal processor is programmed in advance with an internal model

of speech. A speech model might contain information about how particular words

51

sound when they are spoken by different people and what kinds of sentences are

allowed in the English language [38]. For example, a model could encapsulate the

information that you are more likely to see the words, “signal processing” in this

document than you are to see the words “Wolfgang Amadeus Mozart.” Except of

course, for the surprising occurrence of the words “Wolfgang Amadeus Mozart” in

the last sentence.

This kind of information, the relative likelihood of occurrence of particular pat-

terns is expressed by the mathematics of probability theory. Probabilistic graphical

models provide a general framework for expressing the web of probabilities of a large

number of possible inter-related patterns that may occur in the data. Before we de-

scribe probabilistic graphical models, we will review some essentials of probabilities.

2.2 Review of the Mathematics of Probability

2.2.1 Expectations

The probability that a random value x falls between a and b is

∫ b

a
p(x)dx. (2.1)

An expectation is defined as

〈f(x)〉 ≡
∫

f(x)p(x)dx. (2.2)

The most trivial example of an expectation is the normalization condition where

f(x) = 1,

〈1〉 =
∫

p(x)dx = 1. (2.3)

Perhaps the most common expectation is the mean or first moment of a distribution,

µ = 〈x〉 =
∫

xp(x)dx = 1. (2.4)

52

2.2.2 Bayes’ Rule and Conditional Probability Distributions

Bayes’ Rule,

p(x|y) =
p(x, y)

p(y)
(2.5)

expresses the probability that event x occurs, given that we know that event y oc-

curred, in terms of the joint probability that both events occurred. The rule can be

extended to more than two variables. For example,

p(x, y, z) = p(x|y, z)p(y, z)

= p(x|y, z)p(y|z)p(z)

= p(x, y|z)p(z). (2.6)

2.2.3 Independence, Correlation

If x and y are independent then, p(x, y) = p(x)p(y) and therefore p(x|y) = p(x), since

by Bayes’ rule, p(x|y) = p(x, y)/p(y) = p(x)p(y)/p(y) = p(x).

For uncorrelated variables, 〈xy〉 = 〈x〉〈y〉. Independent variables are always un-

correlated, but uncorrelated variables are not always independent. This is because

independence says there is NO underlying relationship between two variables and so

they must appear uncorrelated. By contrast, two variables which appear uncorrelated

may still have some underlying causal connection.

2.2.4 Computing Marginal Probabilities

We often want to compute the probability that a particular event will occur, given

the occurrence of many other related events. The goal of a radio receiver for example,

is to find the probability that a given symbol was transmitted, given the noisy values

that were received via the channel. In a probabilistic graphical model, answering

this question means we are asking for the distribution of probability over the possible

states of a particular variable (node), given probability distributions for each of the

other nodes. This is called finding the marginal probability distribution for a par-

53

ticular variable. Marginalization and related computations pop up as sub-routines in

many statistical computations, and are important in many applications.

Let p(x) be a joint distribution over variables x = {x1, x2, . . . xn}. Let xS denote

a subset of these variables. Then the marginal distribution for the variable nodes in

xS is given by

pxS
(xS) =

∑

x\xS

p(x), (2.7)

where x \ xS is the sum over the states of all of the variable nodes not in xS.

�✂✁

�☎✄

�✝✆

✞✠✟ �✂✁☛✡✌☞✎✍✏� ✄ ✡✒✑✓✍✏�✝✆✔✡✖✕✓✗

Figure 2-5: Visualization of joint distribution over random variables x1, x2, x3

If p(x) is a joint distribution over variables x1, x2 . . . xn, then the computational

complexity of this sum is exponential in the number of variables not in S. This is

perhaps easiest to see by an illustration. Figure 2-5 represents a joint distribution

over discrete random variables {x1, x2, x3}. Each axis of the volume in the figure is

labelled by a variable and divided into spaces for each possible state of that variable.

x1 has possible states {1, 2}, x2 has possible states {1, 2, 3}, and x3 has possible

states {1, 2, 3, 4}. The joint distribution over all three variables {x1, x2, x3} contains

a probability for every entry in this volume with the total probability in all entries

summing to 1. In the figure, x1 has two possible states, so finding the marginal

distribution p(x1) requires finding p(x1 = 1) and p(x1 = 2). As shown in figure

2-6, each of these requires summing over x2 and x3 by summing over all 12 entries

contained in a 3 × 4 horizontal plane.

54

�✂✁

�☎✄

�✝✆

✞✠✟ �✂✁☛✡✌☞✎✍

Figure 2-6: Visualization of marginalization over random variables x2, x3 to find
p(x1 = 1)

Observe the exponential growth of the problem; For every additional variable

not in S, the plane we must sum over gains a dimension and the number of entries

we must sum over is multiplied by the number of states of the new variable. If we

added another variable x4 with 5 states for example, calculating p(x1 = 1) would

require summing over all 60 entries in a 3× 4× 5 hyper-plane. Of course we can also

marginalize over distributions of continuous variables, with sums becoming integrals.

Figure 2-7 illustrates marginalization of a 2-dimensional gaussian distribution onto

each dimension x1

p(x1) =
∫

eCT ~xC/σ2

dx2, (2.8)

and x2,

p(x2) =
∫

eCT ~xC/σ2

dx1. (2.9)

Figure 2-7 also illustrates how marginalization is in essence a projection of a

probability distribution into a smaller number of dimensions.

2.3 Factor Graph Tutorial

Let us get our feet wet by looking at some simple examples of factor graphs.

55

�✂✁☎✄✝✆✟✞ ✄✡✠☞☛

✄✌✆

✄✡✠�✂✁✍✄✌✆✏✎ ✄✡✠✑☛

�✂✁✍✄✡✠✒✎ ✄✝✆✓☛

Figure 2-7: Visualization of marginalization over 2-dimensional gaussian distribution

2.3.1 Soft-Inverter

� ✁

Figure 2-8: Factor graph expressing that binary variables x and y are constrained to
be opposite in value

Let x and y be binary random variables which are constrained to be opposites

y =∼ x. For example, we might flip a coin to generate x, and then generate y by

taking the opposite of x. We could also write this constraint in terms of a mod 2

sum, x ⊕ y = 1. If x and y are opposite, then their probabilities are also opposite,

pX(1) = 1 − pY (1). In other words, if we are pretty certain that x = 1, then we are

equally certain that y = 0. So,

pX(1) = pY (0)

pX(0) = pY (1). (2.10)

56

For example if [pX(0), pX(1)] = [.8, .2], then [pY (0), pY (1)] = [.2, .8]. This relation

between the probability distribution of x and y is called a soft-inverter. The soft

inverter constraint applied over x and y can be represented pictorially by a factor

graph as shown in figure 2-8. The variable nodes for x and y are represented by

circles, while the constraint is represented by a square factor node.

2.3.2 Factor Graphs Represent a Factorized Probability Dis-

tribution

A factor graph should be thought of as imposing constraints on a joint probabil-

ity distribution over the variables represented in the graph. The joint probability

distribution over binary variables x and y above, p(x, y) can be represented by a

four-vector

pX,Y (00)

pX,Y (01)

pX,Y (10)

pX,Y (11). (2.11)

The inverter constraint, however, imposes the condition that states 00 and 11 are

not allowed. The probabilities of those states occurring is therefore zero, pX,Y (00) = 0

and pX,Y (11) = 0. The total probability mass must therefore be spread over the

remaining probabilities pX,Y (01) and pX,Y (10) of the allowed states, 01 and 10.

More generally, a factor graph represents a factorized probability distribution of

the form

p(x1, x2, . . . , xN) =
1

Z

M
∏

a=1

fa(xa). (2.12)

Factor graphs are bipartite, meaning they have two kinds of nodes, variable nodes

and factor nodes. There is always a variable node between any two factor nodes and

57

there is always a factor node between any two variable nodes. In figure 2-16 and

throughout this document, the variable nodes are denoted by circles and the factor

nodes are denoted by black squares. A factor graph has a variable node for each

variable xi, and a factor node for each function fa with an edge connecting variable

node i to factor node a if and only if xi is an argument of fa.

2.3.3 Soft-xor

x y z

0 0 0

0 1 1

1 0 1

1 1 0

(2.13)

There could be other kinds of constraints on variables besides forcing them to be

opposite. For example, we could impose a parity check constraint so that (x ⊕ y ⊕
z)mod2 = 0. The truth table for a parity check constraint is given in table 4.19.

Parity check constraints such as this will be important for error correction codes.

According to the constraint, if x and y are opposite, then z must be a 1. Otherwise,

z must be 0. We can calculate the pZ(1) by summing the probabilities of all the ways

that x and y can be different. Similarly, we can calculate the pZ(0) by summing the

probabilities of all the ways that x and y can be the same. In both calculations it is

necessary to normalize afterwards.

pZ(1) = pX(0)pY (1) + pX(1)pY (0)

pZ(0) = pX(0)pY (0) + pX(1)pY (1) (2.14)

58

So now we know how to calculate pZ(z) when we are given pX(x) and pY (y) and

we know that x, y, z is constrained by (x ⊕ y ⊕ z)mod2 = 0. Let’s try it for some

actual probabilities. If

pX(1) = .8

pX(0) = .2 (2.15)

and

pY (1) = .3

pY (0) = .7 (2.16)

then,

pZ(1) = (.2)(.3) + (.8)(.7) = .62

pZ(0) = (.2)(.7) + (.8)(.3) = .38. (2.17)

Finally we must check to make sure that our final answer is normalized, .62+ .38 = 1.

This kind of factor node is called a soft-xor gate. It is visualized as the factor

graph shown in figure 2-9.

2.3.4 General Soft-gates

We appealed to a particular argument to derive the soft-inverter and soft-xor. But

more generally, one way we can think of soft-gates is as the probabilistic equivalent

of logic gates. For example, the soft-xor is the probability version of the logical XOR

function. Thought of this way, the output from a soft-gate tells us how likely it would

be for a distribution of input strings to satisfy its corresponding logic gate.

In fact, given any logic gate there is a principled way to find the output of the

corresponding soft-gate. The output from a soft-gate over three variables x, y, z is

59

�

✁

✂

Figure 2-9: Factor graph expressing that binary variables x, y, and z are constrained
to sum to zero mod 2

given in general by

pZ(z) = γ
∑

x∈X

∑

y∈Y

pX(x)pY (y)f(x, y, z) (2.18)

where f(x, y, z) is the constraint function within a delta function which we will con-

sider to be zero except when its argument is true. If we substitute the constraint

function for the XOR, f(x, y, z) = δ(x⊕ y⊕ z = 0) into equation (2.18), we find that

pZ(1) =
∑

x,y={0,1}

pX(x)pY (y)δ(x ⊕ y ⊕ 1 = 0)

pZ(0) =
∑

x,y={0,1}

pX(x)pY (y)δ(x ⊕ y ⊕ 0 = 0) (2.19)

To calculate pZ(1), we sum over all possible (binary) values of x and y. The constraint

within a dirac delta serves to include some probability terms and exclude others. So

in calculating pZ(1), the pX(0)pY (1) and pX(1)pY (0) terms are included because

δ(0 ⊕ 1 ⊕ 1 = 0) = 1

δ(1 ⊕ 0 ⊕ 1 = 0) = 1. (2.20)

60

While the pX(0)pY (0) and pX(1)pY (1) terms are zero because

δ(0 ⊕ 0 ⊕ 1 = 0) = 0

δ(1 ⊕ 1 ⊕ 1 = 0) = 0. (2.21)

Similarly, in calculating pZ(0), we use the fact that

f(0, 0, 0) = 1

f(0, 1, 0) = 0

f(1, 0, 0) = 0

f(1, 1, 0) = 1. (2.22)

2.3.5 Marginalization on a Tree: The Message Passing Metaphor

�

✁

✂

✄

Figure 2-10: Factor graph containing a variable node more than one incident edge

So far we have only seen factor graphs containing a single type of factor node.

Figure 2-11 shows a factor graph with both a soft-xor and soft-inverter node along

61

with variable nodes, w, x, y, z. Remember that the factor graph actually represents a

constrained joint probability distribution over all variables in the graph,

pW,X,Y,Z(w, x, y, z) = δ(x ⊕ y ⊕ z = 0)δ(w ⊕ x = 1)pW (w)pX(x)pY (y)pZ(z). (2.23)

Suppose we want to calculate the marginal probability p(z) given p(w), p(y). First

we find p(x) from p(w) by using the equation for the soft-inverter. Then we find p(z)

from p(x) and p(y) using the equations for the soft-xor. It may occur to us that

we can imagine that the nodes are acting as if they are sending messages along the

edges between them. This is the metaphor which leads to the notion of probabilistic

message passing on graphs.

2.3.6 Marginalization on Tree: Variable Nodes Multiply In-

coming Messages

�

✁

✂✄

Figure 2-11: Factor graph with more than one kind of constraint node

We know now how to generate messages from factor nodes, but so far we have

only seen variable nodes with one incident edge. The variable node for z in figure

2-10 has two incident edges. Suppose that we would like to calculate the marginal

probability p(z) given p(w), p(x), p(y) and of course p(w, x, y, z) which is given by

the form of the factor graph.

• Find p(z) message from p(w) using the soft-inverter

62

• Find p(z) message from p(x) and p(y) using the soft-xor

• Multiply p(z) messages together

• Normalize

Factor nodes are responsible for placing constraints on the joint probability distri-

bution. So a variable node with two incident edges can treat the messages it receives

on those edges as if they are statistically independent. If the z node has only two

incident edges from x and y, then the joint probability distribution for z must be in

terms of only x and y, p(z) = p(x, y). Since the messages containing p(x) and p(y)

can be considered independent from the point of view of z, p(z) = p(x, y) = p(x)p(y).

So variable nodes simply multiply probabilities.

We are now in a position to understand the motivation behind equation (2.18).

It essentially allows for any statistical dependence over the variables to which it is

applied. Equation (2.18) can be generalized by allowing fewer or more variables and

even non-binary functions for f(x, y, z).

2.3.7 Joint Marginals

�

✁

✂

Figure 2-12: Factor graph with incomplete marginalization leaving a “region” node:
The basis of Generalized Belief Propagation

We don’t have to marginalize out all of the variables but one in a factor graph. For

63

example given the factor graph in figure 2-12, we could calculate the joint probability

p(x, y) given p(z). By modifying equation (2.18), we can write the proper message

for p(x, y)

pX,Y (x, y) = γ
∑

z∈Z

pZ(z)f(x, y, z). (2.24)

So that,

pX,Y (0, 0) = pZ(0)

pX,Y (0, 1) = pZ(1)

pX,Y (1, 0) = pZ(1)

pX,Y (1, 1) = pZ(0). (2.25)

It is important to note that the probability distribution pX,Y (x, y) requires us to store

four numbers. It contains twice as much data than p(x) or p(y) alone. If we had a

joint probability distribution over three binary variables, for example pX,Y,Z(x, y, z),

it would contain eight numbers. Each additional variable in a joint distribution

increases the size of the data structure exponentially. This is the essential idea in

generalized belief propagation (GBP) [56]. In GBP we form “region” nodes which

represent joint probabilities over more than one variable. We can perform message

passing between these new region nodes just as we would on any factor graph, at the

expense of exponentially increasing the computational complexity of the algorithm.

GBP has a number of uses. In this document we will show a novel way to use GBP

to effectively trade off the quality of statistical estimates in a decoder against the

computational complexity of decoding. GBP can also be used to improve the answers

that we get from message passing on graphs with cycles.

2.3.8 Graphs with Cycles

So far, all of the graphs we have examined have had a tree topology. For graphs that

are trees, probabilistic message passing is guaranteed to give us the correct answers

64

�

Figure 2-13: Factor graph with a frustrated cycle

for the marginal probability or joint marginal probability of any variables in the

graph. Graphs with cycles (“loopy graphs”) are a different story. Message passing

may not converge if the graph contains cycles. For example, the graph in figure 2-

13 has a single cycle. If p(x) is initialized to pX(1) = 1, pX(0) = 0, then message

passing around the loop through the soft-inverter will cause the messages to simply

oscillate (0,1)*. This can be solved by damping. Damping essentially low-pass filters

or smooths the message passing algorithm. If we add damping in the example above,

the inverting loop will settle to pX(1) = .5, pX(0) = .5. We will discuss damping in

greater depth later in this document.

�✁

Figure 2-14: Factor graph with a frustrated cycle and a local evidence node

For some graphs with loops, message passing may never settle to an answer even

with damping. The graph in figure 2-14 shows such a graph. The local evidence node

y (evidence nodes are squares or shaded circles by convention) continues to perturb

the variable x away from equilibrium pX(1) = .5, pX(0) = .5 which continues to cause

oscillations no matter how long we wait.

Even if message passing does settle to an answer on a loopy graph, the answer

may be wrong, but if it does the solution will be a stationary point of the “Bethe free

energy” [22].

65

We can convert a graph with the cycles to a tree with GBP by choosing to form

messages which are joint distributions over more than one variable. GBP allows us

to assure that message passing will converge even on a graph with cycles at the cost

of increasing the computational complexity of calculating some of the messages.

2.4 Probabilistic Message Passing on Graphs

We have seen that probabilistic graphical models can be handy visual aids for repre-

senting the statistical dependencies between a large number of random variables. This

can be very helpful for organizing our understanding of a given statistical problem.

The real power of probabilistic graphical models become obvious, however, when we

begin to use them as data structures for algorithms. As we will see, by understand-

ing the independencies (factorizations) in the probability distributions with which

we are working, we can greatly reduce the computational complexity of statistical

computations.

2.4.1 A Lower Complexity Way to Compute Marginal Prob-

abilities

By factoring the global probability distribution p(x) into the product of many func-

tions as in equation (2.4.1) and distributing the summations into the product as far

as possible, the number of operations required to compute p(x1) can be greatly re-

duced. For example, let us compute the marginal distribution p(x1) for the factorized

distribution represented by the graph in figure 2-15.

We index the factor nodes in our graph with letters a = {A,B, C, . . .} and the

variable nodes with numbers i = {1, 2, 3, . . .}. For convenience, we speak of a factor

node a as if it is synonymous with the function fa which it represents, likewise for

a variable node i which represents a variable xi. A factor node is connected to any

variable node of which it is a function. Those variable nodes will in turn be connected

to other factor nodes. Then the factorization represented by the graph in figure 2-15

66

�

✁ ✂✄☎

✆ ✝

Figure 2-15: Simple acyclic graph

can be written as

p(x) =
1

Z
fA(x1, x2)fB(x2, x3, x4)fC(x4), (2.26)

Computing the marginal for x1 requires summing over all of the other variables

p(x1) =
1

Z

∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)fC(x4) (2.27)

Because of the factorization of p(x) and because the graph has no cycles (loops), we

can actually arrange these summations in a more computationally efficient manner.

By pushing each summation as far as possible to the right in our calculation, we

reduce its dimensionality

p(x1) =
1

Z

∑

x2

fA(x1, x2)
∑

x3

∑

x4

fB(x2, x3, x4)fC(x4). (2.28)

In this example, the terms have simply been ordered in a way that seemed like it

would help. For a small graph without loops this was not difficult. It would be nice,

however, to have a way to accomplish this efficient arrangement of summations for any

arbitrary factor graph. When we try to produce a nice ordering of summations and

probability terms like the one we have constructed in equation (2.4.1), we find that

the summations tend to “push to the right” until they bump up against a particular

factor node containing the variable in the summation. This means that we could

67

imagine each summation happening locally at its particular factor node. The factor

graph itself is providing a hint as to how to organize the computations within a

marginalization. We can compute locally at each factor node and then pass our local

answer on for aggregation into the final answer. This is known as a probabilistic

message passing algorithm.

Many statistical computations are like marginalization in the sense that they

require computation over a factored joint distribution to compute a statistic of interest

on a subset of variables and therefore lend themselves to a distributed message passing

approach. First we show how to perform marginalization by probabilistic message

passing. This is often called the sum product algorithm.

2.4.2 The Sum-Product Algorithm

Let us continue to suppose that we want to find the marginal probability distribution

p(x1) on the graph in figure 2-15. In many applications we deal with random variables

which are described by a discrete probability distribution, so the marginal distribution

for a variable node is actually a vector representing the relative probabilities that

variable i is in each of its various possible states. The message ni→a(xi) from a

variable node i to a factor node a is also a vector containing the relative probabilities

of the states of variable i given all the information available to node i except the

information from the factor node fa

ni→a(xi) =
∏

b∈N(i)\a

mb→i(xi). (2.29)

Similarly, the message ma→i(xi) from a factor node fa to a neighboring variable node

i is a vector containing the relative probabilities of the states of variable i given the

information available to fa

ma→i(xi) =
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

nj→a(xj). (2.30)

68

Using the message passing rules we see that

p1(x1) ∝ mA→1(x1)

∝
∑

x2

fA(x1, x2)n2→A(x2)

∝
∑

x2

fA(x1, x2)mB→2(x2)

∝
∑

x2

fA(x1, x2)
∑

x3

∑

x4

fB(x2, x3, x4)n3→B(x3)n4→B(x4)

∝
∑

x2

fA(x1, x2)
∑

x3

∑

x4

fB(x2, x3, x4)mC→4(x4)

∝
∑

x2

fA(x1, x2)
∑

x3

∑

x4

fB(x2, x3, x4)fC(x4) (2.31)

which is exactly the desired marginal distribution.

The sum product algorithm provides a general method for computing marginal

probability efficiently in this way. It iterates on local estimates of the marginal prob-

abilities of the variables by using probability information only from neighboring (con-

nected) factor nodes. Nodes are said to share information with adjacent nodes by

“passing a message” along the edge that connects them. Although messages are

only passed between neighboring nodes of the graph at each step of the algorithm,

over many steps information can traverse the graph in an attempt to find a globally

consistent estimate of the marginal probabilities.

Message passing is a kind of dynamic programming, storing intermediate approx-

imations to the true marginals and iterating on them. If the graph has no cycles,

the sum product algorithm will find the exact maximum likelihood estimate for the

marginal probability distributions for the state variables and is guaranteed to con-

verge. If a graph is “loopy” (has cycles), as in our coding example, then the messages

can potentially continue to traverse the graph, forever searching in vain for a globally

consistent answer, and the algorithm may never converge. In practice, however, the

sum product algorithm will often arrive at a good approximation of the exact marginal

distributions even on loopy graphs. Much recent work has been centered on under-

standing under what circumstances this is so, and the accuracy of the approximations

made, by the sum product and related algorithms.

69

2.5 Other Kinds of Probabilistic Graphical Models

So far we have focused on factor graphs. There are, however, other types of graphs for

representing constrained probability distributions. In this section, we introduce these

other kinds of probabilistic graphical models, draw some comparisons, and show that

they are all equivalent to factor graphs.

�✂✁�☎✄

�✝✆�✂✞

�✝✟

�✂✁�✠✄

�✡✆�✂✞

� ✟

�✂✁�☎✄

�✝✆�✂✞

� ✟

Figure 2-16: Left to right: factor graph, MRF, Bayesian network

Directed acyclic graphical models (Bayesian networks), undirected probabilistic

graphical models (Markov Random Fields), and bipartite graphical models (factor

graphs) are all ways to visually represent the dependencies among a set of random vari-

ables. An example of each kind of graphical model is shown in figure 2-16. Bayesian

networks, Markov Random Fields (MRFs), and factor graphs are all formally equiva-

lent in that any of them can be used to represent any probability distribution, however

they tend to be appropriate in different situations. Bayesian networks with their di-

rected edges are useful for representing conditional probability distributions, and the

conditional dependencies between variables. MRFs with their undirected edges are

useful for representing unconditional probability distributions where the overall joint

distribution represented by the model factors into so called “potential” functions over

pairs of random variables.

A factor graph like an MRF is an undirected graph. It can be advantageous to

use a factor graph instead of an MRF when a model factors into potential functions

of more than two variables. In such cases, it is often clearer to explicitly represent

these functions of three or more variables by adding a node for such a function and

70

connecting to each of the three or more variable nodes, thereby creating a factor

graph. A factor graph can also represent conditional relationships between random

variables like a Bayesian network. Factor graphs have begun to gather favor for

representing signal processing systems.

2.5.1 Bayesian Networks

�

✁ ✂

✄

☎ ✆

✝

✞

Figure 2-17: The fictional “Asia” example of a Bayesian network, taken from Lau-
ritzen and Spiegelhalter 1988

Bayesian networks are probably the most widely known type of probabilistic

graphical model. They are useful for modelling expert knowledge for applications

such as medical diagnosis and natural language understanding. The graph above il-

lustrates a Bayesian network for medical diagnosis. We are given information about

a patient such as risk factors, symptoms and test results, and we are asked to infer

the probability that a given disease is the cause. The Bayesian network encodes sta-

tistical dependencies between symptoms, test results, and diseases which have been

gathered in advance by asking medical experts or studying epidemiological research.

The graph in figure 2-17 is from a fictional example which was presented by Lau-

ritzen and Spiegelhalter and recounted in a very useful paper by Yedidia, Freeman,

and Weiss [55]. The nodes represent random variables: A recent trip to Asia “A”

71

increases the probability of tuberculosis “T”. Smoking “S” increases the risk of both

lung cancer “L” and bronchitis “B”. “E” represents the presence of either tuberculosis

or lung cancer. They are both detectable by an X-ray “X”, but the X-ray alone is

not enough to distinguish them. “D” is dyspnoea (shortness of breath) which may

be caused by bronchitis, tuberculosis or lung cancer

xi is the (discrete) state of a given node i. Arrows on edges indicate that there

is a conditional probability of a node’s state given the state of its “parent” node.

For example p(xL|xS) is the conditional probability that a patient has lung cancer

given that he or she does not smoke. When a node has two parents, its state depends

on both, for example p(xD|xE, xB). Nodes which have no parents have probabilities

which are not conditional, like p(xS) or p(xA). If we have some absolute information

about the state of a particular “observable” node, then we can set the probability of

that state to 100%, for example if we know for a fact that someone smokes or did not

ever visit Asia. The graph defines the dependency of some variables on some others

and is useful when there is structure in these dependencies. If every variable depended

on every other, we might as well just write the equation for the joint distribution over

all the variables and dispense with drawing a graph at all. The graph shows that the

patient has some combination of symptoms, test results, risk factors and diseases can

be written as the product of many distributions, each over just a few variables,

p(xA, xB, xS, xL, xT , xD, xE, xX) =

p(xA)p(xS)p(xT |xA)p(xL|xS)p(xB|xS)p(xE|xL, xT)p(xD|xB, xE)p(xX |xE). (2.32)

The Bayesian network on the right of figure 2-16 represents the factorization,

p(x1, x2, x3, x4, x5) = p(x1)p(x3|x1, x2)p(x4|x3)p(x5|x3). (2.33)

In general, a Bayesian network represents a factorization of a conditional distri-

bution,

72

p(x1, x2, . . . , xN) =
n

∏

i=1

p(xi|parents(xi)). (2.34)

2.5.2 Markov Random Fields

An MRF is an undirected graph G, with vertices and edges (V, E). Each vertex V

corresponds to a random variable in the model. Every node has neighbor nodes,

which are the nodes to which it is directly connected by an edge. Every variable in

an MRF is independent of all the other variables in the model, given its neighbors,

so that

(∀x ∈ V)p(x|V \{x}) = p(x|n(x)) (2.35)

where n(x) is the set of neighbors of x. An MRF is a graphical representation of how

a global probability distribution over all of the random variables can be “factored”

into a product of several lower dimensional probability distributions. Recall that the

probability of an event A is equal to the product of the events that cause A so long

as the causes are independent from one another; Independent probabilities simply

multiply. An MRF is a pictorial representation of a product of potential functions.

Once we normalize the product of the potential functions we have a joint probability

distribution over all the random variables in the system,

p(x1, x2, . . . , xN) =
1

Z

∏

a

fa(Va), (2.36)

where a is an index labelling M functions, fA, fB, fC , . . . , fM , where the function

fa(xa) has arguments xa that are some subset of {x1, x2, . . . , xN}, and Z is a normal-

ization pre-factor.

An edge connecting two nodes in an MRF represents the fact that those two

random variables are NOT always independent. It turns out that if each function,

fa(Va), is identified with a completely inter-connected group of variable nodes known

as a “clique,” then it is always possible to draw an MRF graph for any product of

fa(Va)’s. The converse is also true: If we choose non-overlapping cliques to correspond

73

to fa(Va)’s, then it is always possible to find a product of fa(Va)’s that corresponds to

any MRF that we can draw. This correspondence between a graph and a factorization

of a probability distribution is called the Hammersley-Clifford Theorem.

2.5.3 Factor Graphs

Just like an MRF, the factor graph represents a product of potential functions. Un-

like an MRF, potential functions in a factor graph are not defined over more than

two nodes. As a result there are no cliques in a factor graph which contain more

than two nodes. In a factor graph, potential functions over more than two variables

are represented by connecting all of the variables in the potential to a single factor

node. Factor graphs make it easy to identify each potential function with a particular

corresponding node. This correspondence is not always immediately obvious in an

MRF.

This is especially useful in the context of graphs for representing error correcting

codes (ECC). In error correction coding, it is useful to make a distinction between

variable nodes, which represent measured data from the channel or guesses by the

decoder about symbols sent by the transmitter, and factor nodes which represent

constraint functions (checksum operations or sub-codes). In error correction coding,

the constraint functions act to impose the limitation that there can be no probability

mass over certain values of the domain of the joint distribution. In other words, the

constraint functions zero out the joint probability distribution for certain values of

the state variables. Mathematically, we could have treated variables and constraint

functions alike, as factors in the joint probability distribution represented by the

overall graph, but in practice they play different roles and it is useful to represent

this difference visually.

2.5.4 Forney Factor Graphs (FFG)

In a factor graph, variable nodes store values while factor nodes compute functions

on them. Unlike in other graphical models, in a factor graph there is a one to one

74

correspondence between functions and the factor nodes which represent them. This

means that we don’t really need to represent the variables explicitly in the graph.

The functions are the important part. They can simply pass values to each other

along edges.

Forney showed how to create factor graphs without variable nodes by replacing

internal variable nodes of degree ≥ 3 by a special kind of soft-gate called a soft-equals,

whose job it is to insist that all (3 or more) incident edges have equal values. Variable

nodes of degree two have no processing task to fulfill, since they simply pass on a

value from one edge to the other. They can therefore be removed, and replaced with

just an edge. External variable nodes (leaf nodes) in this scheme are still included in

the factor graph and have degree = 1.

A soft-equals node with incoming messages pX(x) and pY (y) computes

pZ(z) = γ
∫

x

∫

y
f(x, y, z)pX(x)pY (y)

(2.37)

where f(x, y, z) = δ(x − y)δ(x − z). A soft-equals for binary variables and three

incident edges is given by

pZ(1) = pX(1)pY (1)

pZ(0) = pX(0)pY (0). (2.38)

where f(x, y, z) = 1 if x = y = z, and otherwise f(x, y, z) = 0.

Let us examine the sum product algorithm for a single soft-equals gate with three

attached leaf nodes. The Forney factor graph is shown in figure 2-18. Recall that in

a Forney factor graph, even as we remove all internal variable nodes, variable nodes

which are leaf nodes are allowed to remain.

Let X,Y, Z be binary variables, each receiving some evidence. The soft-gate

imposes a constraint requiring them to be equal. For example, if the local evidence

for X was [.7, .3], for Y was [.6, .4], and for Z was [.2, .8], then we would find that the

75

�✁

✂

Figure 2-18: Message passing with a single equals gate

beliefs at X,Y, and Z would be equal and would be equal to [(.7)(.6)(.2), (.3)(.4)(.8)]

normalized appropriately. X would send in a message to the soft-equals, [.7, .3] and

Y would send in a message to the equal that was [.6, .4]. The soft-equals would then

send out a message to Z, [(.7)(.6), (.3)(.4)]. Combining that with its local evidence,

Z would conclude that its belief was [(.7)(.6)(.2), (.3)(.4)(.8)].

2.5.5 Circuit Schematic Diagrams

In a factor graph we can think of edges as wires and function nodes as computational

elements, directly suggesting circuit implementations. Later, we will discuss circuit

implementations of probabilistic message passing at great length. If, however, we

forget for a moment about the messages being probability distributions, factor graphs

should already appear familiar in as much as they are just diagrams of inter-connected

functions. Schematic diagrams of circuits are technically a kind of factor graph.

2.5.6 Equivalence of Probabilistic Graphical Models

Converting from a Factor Graph to a Markov Random Field

It is easy to convert a factor graph into an equivalent MRF. Let F be a factor graph.

We construct a new graph F 2 with the same set of vertices as F . In F 2 two vertices,

x and x′, are connected with an edge if there exists a path of exactly length two

between them in F . Since F is bipartite like all factor graphs, F 2 is actually at least

two graphs, one with only variable nodes and one with only factor nodes. As long

as F (S,Q) is a factor graph that represents a product of non-negative functions as

76

Figure 2-19: Converting a factor graph to a pairwise MRF

in equation (2.36), then the graph in F 2 with only variable nodes is an MRF. For

example, the factor graph on the left in figure 2-16 reduces to the MRF to its right.

Notice that states x1 and x2 are now connected, because in the factor graph they

were separated by a path of length two.

We lost nothing when we removed the factor nodes from the factor graph to pro-

duce the MRF. We didn’t remove potentials from our product of potentials. The

correspondence, however, between potential functions and nodes must be reinter-

preted when we perform this operation. In the MRF, potential functions that used

to be affiliated with factor nodes will now correspond to cliques of connected variable

nodes.

Bayesian Networks and Converting a Factor Graph to a Bayesian Network

Figure 2-20: Converting a a factor graph to a Bayesian network

A Factor Graph can be thought of as the ”square root” of a Bayes Net. As can

be seen in the example in figure 2-16, to obtain a Bayesian network from the factor

77

graph F (S, Q), it is only necessary to remove the factor nodes from the factor graph.

Converting from Markov Random Fields and Bayesian Networks to Factor

Graphs

Figure 2-21: Converting a MRF to a factor graph

�✂✁�☎✄

�✝✆�✟✞

�✝✠

�✂✁� ✄

�✝✆�✂✞

� ✠

Figure 2-22: Converting a Bayesian network to a factor graph

It is also possible to go the other way, from a given MRF or Bayesian network to

a factor graph. To convert an MRF to a factor graph, the two node functions in the

MRF are replaced by factor nodes. To convert a Bayesian network to a factor graph,

we must insert a factor node to link a node and all of its parents, since that is the

form of each conditional potential function. Every MRF and Bayesian network can be

written as a number of different factor graphs, because we must make some arbitrary

choices about how to break up cliques and, consequently, where to add factor nodes.

78

2.6 Representations of Messages: Likelihood Ra-

tio and Log-likelihood Ratio

2.6.1 Log-Likelihood Formulation of the Soft-Equals

The definition of the log-likelihood ratio (log-likelihood) is

LZ = ln

[

pZ(0)

pZ(1)

]

. (2.39)

In the log-likelihood representation, the product message from a soft-equals gate can

be written as

LZ = LX + LY . (2.40)

To see this, we begin by manipulating the definition of the log-likelihood,

LZ = ln

[

µZ(0)

µZ(1)

]

(2.41)

= ln

[

µX(0)µY (0)

µX(1)µY (1)

]

(2.42)

= LX + LY . (2.43)

2.6.2 Log-Likelihood Formulation of the Soft-xor

In the log-likelihood representation, the product message from a soft-xor gate can be

written as

tanh(LZ/2) = tanh(LX/2) tanh(LY /2). (2.44)

To see this, we begin by manipulating the definition of the log-likelihood,

LZ = ln

[

µZ(0)

µZ(1)

]

(2.45)

= ln

[

µX(0)µY (0) + µX(1)µY (1)

µX(1)µY (0) + µX(0)µY (1)

]

(2.46)

79

= ln





µX(0)
µX(1)

µY (0)
µY (1)

+ 1
µX(0)
µX(1)

+ µY (0)
µY (1)



 (2.47)

= ln

[

exp(LX + LY) + 1

exp(LX) + exp(LY)

]

(2.48)

exp(LZ) =

[

exp(LX + LY) + 1

exp(LX) + exp(LY)

]

. (2.49)

Multiplying both sides by the denominator of the right side we obtain

exp(LX + LY) = exp(LX + LZ) + exp(LY + LZ) − 1. (2.50)

As can be seen by multiplying by the denominators of both sides of the following

expression, the last equation is a simplification of the following

exp(LX + LY) − exp(LX) − exp(LY) + 1

exp(LX + LY) + exp(LX) + exp(LY) + 1
=

exp(LZ) − 1

exp(LZ) + 1
. (2.51)

The left hand side of this equation can be factored into

(exp(LX) − 1)(exp(LY) − 1)

(exp(LX) + 1)(exp(LY) + 1)
=

exp(LZ) − 1

exp(LZ) + 1
. (2.52)

remembering the definition of tanh

tanh(x) =
ex − e−x

ex + e−x
=

exp(2x) − 1

exp(2x) + 1
, (2.53)

we can finally write the message from soft-xor in terms of log-likelihoods as

tanh(LZ/2) = tanh(LX/2) tanh(LY /2). (2.54)

80

2.7 Derivation of Belief Propagation from Varia-

tional Methods

In the previous sections we derived the sum product algorithm by observing that

marginalization could be simplified by performing local marginalization at each fac-

tor node and passing on the answer. Another way to understand message passing

algorithms involves the calculus of variations. The sum product algorithm can be

understood as minimizing a “free energy” function with Lagrangian constraints. In

this scheme, each factor node is thought of as imposing a constraint on the shape of

the joint distribution and therefore also constrains the marginal distribution that we

are attempting to find. This is easier to understand in the context of an example and

is presented in the next chapter in the example on routing in an ad hoc peer-to-peer

network.

81

82

Chapter 3

Examples of Probabilistic Message

Passing on Graphs

3.1 Kalman Filter

In this example we explore a practical example of a the sum product algo-

rithm on graphs with a one-dimensional “chain” topology. The operations are

on probability distributions of continuous-valued variables. Message passing

occurs in only one direction (forward) on the graph.

We use a Kalman filter when we have a good model for the update dynamics of a

system but we cannot directly observe the (hidden) internal state of the system. Since

we cannot directly observe the internal state of the system, we measure something

about the system which we know is related to the internal state. Then, using succes-

sive measurements, we repeatedly update the state of our model of the system until it

(hopefully) corresponds to the hidden internal state of the system we are observing.

The canonical example is the task of continuously estimating the position of an

airplane. The airplane has a current state, ~xt given by its position, velocity and

acceleration in three-space as well as the positions of its control surfaces. The state

is updated in discrete-time according to a distribution function p(~xt+1|~xt), which

includes both deterministic influences (aerodynamics) and random influences (turbu-

83

�✂✁ � ✁☎✄✝✆✞✠✟ �✂✁✡✄☛✆✌☞ �✂✁✡✍

Figure 3-1: System state update

�✂✁

✄☎✁ ✄☎✁✝✆✟✞

�✂✁✝✆✟✞

✠☛✡ ✄☎✁✝✆✟✞✌☞ ✄☎✁✎✍

✠☛✡ �✂✁✏☞ ✄☎✁✎✍ ✠✑✡ �✂✁✒☞ ✄☎✁✎✍

Figure 3-2: System state update combined with measurements

lence, control errors). For now, let us assume that the system update is linear with

update matrix A and Gaussian noise process η with covariance matrix Q,

~xt = Axt−1 + G~ηt. (3.1)

We don’t actually know the current state of the airplane. We only infer it from a

model which updates the last state according to p(xt+1|xt). Our estimate would be

better, if we combined this information with information from current measurements

yt from equipment such as airspeed sensors, global positioning devices, radar, and

aileron position sensors. These sensor measurements are related to the actual state

by a noise model p(~yt|~xt). For now we assume a linear relationship between the sensor

readings and the current state with Gaussian noise process ε,

~yt = Bxt + ~εt. (3.2)

In Kalman filtering wish to calculate P (xt|y0, . . . , yt). In order to do this we

must send messages from the current measurement nodes and the last state node

to the current state node. The message passed along the horizontal edge from past

state to current state is called the time update and calculates P (xt|y0, . . . , yt) →

84

u[k]

A

G

B

x[k-1] x[k]

y[k]

ε[k]

Figure 3-3: Kalman filter update

P (xt+1|y0, . . . , yt). The message passed along the vertical edge which incorporates a

new measurement is called the measurement update and calculates, yt+1: P (xt+1|y0, . . . , yt) →
P (xt+1|y0, . . . , yt).

Let us use a more compact notation, so that the probability distribution for xt

conditioned on y0, . . . , yt has mean x̂t|t ≡ E[xt|y0, . . . , yt] and covariance Pt|t ≡ E[(xt−
x̂t|t)(xt − x̂t|t)

T |y0, . . . , yt]. With this notation the time update step is

x̂t+1|t = Ax̂t|t (3.3)

and

Pt+1|t = APt|tA
T + GQGT . (3.4)

So far we have used the Kalman filter proper to model a linear system. For a

linear system, the Kalman filter obtains a provably maximum-likelihood estimate of

85

the system’s state. In order to obtain this maximum-likelihood estimate, messages

only need be passed forward along the graph, since we are only ever interested in

an estimate of the current (hidden) state of the system given the most up-to-date

measurements we have. In this application we have no reason need to go back to

improve our estimates of past states. A Kalman filter with a linear approximation of

a nonlinear system is called an extended Kalman filter, and is not provably optimum,

but has been shown to behave well for many examples. A Kalman filter with a

nonlinear model of a nonlinear system may behave just as well as the extended Kalman

filter, but does not have a name. The Noise Lock Loop described in this thesis is just

such a model.

3.2 Soft Hamming Decoder

In this example we explore a practical example of a the sum product algorithm

on graphs of arbitrary topology, possibly with cycles. The operations are on

probability distributions of discrete-valued variables.

Compressed Bits

(Source coding)

Decompressor

(Source decoder)

Error Correction

Encoder

Error Correction

Decoder

Channel Noise

Figure 3-4: A communications system

Probabilistic graphical models have become essential for understanding commu-

nication systems. In a communication system, we wish to transmit information rep-

resented as bits across a noisy channel without losing any of the information. The

86

information to be communicated is encoded and then modulated before it is transmit-

ted over a channel. Encoding is generally used to add redundancy to the information

in order to make it robust against the channel noise. Modulation is generally thought

of as being used to represent the information in such a way that is is suited for

transmission through the physical medium of the channel. Traditionally, coding was

performed by a digital system while modulation was performed by an analog system,

but the distinction is unimportant from a mathematical perspective.

3.2.1 Encoding

Let us examine a simple example of how probabilistic graphical models can be used

in a communication system for error correction coding (ECC). Suppose we wanted

to be able to send any possible 3 bit message, {(000), (001), . . . (111)}, over a noisy

channel. In practice, to protect the message from corruption by channel noise we want

to encode the message as a word containing more bits. Whenever we mean {001} for

example, we could actually send (001101). To define such a code, we could make a

list of 6-bit codewords, ~x that we could transmit in lieu each of the 3-bit messages,

~m. The extra bits are often called parity bits.

message codeword

000 000000

001 001101

010 010011

011 011110

100 100110

101 101011

110 110101

111 111011

For long message words, such lists could quickly become memory intensive in the

transmitter. This is a linear code which means we can create a generator matrix,

87

G =















100110

010011

001101















. (3.5)

as a convenience for transmuting messages into codewords by the formula M · ~m.

Note that this is also a systematic code meaning that each message word is actually

transmitted as part of the codeword - in this case the first part. The first three

columns of the generator matrix therefore are the identity matrix.

The receiver can determine if any errors were introduced into the transmitted

codeword by multiplying the received (hard-decision, possibly corrupt) codeword by

the parity-check matrix H · ~x, where

H =















101100

110010

011001















. (3.6)

and seeing if the answer is 0. We can convert the generator matrix into its cor-

responding parity-check matrix by transposing unsystematic part of the generator

matrix and concatenating it to the right with the appropriate sized (here 3 × 3)

identity matrix.

The parity-check matrix is really checking the received codewords to see if they

satisfy set of algebraic constraints that define the code. All of the above codewords

satisfy the constraints:

x1 ⊕ x2 ⊕ x5 = 0

x2 ⊕ x3 ⊕ x6 = 0

x1 ⊕ x3 ⊕ x4 = 0. (3.7)

Defining the codewords in terms of a set of constraints is very helpful when we

start to think about building a receiver which must recognize if a message is in error.

88

If the received signal does not satisfy the set of constraints, then the receiver knows

that an error has been introduced by the channel. If the codewords are long enough

for a given amount of noise, and thereby provide enough information, the receiver

can even use the rules to make a good guess for what value was actually sent by the

transmitter and restore the corrupted bit to its original uncorrupted value.

�✂✁

�☎✄

�✝✆

�✟✞

�☎✠

�☎✡

Figure 3-5: Graph representing the codeword constraints

�✂✁ �☎✄�✝✆�✟✞ �☎✠ �☎✡

Figure 3-6: Graph representing the same codeword constraints

The constraints can be represented in graphical form as shown in figures 3-5 and

3-6. In these encoder graphs, the constraint nodes are mod 2 sums as defined by

89

Edge1 Edge2 Edge3

0 0 0

0 1 1

1 0 1

1 1 0

(3.8)

�✁

✂

Figure 3-7: Mod 2 sum

and represented by the node in figure 3-7. Considering any two edges as the input

to the mod 2 sum and the third edge as an output, it is evident that the output of

the mod 2 sum is 1 when the inputs are different and 0 when the inputs are the same.

The edges attached to the nodes in 3-8 are bidirectional, so that at any time we can

choose two of the three edges into a node to consider as inputs, while the third edge

will output the mod 2 sum of the values presented on these two edges. The check-sum

constraint must be satisfied in every direction.

3.2.2 Decoding with Sum Product Algorithm

Representing the constraints in graphical form is helpful, because it enables us to

immediately construct a graph for the receiver’s decoder as in figure 3-8. In the

receiver, we replace the mod 2 sum with it’s probabilistic equivalent, a “soft-xor”

gate which was defined in equation (2.3.3). Just like the mod 2 check-sum nodes in

the encoder graphs, the edges connected to the soft-xor nodes in the decoder graphs

90

�✂✁ �☎✄�✝✆�✟✞ �☎✠ �☎✡

☛ ✁ ☛ ✄☛ ✆☛☞✞ ☛ ✠ ☛ ✡

Figure 3-8: Receiver graph implementing the codeword constraints

are bidirectional.

Figure 3-9: Symbol for the soft-xor gate

Now let us perform the sum-product algorithm on our larger decoder graph to

again compute the marginal probability of variable x1.

p1(x1) α mA→1(x1)mB→1(x1)mE→1(x1)

α
∑

x2,x5

fA(x1, x2, x5)
∑

x3,x4

fB(x1, x3, x4)
∑

y1

fE(y1) · n2→A(x2)n5→A(x5)n3→B(x3)n4→B(x5)

α
∑

x2,x5

fA

∑

x3,x4

fB

∑

y1

fE · mC→2mF→2mI→5mC→3mG→3mH→4

(3.9)

Already we can see that the single cycle in our decoder graph complicates matters,

91

since we must sum over the same variable more than once. It turns out that the sum-

product algorithm yields the exact solution for the marginal probabilities on graphs

with no cycles. On graphs with a single cycle it is guaranteed to still converge, but

usually does not converge to the exact answer. With more than one cycle in this

graph, we are not guaranteed that the algorithm will converge at all.

To implement the algorithm, the soft parity check functions are soft-gates. For

example, fA is a soft-xor,

∑

x2,x5

fA(x1, x2, x5) =
(

px1
(0)

px1
(1)

)

=
(

px2
(0)px5

(0)+px2
(1)px5

(1)

px2
(0)px5

(1)+px2
(1)px5

(0)

)

. (3.10)

fE is a conditional distribution which models the noise in the channel. Let us assume

it is Gaussian with mean µ1 and variance σ,

p(y1|x1) =
1

2σ
e−(y1−x1)2/2σ2

. (3.11)

Similarly, let

fF = p(y2|x2)

fG = p(y3|x3)

fH = p(y4|x4)

fI = p(y5|x5)

fJ = p(y6|x6). (3.12)

(3.13)

are all functions of analogous form. Let ŷi be a received value, then for an additive

white Gaussian noise (AWGN) channel, pY |X(ŷ|x) is given by

pY |X(ŷ|x = 1) = exp[−(ŷ − 1)2/2σ2]

pY |X(ŷ|x = −1) = exp[−(ŷ + 1)2/2σ2] (3.14)

92

3.3 Optimization of Probabilistic Routing Tables

in an Adhoc Peer-to-Peer Network

In this example we explore a practical example of a the sum product algorithm

on random graphs with an arbitrary topology, with cycles. The operations are

on probability distributions of discrete-valued variables. We also show how

to derive local constraint functions in general from a global property which

we would like to optimize. Along the way show the connection of the sum

product algorithm to variational methods for finding minima of a function.

SOURCE

SINK

node 1 node 3

node 2

node 4

Figure 3-10: Random ad hoc peer-to-peer network. There are four interfaces
{1, 2, 3, 4} on nodes 1 and 4, and three interfaces{1, 2, 3} on nodes 2 and 3.

We present a dynamic program for the optimization of probabilistic routing tables

in an ad hoc peer-to-peer network. We begin with a random graph composed of

n = {1 . . . N} communication nodes each represented in figure 3-11 by a dashed

square. Each node can have an arbitrary number of arbitrary interconnections. Each

node will have some number of incident edges ni = {n1 . . . nI}. In the figure, nodes

are shown with either three or four incident edges. An incident edge ni to a node n we

call an interface. An interface is a port for a node ni to communicate to another node

93

nj along a connecting edge. Interfaces will serve as the fundamental data structure

in our dynamic program, and are represented by circles in figure 3-12.

The goal is to route data packets across this random graph of communication

nodes from an arbitrarily chosen source node to an arbitrarily chosen sink node via

a path with the smallest possible number of intervening nodes. Let each interface i

of each node n be associated with a random (binary) variable, send which has two

states: the interface is a sender, denoted by s or a receiver denoted by r. Each

interface therefore has an associated (normalized) probability distribution,

bni
(send) =







b(ni = s)

b(ni = r).






(3.15)

When a node receives a packet it “flips a weighted coin” to decide which of its in-

terfaces out of which it will route that packet according to a (normalized) distribution

over its interfaces,

bn(send) =





















b(n1 = s)

b(n2 = s)
...

b(nI = s).





















(3.16)

To accomplish the goal of routing packets, we will optimize this probabilistic “routing

table”, pni
for every node.

It is possible to write the (factorized) joint distribution over all of the random

variables in our graph as the product of each of the local pni
,

bN =
N
∏

n=1

pni
(3.17)

This is a many dimensional distribution with as many dimensions as there are

interfaces in the network. To pose the optimization problem, we imagine a goal

distribution pN which is the best choice of bN and which will optimally route packets

94

through the network. The Kullback-Liebler (KL) divergence,

D(b(x)||p(x)) =
∑

x

b(x) ln
b(x)

p(x)
, (3.18)

although not a true metric, is a useful measure for the difference between two prob-

ability distributions. If we define p(x) = 1
Z
e−E(X), we can rewrite the KL divergence

as

D(b(x)||p(x)) =
∑

x

b(x)E(x) +
∑

x

b(x) ln b(x) + ln Z ≡ U(b(x)) − S(b(x)). (3.19)

We call U(b(x)) − S(b(x)) the Gibbs free energy. Its minimum possible value is

− ln Z (the Helmholz free energy). The definition of an expectation of a function f(x)

is defined as

〈f(x)〉 ≡
∑

x

f(x)b(x), (3.20)

so the first term in the Gibbs free energy, U(b(x)) =
∑

x b(x)E(x) is called the average

energy. The second term is the negative of the entropy of b(x). To optimize our

probabilistic routing table we must choose a form for our trial distribution b(x), and

substitute it into the Gibbs free energy and perform the minimization. We would like

to optimize this b(x) subject to some constraints which we might believe should be

imposed to achieve efficient routing. We will choose the “flow” constraint,

F (x) = δ[
∑

N

∑

I

p(ni = s) −
∑

N

∑

I

p(ni = r) = z] (3.21)

where z = {. . . ,−3,−2,−1, 0, 1, 2, 3 . . .} is a “small” integer, based on the common-

sense assumption that messages should be sent from nodes as often as they are re-

ceived. This is essentially a conservation constraint. In a flow of water, for example,

this would tend to say that water that enters somewhere, should on average tend to

leave there. This constraint will be imposed by the average energy term, while the

negative entropy term in the Gibbs free energy will tend to force the trial distribution

b(x) to have the maximum possible entropy (minimum negative entropy) while still

95

satisfying the constraint. Since the uniform distribution is the maximum entropy

distribution, this will tend to spread probability over all of p(x) as much as possible

subject to the flow constraint, thereby tending to distribute satisfaction of the flow

constraint across the network. We will impose the global flow constraint f(x), by

choosing an energy function of the form,

E(x) = exp
[

∑

ln f(x)
]

. (3.22)

Optimizing this many-dimensional distribution would be computationally pro-

hibitive. However, we can factorize the global flow constraint function into many

local constraints in order to make the computation more tractable. This will require

that we make some assumptions about which variables must be modelled as being

directly dependent on one another. Once we decide what dependencies between vari-

ables are important to model, the dependencies can be conveniently represented in

graphical form by a factor graph.

For example, we will begin by hoping that stable routing can be achieved with

only nearest-neighbor connections. This means that we can derive the factor graph

of dependencies graph from the ad hoc network itself as shown in figure 3-12. Other

dependencies could also exist, but are a subject for future work.

Constraint functions in figure 3-12 are indicated by black squares. We will actually

use two constraint functions, one between two interfaces connecting different nodes

f(bi, bj), and one between the multiple interfaces of a single node g(bk, bl, bm, bn . . .).

If two interfaces i and j from two different nodes are connected, this represents a

path for packets to flow from node to node, so it makes sense that if one interface is

the sender the other ought to be a receiver. This condition can be enforced by the

constraint

f(x) = δ(pi(s) − pj(r) = 0)δ(pj(s) − pi(r) = 0). (3.23)

If multiple interfaces {k, l, m} belong to the same node, it makes sense that at least

one should be a receiver and at least one should be a transmitter which can be enforced

by the constraint

96

SOURCE

SINK

node 1 node 3

node 2

node 4

Figure 3-11: Factor graph derived from ad hoc peer-to-peer network.

g(x) = δ(pk(s) + pl(s) + pm(s) − pk(r) − pl(r) − pm(r) = 1) ·

δ(pk(s) + pl(s) + pm(s) − pk(r) − pl(r) − pm(r) = 2). (3.24)

We can use the sum-product algorithm to minimize the Gibbs free energy under

these constraints. In order to do this we must derive probabilistic messages to pass

from function nodes f in our factor graph to interface nodes, from function nodes g to

interface nodes, and from interface nodes to function nodes. Messages from function

nodes f , connected to two interfaces are denoted by

µ(i) =
∑

j

pJ(j)f(i, j). (3.25)

With the constraint that a sender sends to a receiver, the function between two

97

1

2 3

4

1

2 3

4

1 2

3

1 2

3

SOURCE

SINK

node 1

node 2

node 3

node 4

Figure 3-12: Factor graph derived from ad hoc peer-to-peer network. There are four
interfaces {1, 2, 3, 4} on nodes 1 and 4, and three interfaces{1, 2, 3} on nodes 2 and 3.

interfaces from two different nodes is a soft-inverter so that,







µ(i = s)

µ(i = r)






=







pJ(r)

pJ(s)






. (3.26)

Messages from function nodes connected to three interfaces {k, l, m} are given by

µ(ni) =
∑

k,l

pK(k)pL(l)f(k, l,m). (3.27)

which with the constraints we have chosen becomes,







µ(k = s)

µ(k = r)






=







pL(r)pM(r) + pL(r)pM(s) + pL(s)pM(r)

pL(s)pM(s) + pL(s)pM(r) + pL(r)pM(s)






. (3.28)

The derivation of messages from function nodes with more than three interfaces is

98

left as an exercise for the reader. The outgoing message from an interface with two

incident edges is just a copy of the incoming message,







µ(i = s)

µ(i = r)






=







pJ(s)

pJ(r)






. (3.29)

In addition, we must also impose a normalization constraint on all messages so that

µ(i = s) + µ(i = r) = 1 and ν(i = s) + ν(i = r) = 1.

Implementation of continuous-time message passing involves an asynchronous

discrete-time approximation. We use a message passing schedule in which a node

sends a message along an incident edge if and only if there are incoming messages

pending on every other incident edge. We will further discuss scheduling in a later

chapter.

99

100

Chapter 4

Synchronization as Probabilistic

Message Passing on a Graph

In this chapter I apply message passing on graphs to the problem of synchroniz-

ing discrete-time periodic systems. We examine two examples, synchronization of

a discrete-time ring oscillator in AWGN and of a Linear Feedback Shift Register

(LFSR) in AWGN. From the ring oscillator example we learn that entraining oscil-

lators perform maximum-likelihood phase estimation, if given the proper coupling.

LFSR synchronization is an important problem in DS/CDMA multiuser communica-

tion.

4.1 The Ring Oscillator

A ring (relaxation) oscillator is a very simple circuit which is often used to test a new

semiconductor fabrication process. It consists of an inverter with its output connected

to its input in a feedback loop. The circuit will repeatedly switch from a zero to a

one and back again as fast as the devices allow. The schematic diagram for a ring

oscillator is shown in figure 4-1. For compliance reasons, a single inverter doesn’t like

to drive its own input so a larger (odd) number of inverters is generally used.

We can draw the factor graph for a ring oscillator by simply replacing the inverter

with a soft-inverter soft-gate as shown in figure 4-2. In the last chapter we saw an

101

Figure 4-1: Schematic diagram for a ring (relaxation) oscillator

the example “loopy” factor which had just a variable node and a soft-inverter in a

feedback loop. That graph eventually settled to a solution of pX(1) = .5, pX(0) = .5.

This graph is different because it includes a delay element, represented by a delay

factor node. The delay acts like a pipe or first-in-first-out (FIFO) buffer. A message

that enters on end of the delay, exits at the other end some time later. The switching

speed is set by the delay element, because a message that enters the delay cannot

force the ring oscillator to switch until it comes out the other end. No matter if the

delay can only contain one message at a time or if can store more, this factor graph

ring oscillator will oscillate.

As we approach the limit where the delay can contain a very large number of

messages, the system begins to approximate a continuous-time system with many

samples per each cycle of the generated waveform. As we approach continuous-

time operation, we can also add a low-pass filter to the loop in order to smooth the

transitions and model the bandwidth limit of the inverter devices.

Delay

Figure 4-2: Factor graph for a ring (relaxation) oscillator

102

4.1.1 Trellis Decoding for Ring Oscillator Synchronization

Our goal is to synchronize to a ring oscillator. Another way to say this is that we

would like to estimate the current state of a ring oscillator that is transmitting its

state to us through a noisy channel. This sounds a lot like an error correction decoding

task. Ordinarily if we wanted to generate a maximum-likelihood estimate of the state

of a transmit system, we would draw a trellis graph for it and run Viterbi’s algorithm.

A factor graph representing the trellis for a ring oscillator is shown in figure 4-4. In

the graph, time progresses to the right with (noisy) received values successively filling

the dark circles along the bottom of the graph. The variable nodes st represent the

best estimate of the transmit ring oscillator’s state at each successive time-step. This

estimate is represented by a probability distribution over the possible states {0, 1} of

the transmit oscillator.

�✂✁☎✄✝✆ ✞✠✟ �✂✁✡✄☛✆ ✞☞✟�✂✁☎✄✝✆ ✞☞✟�✌✁✡✄✝✆ ✞☞✟

✍✏✎ ✍✒✑ ✍✔✓✍✖✕

Figure 4-3: Factor graph for trellis for synchronization of a ring oscillator

Viterbi’s algorithm on the trellis factor graph works as follows. Let us begin by

supposing that we have prior information that makes us, say 60% certain that the

transmitter oscillator is in state 0 at time 0. Before we receive any new information

from the transmitter, we should already be 60% certain that the transmitter will be

in state 1 at the next time-step, since the ring oscillator simply switches state at

each time-step. This update is represented by the message being passed from state

st through a soft-inverter to state st+1,

103

pinv(1) = pt−1
s (0)

pinv(0) = pt−1
s (1). (4.1)

The soft-inverter in this graph is precisely the same as a trellis section for ring os-

cillator receiver shown in figure 4-4 in which the probabilities of the two states are

switched.

0

1

0

1

0

1

Figure 4-4: Trellis section for a ring oscillator

We also receive information from the transmitter via a noisy channel, however,

and we would like to use this information to improve our current estimate. In the

channel, we represent the transmitter’s state with {1,−1} instead of {0, 1}; We send

a -1 when the transmitter’s state is x = 1 and a 1 when the state is x = 0. In order to

use the received information, we must first convert it to a valid probabilistic message

that we can pass on the graph. If the channel is AWGN, then our model for the

channel is

pY |X(y|x = 1) =
1√
2πσ

exp

(

−(y − 1)2

2σ2

)

pY |X(y|x = 0) =
1√
2πσ

exp

(

−(y − (−1))2

2σ2

)

. (4.2)

where x is transmitted and y is received. This expands to

pY |X(y|x) =
1√
2πσ

exp

(

−(y − x)2

2σ2

)

104

pY |X(y|x) =
1√
2πσ

exp

(

−(y2 − 2xy + x2)

2σ2

)

pY |X(y|x) =
1√
2πσ

exp

(

−y2

2σ2

)

exp
(

yx

2σ2

)

exp

(

x2

2σ2

)

. (4.3)

If we assume that σ is fixed, then for a given received value of y the e−y2/2σ2

terms

will normalize out. Equation (4.1.1) then becomes

pY |X(y|x) = γ exp
(

yx

2σ2

)

exp

(

x2

2σ2

)

(4.4)

where γ is a normalization constant. If we further assume that the channel is properly

equalized so that |x| = 1 (as we have been doing) then the ex2/2σ2

terms will also

normalize out leaving

pY |X(y|x) = γ exp (yx) . (4.5)

We can write the message from the channel model node as

py(1) = exp (−1 · y)

py(0) = exp (1 · y) . (4.6)

Thus we see that for a properly equalized, binary, AWGN channel with known sigma,

the channel model computation reduces essentially to an inner product of the received

value with the possible transmitted symbols.

We need to combine the estimate from the received signal which has been modified

by the channel model with the message from the soft-inverter in order to produce the

current state estimate, st. As for any variable node with multiple incoming messages,

the state nodes do this by performing an element by element product of the incoming

messages and then normalizing. The resulting message output from the state node st

105

is therefore

pt
s(1) = pt−1

s (0)pY |X(y|x = 1)

pt
s(0) = pt−1

s (1)pY |X(y|x = 0)

4.1.2 Forward-only Message Passing on the Ring Oscillator

Trellis

Notice that the messages we pass in the trellis factor graph in figure 4-4 are only sent to

the right on the trellis factor graph - from past states to future states. This is because

we are only interested in the current state of the transmitter, and there is no way to

improve our estimate of the current state by adding any backward message passing.

Furthermore if we have perfectly estimated the current state of the transmitter there

is no reason to send messages backward to improve our estimates of past states of

the transmitter. Knowing the current state of a deterministic transmitter gives us

complete information about the history of the transmitter. We call this forward-only

message passing.

We can “roll up” the forward-only message passing on the trellis factor graph.

Examine figure 4-3 carefully. A given state node combines a message from the channel

model with (soft-inverted) message from the last state. Exactly the same message

calculations are performed by the factor graph on the right side of figure 4-5. So

forward-only message passing on the trellis receiver graph can itself be written to

closely resemble a ring oscillator. The only difference between this “receiver ring

oscillator” and the transmit ring oscillator is that the receiver oscillator includes a

channel model.

Note that the rolled up “factor graph” in figure figure 4-5, like many of the rolled

up factor graphs in this document, abuses the factor graph notation because messages

only travel in one direction on them. Also there should properly be a variable node in

between any two connected factor nodes. We have left out variable nodes with only

two incident edges which trivially pass messages without performing any computation.

106

Delay Delay�✂✁☎✄✝✆ ✞✠✟

Figure 4-5: Factor graph for transmit and receive ring oscillators

The log-likelihood for a binary random variable is defined as

Lz ≡ ln

(

pz(0)

pz(1)

)

. (4.7)

The message from the channel model written as a log-likelihood is

Ly = log

(

exp(−(y − 1)2/2σ2)

exp(−(y + 1)2/2σ2)

)

Ly = 2y/σ2. (4.8)

The state nodes in the ring oscillator trellis factor graph perform a product of the

incoming messages. We can write this operation in terms of log-likelihoods as

Lz ≡ ln

(

pz(0)

pz(1)

)

= ln

(

px(0)py(0)

px(1)py(1)

)

= ln

(

px(0)

px(1)

)

+ ln

(

py(0)

py(1)

)

= Lx + Ly. (4.9)

If we consider the voltages in a ring oscillator circuit to represent log-likelihoods,

then the maximum-likelihood estimate of the phase of the transmit ring oscillator in

AWGN can be achieved by multiplying the received value by a gain proportional to

σ and then summing this voltage into the state of the receive ring oscillator. This

actually works in continuous-time circuits where it is called injection locking. We will

107

discuss the continuous-time case in greater detail later.

A maximum-likelihood estimate is defined as the best estimate a receiver can make

when its model captures all of the information about the transmitter system. In this

system, the receive ring oscillator is a perfect model of the transmitter since it is in

fact an identical copy of it. Furthermore we have also assumed a perfect model of

the channel. Therefore we should not be surprised that properly performing injection

locking of a ring oscillator produces a maximum-likelihood estimate of the transmit

oscillator’s phase. In real integrated injection locked systems, σ tends to be negligible

compared to the signal, so the gain on the received signal should be set as large as

possible before summing it into the receiver’s state.

4.2 Synchronization to a Linear Feedback Shift Reg-

ister (LFSR)

4.2.1 LFSRs Generate PN-Sequences

�✂✁☎✄✝✆✟✞
τ ✠ +

✁☎✄✝✆✟✞☛✡
τ ✠✌☞✎✍✑✏✓✒✕✔

✁☎✄✝✆✟✞
τ ✠ ✖☎✗✝✘✟✙✛✚ τ ✜ ✖☎✗✝✘✟✙✣✢ τ ✜

✖☎✗✝✘✟✙☛✤ τ ✜

✁☎✄✝✆✟✞
τ ✠

✥✧✦✩★✫✪✭✬ ✥✧✦✩★✫✪✭✬ ✥✧✦✩★✫✪✭✬ ✥✧✦✮★✯✪✰✬

✱✳✲✵✴

Figure 4-6: 4-bin, 2-tap LFSR

A Linear Feedback Shift Register (LFSR) is a finite state machine that generates a

repeating sequence of zeros and ones known as a PN-sequence. The update function

of this 4-bin 2-tap LFSR can be most compactly expressed as a iterated map or

difference equation with binary variables,

xt = xt−τ ⊕ xt−4τ . (4.10)

108

The factor graph (block diagram) for a 4-bin, 2-tap LFSR is shown in figure

4-6. All functional blocks in the diagram accept binary input messages and send

binary-valued output messages. At each time-step of the LFSR algorithm, messages

are passed along edges of the graph in the direction of the associated arrows. Delay

elements delay a message by one time-step τ , so that the output message from a delay

element is just the input message from the last time-step t − τ . At each time-step,

each delay element passes a message to the delay element to its right. One can think

of these delay elements as consisting a shift memory with “bins” which each can store

a bit. On each time-step, the shift memory shifts its contents one bin to the right.

Copies of the messages x(t − τ) and x(t − 4τ) output from the first and fourth

delay elements are also sent to an XOR function where they are summed modulo 2

and the result is sent back to the first delay element, all in one time-step. These

copies of the messages x(t − τ) and x(t − 4τ) are called the “taps” of the LFSR.

The number of bins and placement of these taps determines the exact form of the

pseudo-random number (PN) sequence [53].

We initialize the LFSR with messages with any binary values other than all zeros.

The LFSR then cycles through a deterministic sequence of states as shown in figure

4-7. We can read off the PN sequence from the messages going by on any edge in the

graph as the LFSR algorithm cycles through its repeating sequence of states, but we

will adopt the convention that the transmitted bits are read from the output of the

first delay element, the left most bit in each state shown in 4-7. We observe the PN

sequence 101011001000111 . . . which then repeats.

This particular 4-bin 2-tap LFSR produces a sequence that is 24−1 = 15 bits long,

which is the maximum possible for an LFSR with 4 delay elements. The placement of

the taps on a particular set of delay elements determines the PN sequence and whether

it will be maximal length. A particular LFSR can be tested to see if it will produce

a maximal length sequence by taking the z-transform of its difference equation. The

z-transform will result in a quotient of polynomials. If these polynomials have no

factors in common (are mutually prime) then an LFSR with n bins will produce a

maximal length sequence of length 2n − 1 bits [53].

109

0101

0010

0001

0111

0110

0100

0011

1101

1010

1001
1111

1110

1100

1011

1000

0000

Figure 4-7: State cycle of a 4-bin, 2-tap LFSR

4.2.2 Applications of LFSR Synchronization

Why should we care about LFSR synchronization? In fact, LFSR synchronization

is a rather important function in many applications. For example, a Global Posi-

tioning System (GPS) receiver spends significant resources to achieve highly accu-

rate LFSR synchronization in a very low SNR environment. LFSR synchronization

(known as PN-sequence acquisition) is also an important problem in direct-sequence

code-division multiple access (DS/CDMA) communication such as is currently used

in IS-95 and 3G cell phone networks and wireless LAN systems.

The most ubiquitous circuit primitive currently used for synchronization is known

110

� ✁✄✂✆☎

� ✁✄✂✞✝

� ✁✄✂✆☎ � ✁✄✂✞✝ ✟

Figure 4-8: Mod 2 sum

as the Phase Lock Loop (PLL). PLLs are used in wireless receivers and VLSI computer

chips for synchronizing to periodic carrier and clock signals. PLLs only work, however,

on signals which simply oscillate between extreme values, a pattern that we might

depict in discrete time with the regular expression (01)*. It is interesting to think

about generalizations of the PLL which could synchronize to more complex periodic

patterns such as those produced by an LFSR. Such a circuit could be useful for a

variety of applications such as multi-region clock distribution in VLSI chips or more

agile radio modulation. A revolutionary idea would be “CDMA-lite” which would

allow processor cores to act like users in a cell phone network - employing a low

complexity multiuser communication system to talk to each other over shared high-

speed buses.

LFSR Synchronization in DS/CDMA Spread Spectrum Communication

Multiuser or Multiple Access communication refers to communications systems where

many users share the same channel. In multiple access systems, receivers must be able

to distinguish messages coming from different users. FM radio solves this problem

by using sinusoidal carriers with different frequencies to distinguish between different

users (commercial radio stations). Sinusoids of different frequencies constitute an

orthogonal bases which means that mathematically, the signals from different radio

stations are linearly independent and therefore separable.

111

Code Division multiple-access refers to the practice of distinguishing different users

with different bit sequences or codes. Direct-Sequence Code-Division Multiple Access

(DS/CDMA) wireless systems often use codes generated by LFSRs to distinguish

information transmitted by different users. A DS/CDMA transmitter and receiver

are shown in figures 4-9 and 4-10 respectively. The message signal is multiplied by

a PN-sequence generated by an LFSR. Since the different LFSR sequences may be

orthogonal but are at least uncorrelated, they too may serve as carriers which are

separable. Using a PN-sequence to directly modulate the message signal is called

Direct Sequence Code Division Multiple Access. Since a PN-sequence has a white

frequency spectrum, modulating the message signal by the PN-sequence has the effect

of spreading the message signal over a wide frequency range while reducing the amount

of power at any given frequency and is one method of producing a Spread-Spectrum

signal.

There are other methods for spreading the spectrum of a message signal. A popu-

lar alternative to CDMA is Frequency Domain Multiple Access (FDMA) in which we

periodically switch the frequency of a sinusoidal carrier. DS/CDMA has a number of

particular advantages over other techniques such as nice spectrum sharing properties

and resilience against jamming and multi-path interference.

LFSR synchronization in a DS/CDMA receiver is known as PN-sequence acquisi-

tion. In order to listen to a given user’s message, the receiver must acquire that user’s

LFSR so that it can remove it and recover the transmitted signal. The performance of

an acquisition system is measured in terms of its time to acquire and the repeatability

of this acquisition time. False positives are also a consideration. In a noncoherent

DS/CDMA system, acquisition is performed first, and then a tracking loop takes over

to maintain the receiver’s LFSR in close alignment with the transmitter’s LFSR.

112

�✂✁☎✄✝✆

✞✠✟☛✡✌☞
τ ✍ ✞✠✟✎✡✏☞ ✆

τ ✍ ✞✠✟☛✡✌☞✒✑
τ ✍ ✞✠✟☛✡✌☞✒✑

τ ✍

Coded Message

Pseudo-Random Spreading Sequence

DS-CDMA Message

Figure 4-9: DS/CDMA modulation with PN-sequence generated by an LFSR

�✂✁☎✄✝✆

✞✠✟☛✡✌☞
τ ✍ ✞✠✟✎✡✏☞ ✆

τ ✍ ✞✠✟☛✡✌☞✒✑
τ ✍ ✞✠✟☛✡✌☞✒✑

τ ✍

Message

Pseudo-Random Spreading Sequence

DS-CDMA Message

Figure 4-10: DS/CDMA demodulation with PN-sequence generated by an LFSR

4.3 Maximum Likelihood LFSR Acquisition

4.3.1 Trellis for Maximum-Likelihood LFSR Synchronization

For maximum-likelihood decoding of an LFSR transmitting via a noisy channel, we

should again design a trellis decoder as we did for the ring oscillator. The trellis section

for a 4-bin, 2-tap LFSR is shown in figure 4-11. The trellis is a graph consisting of

state nodes and edge transitions. In the figure, the possible states of the LFSR are

listed vertically, with edges indicating allowed transitions to states at the next time-

step. From figure 4-11, we see that there are 2n − 1 states in one trellis section of an

LFSR with n states. the height of the trellis grows exponentially in the size of the

LFSR.

113

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0
1

0

1 0

1

0

1

1

1

0

0

1

0
1

Figure 4-11: Trellis section for a 4-bin, 2-tap LFSR

4.3.2 Converting a the Trellis to a Factor Graph

We can draw the LFSR trellis as a factor graph. We form a factor graph from a trellis

by grouping trellis sections into state-constraint-state triplets. For example the trellis

in figure 4-11, would become the factor graph in figure 4-12. Each circular node si

refers to a probability distribution over a single (vertical) set of trellis states. Each

dark square is a constraint function which represents the transition edges in the trellis

section. Note that this is a generalization of the factor graph for the ring oscillator

trellis, in which the constraint function was a soft-inverter.

114

Trellis

Section

Trellis

Section

�✂✁ �☎✄ �✝✆ �✟✞
Trellis

Section

✠☛✡✌☞✍✡✏✎✒✑✂✡✔✓✖✕
✗✙✘✚✕✜✛✣✢✤✛✟✎✦✥✦✎✧✓✩★

✠☛✡✍☞✌✡✏✎✧✑✪✡✫✓✖✕
✗✣✘✬✕✜✛✟✢✭✛✪✎✮✥✦✎✧✓✩★

✠✯✡✍☞✍✡✍✎✧✑✪✡✫✓✖✕
✗✙✘✚✕✜✛✣✢✤✛✟✎✦✥✦✎✒✓✩★

✠☛✡✍☞✌✡✏✎✧✑✪✡✫✓✰✕
✗✣✘✬✕✜✛✟✢✭✛✟✎✦✥✦✎✧✓✩★

Figure 4-12: Factor graph for a trellis

4.3.3 The Sum Product (Forward-Backward) Algorithm on

the LFSR Trellis

The forward-backward algorithm has long been the default algorithm for maximum-

likelihood error correction decoding with a trellis. We will run the algorithm on the

factor graph in figure 4-12 which represents the LFSR trellis. The forward-backward

algorithm on a trellis factor graph proceeds as follows. First there is a “forward” part

of the algorithm which passes messages to the right on the trellis factor graph. This

part of the algorithm calculates the maximum-likelihood estimate for the right-most

state:

1. Initialize s0 with a uniform distribution - equal probability for every possible

LFSR state.

2. Permute this probability distribution according to the allowed trellis transitions.

3. Receive a noisy symbols {y0, y1, y2, y3} from the transmit LFSR via an AWGN

channel.

4. Convert the received symbols to a probabilistic message by taking an inner

product of the received symbol vector with each possible LFSR state.

5. Calculate the new state s1 by multiplying the messages from steps 2 and 4.

6. Normalize s1.

115

7. Repeat: At each time-step, move to the right on the trellis, updating the state

probability with information from each successively received symbol.

Then there is a backward part of the algorithm which passes messages to the left

on the trellis factor graph. This part of the algorithm improves the state estimates

of all of the states to the left of the right-most state, so that the end result is that

every state in the trellis factor graph contains a maximum-likelihood estimate:

1. Initialize with the most recent (right-most) probability distribution over the

trellis states, stmax.

2. Pass this message to the left through the trellis section.

3. Combine the left-going message from the trellis section with information from

the most recently received (right-most) symbol from the channel.

4. Normalize the state.

5. Repeat: At each time-step, move to the left on the trellis.

It should be clear by now that the forward-backward algorithm is just the sum-

product algorithm operating on the factor graph for a trellis. Since this graph is a

tree, the sum-product algorithm will be exact and will produce maximum-likelihood

estimates.

As in the ring oscillator example, there is no need for us to perform the backward

step of the algorithm for this synchronization task. If we have a maximum-likelihood

estimate in the right-most state, that gives us a maximum-likelihood estimate of the

current state of the transmitter. The transmit LFSR is deterministic, so the trellis

for any LFSR has only one edge emanating from any given state and only one way to

transition between states. Therefore if we are given the most likely state in the right-

most trellis section, this in turn gives us complete information about the history of

the (deterministic) transmitter. The forward part of the algorithm suffices to recover

the most likely history of the transmit LFSR.

116

In effect, the trellis synchronizer correlates every possible state with the received

signal at every time-step. This computation is exponentially complex in the number of

bins of the transmit LFSR. In practice, this parallel correlation operation is serialized

and combined with decision theory to conserve resources. But reduced computational

complexity comes at the expense of longer and unpredictable acquisition times [32].

4.3.4 The Max Product (Viterbi’s) Algorithm

Many electrical engineers will have a passing familiarity with Viterbi’s algorithm.

Viterbi’s algorithm is nearly identical to the forward-backward algorithm, but instead

of storing a “soft” probability distribution at each time-step, Viterbi’s algorithm picks

the most likely state at each time-step and then assumes that it is 100% likely. So

Viterbi’s algorithm doesn’t have to store a probability distribution over all the trellis

states, it only has to store the most likely trellis state. Using this max operation

instead of a sum operation is a different (less memory intensive) way of summarizing

the information about which path through the trellis is most likely so far. The Viterbi

algorithm is therefore also known as the max product algorithm.

Since multiplication is distributive over the max function just as it is distributive

over the sum function, the operations still form a semi-ring as they do in the sum

product (forward-backward) algorithm. In general we can use any summary function

which forms a semi-ring with multiplication. The distributive property of a semi-ring

assures us that we are still able to distribute products over the summary function,

which is the pre-requisite for being able to express recursive concatenation of products

and summary functions as local message passing on a graph.

4.4 Low-Complexity LFSR Acquisition

4.4.1 The LFSR Shift Graph

Though the trellis factor graph is optimum in the sense that it performs a maximum-

likelihood estimate, it is not the only graph we can draw for synchronizing the LFSR.

117

�✂✁☎✄✝✆ ✞✠✟�✡✁☛✄☞✆ ✞✌✟�✡✁☛✄☞✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✡✁☛✄☞✆ ✞✌✟�✡✁☛✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☛✄☞✆ ✞✌✟

✍✏✎ ✍✌✑ ✍✓✒ ✍✕✔ ✍✓✖ ✍✕✗ ✍✕✘✍✕✙

Figure 4-13: Shift graph for a linear feedback shift register

In fact another graph directly suggest itself. We could simply apply the LFSR con-

straints to the received time-series as shown in figure 4-13. I call this a shift graph

following Lind and Marcus [27]. This graph has cycles and local evidence, so if we

naively run the sum product algorithm with message passing in every direction, it is

not guaranteed to produce accurate results or even to converge.

4.4.2 “Rolling Up the Shift Graph: The Noise Lock Loop

As we have discussed with the trellis factor graph, we are only interested in the

most recent (right-most) estimate of the transmitter’s state. Therefore we need only

perform forward message passing on the LFSR shift graph shown in figure 4-14, just

as we have on the trellis. Figure 4-15 shows a single section of the shift graph.

This section is used identically at each time-step to estimate the current state of the

transmit LFSR. Once a state is estimated, it can be used to estimate future states,

so messages on the diagonal edges in figure 4-14 are just copies of the state from

which they originate. Rather than implement the entire shift graph as a system, we

can design a less complex system (shown figure 4-16) to implement this recursive

estimation. We call this system a Noise Lock Loop (NLL) [52]. The NLL is redrawn

in figure 4-17 to resemble the factor graph we drew for the transmitter LFSR.

118

�✂✁☎✄✝✆ ✞✠✟�✡✁☛✄☞✆ ✞✌✟�✡✁☛✄☞✆ ✞✌✟�✂✁☎✄✝✆ ✞✠✟�✡✁☛✄☞✆ ✞✌✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✡✁☛✄☞✆ ✞✌✟

✍✏✎ ✍✒✑ ✍☞✓ ✍✕✔ ✍✝✖ ✍✘✗ ✍✕✙ ✍✏✚

Figure 4-14: Forward-only message passing on shift graph for a linear feedback shift
register

4.4.3 Performance of the Noise Lock Loop (NLL)

The NLL combines a low-complexity model of the transmit LFSR with a model of

the channel. It therefore performs synchronization of a noisy LFSR better than the

channel model alone. Acquisition is defined as the estimator guessing the true state

for the transmit LFSR with greater than 95% confidence. Multiple trials of each ex-

periment were simulated and the time until acquisition were recorded. As can be seen

from figure 4-18, the NLL exhibits a tight unimodal distribution of synchronization

times. This property makes the NLL interesting as a novel PN-sequence acquisition

system. State-of-the-art systems lack a well-behaved distribution of acquisition times.

In zero noise the NLL synchronizes perfectly on every trial. The noise lock loop

does not perform as well as the trellis if there is a lot of noise in the channel. With

more noise, the NLL only synchronizes on some percentage of trials. If the noise

amplitude exceeds the signal amplitude (σ > 1, SNR > 3 dB) then the NLL rarely

manages to synchronize.

Unlike the NLL, the trellis always synchronizes eventually. For the trellis, more

noise in the channel only leads to longer synchronization times. We might wish that

we could improve the performance of the NLL so that it behaves more like the trellis.

119

�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟

✡☞☛ ✡✍✌ ✡✏✎ ✡☞✑

Figure 4-15: Section of the shift graph for a linear feedback shift register

In fact, we can use joint marginals to improve the performance of the NLL at the

cost of increased computational complexity. At the most computationally complex

extreme, we recover the exact trellis algorithm.

4.5 Joint Marginals Generalize Between the NLL

and the trellis

With joint marginals we can turn a knob between the trellis and the NLL. The

messages quickly become complex for a long LFSR, so we will examine only a 3-bin

2-tap LFSR. The shift for such an LFSR is shown in figure 4-14. We know that

the trellis for this LFSR has 3-bit states, {(000), (001), . . . , (111)}. Since the trellis

employs 3-bit states and performs maximum-likelihood estimation, joint messages

over three time-steps of the LFSR shift graph will also suffice for maximum-likelihood

estimation.

The joint 3 time-step messages are large however, so let us first calculate the

joint messages over 2 time-steps as shown in figure 4-19. This will not result in a

maximum-likelihood estimate, but will yield improved performance over the original

120

�✂✁☎✄✝✆ ✞✠✟

Delay Delay Delay
✡☞☛ ✡✍✌ ✡✏✎ ✡☞✑

Figure 4-16: System to recursively implement section of the shift graph

�✂✁☎✄✝✆✟✞
τ ✠ +

✁☎✄✝✆✟✞☛✡
τ ✠✌☞✎✍✑✏✓✒✕✔

✁☎✄✝✆✟✞
τ ✠ ✖☎✗✝✘✟✙✎✚ τ ✛ ✖☎✗✝✘✟✙✢✜ τ ✛

✖☎✗✝✘✟✙☛✣ τ ✛

✁☎✄✝✆✟✞
τ ✠

✤✦✥★✧✪✩✬✫ ✤✦✥★✧✪✩✭✫ ✤✦✥★✧✪✩✬✫ ✤✦✥✮✧✯✩✭✫✰✲✱ ✳✑✴✢✵✷✶
✫ ✄✝✆ ✠

✁☎✄✝✆ ✠ ✁☎✄✝✆ ✠

Figure 4-17: The Noise Lock Loop (NLL)

NLL. The 2 time-step joint message from 2 soft-xor gates is given by

p(Z0,Z1)(z0, z1) =
∑

x0,x1

∑

y0,y1

p(X0,X1)(x0, x1)p(Y0,Y1)(y0, y1, y2)f(x0, y0, z0)f(x1, y1, z1).

(4.11)

For (z0, z1) = (0, 0), the constraints f(x0, y0, z0) = δ(x0⊕y0⊕ z0 = 0), f(x1, y1, z1) =

δ(x1 ⊕ y1 ⊕ z1 = 0) are both equal to one for the following terms

x0 y0 x1 y1

0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1

(4.12)

121

-20 0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

S
u

c
c
e

s
s
fu

l
A

c
q

u
is

it
io

n
s

Time Until Acquisition (in bits)

�✂✁ ✄✆☎✞✝✠✟☛✡✌☞✎✍✏✝✒✑✔✓✖✕✘✗✙✗✙✚✠✄✙✄✛✑✜✕✣✢✥✤✂✗✆✦✎✕✣✁ ✄✘✁ ☎✧✁ ✝☛★✪✩✫✁✬✍✭✚✠✄

Figure 4-18: The Noise Lock Loop (NLL)

So that

p(Z0,Z1)(0, 0) = p(X0,X1)(0, 0)p(Y0,Y1)(0, 0)

+ p(X0,X1)(0, 1)p(Y0,Y1)(0, 1)

+ p(X0,X1)(1, 0)p(Y0,Y1)(1, 0)

+ p(X0,X1)(1, 1)p(Y0,Y1)(1, 1). (4.13)

The other components of p(Z0,Z1)(z0, z1) can be similarly calculated. For (z0, z1) =

122

�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟

✡☞☛ ✡✍✌ ✡✏✎ ✡✒✑ ✡✍✓

✔ ✓

✕✗✖ ✕✍✘

✙✚✘✙ ✖

Figure 4-19: 2 time-step joint message on the LFSR shift graph

(0, 1), the constraints are both equal to one for the following terms

x0 y0 x1 y1

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

(4.14)

So that

p(Z0,Z1)(0, 1) = p(X0,X1)(0, 1)p(Y0,Y1)(0, 0)

+ p(X0,X1)(0, 0)p(Y0,Y1)(0, 1)

+ p(X0,X1)(1, 1)p(Y0,Y1)(1, 0)

+ p(X0,X1)(1, 1)p(Y0,Y1)(0, 1). (4.15)

123

Similarly,

p(Z0,Z1)(1, 0) = p(X0,X1)(0, 1)p(Y0,Y1)(0, 0)

+ p(X0,X1)(0, 1)p(Y0,Y1)(1, 1)

+ p(X0,X1)(1, 0)p(Y0,Y1)(0, 0)

+ p(X0,X1)(1, 0)p(Y0,Y1)(1, 1). (4.16)

and

p(Z0,Z1)(1, 1) = p(X0,X1)(0, 1)p(Y0,Y1)(0, 1)

+ p(X0,X1)(0, 1)p(Y0,Y1)(1, 0)

+ p(X0,X1)(1, 0)p(Y0,Y1)(0, 1)

+ p(X0,X1)(1, 0)p(Y0,Y1)(1, 0). (4.17)

�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✡✁☎✄✝✆ ✞✠✟�✡✁☎✄✝✆ ✞✠✟�✂✁☛✄✝✆ ✞✠✟�✡✁☎✄✝✆ ✞✠✟

☞✍✌ ☞✏✎ ☞✒✑ ☞✔✓ ☞✖✕ ☞✍✗

✘✔✙ ✘✛✚ ✜ ✗

✢ ✙ ✢ ✚ ✢✤✣
✥ ✙ ✥ ✣✥✍✚

Figure 4-20: 3 time-step joint message on the LFSR shift graph (recovers the trellis)

124

Now let us calculate the 3 time-step joint message.

p(Z0,Z1,Z2)(z0, z1, z2) =
∑

x0,x1,x2

∑

y0,y1,y2

p(X0,X1,X2)(x0, x1, x2)p(Y0,Y1,Y2)(y0, y1, y2) ·

f(x0, y0, z0)f(x1, y1, z1)f(x2, y2, z2). (4.18)

For (z0, z1, z2) = (0, 0, 0), the constraints f(x0, y0, z0) = δ(x0 ⊕ y0 ⊕ z0 = 0),

f(x1, y1, z1) = δ(x1 ⊕ y1 ⊕ z1 = 0), and f(x2, y2, z2) = δ(x2 ⊕ y2 ⊕ z2 = 0) are

all equal to one for the following terms

x0 x1 x2 y0 y1 y2

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

(4.19)

So that

p(Z0,Z1,Z2)(0, 0, 0) = p(X0,X1,X2)(0, 0, 0)p(Y0,Y1,Y2)(0, 0, 0)

+ p(X0,X1,X2)(0, 0, 1)p(Y0,Y1,Y2)(0, 0, 1)

+ p(X0,X1,X2)(0, 1, 0)p(Y0,Y1,Y2)(0, 1, 0)

+ p(X0,X1,X2)(0, 1, 1)p(Y0,Y1,Y2)(0, 1, 1)

+ p(X0,X1,X2)(1, 0, 0)p(Y0,Y1,Y2)(1, 0, 0)

+ p(X0,X1,X2)(1, 0, 1)p(Y0,Y1,Y2)(1, 0, 1)

+ p(X0,X1,X2)(1, 1, 0)p(Y0,Y1,Y2)(1, 1, 0)

+ p(X0,X1,X2)(1, 1, 1)p(Y0,Y1,Y2)(1, 1, 1). (4.20)

125

The other components of p(Z0,Z1,Z2)(z0, z1, z2) can be similarly calculated, but in the

interest of space will be left to the reader.

If we want to implement LFSR synchronization with these joint messages, on

each iteration of the algorithm the x message is the z message from 3 time-steps

before, pt
(X0,X1,X2)(x0, x1, x2) = pt−3

(Z0,Z1,Z2)(z0, z1, z2). Meanwhile the y message is the

z message from the last time-step, pt
(X0,X1,X2)(x0, x1, x2) = pt−1

(Z0,Z1,Z2)(z0, z1, z2).

4.6 Scheduling

To run the sum product algorithm in discrete-time on any graph, we must choose

an order in which to update the messages. We will assume that there is at most

one message transmitted in each direction on a given edge during a single time-step.

That message completely replaces any message that was being passed on that edge

in that direction at previous time-steps. As we have seen in earlier chapters, a new

outgoing message on one edge of a given node is calculated from local information,

from incoming messages on the other edges of the node. We define a message as

pending if it has been re-calculated due to new incoming messages.

A schedule could be chosen to allow all messages to be re-sent on all edges at each

time-step, whether they are pending (have changed) or not. This is called a flooding

schedule. However, we can accomplish exactly the same thing by only sending every

pending message in the graph on every time-step. This is the most aggressive possible

schedule for message passing. At the other extreme is a serial schedule, in which a

single pending message in the graph is chosen at random to be sent at each time-step.

In a cycle-free graph, with a schedule in which only pending messages are transmitted,

the sum product algorithm will eventually halt in a state with no messages pending.

If a graph has cycles, messages will continue to circulate around cycles in the graph

even if their values are no longer changing.

126

4.7 Routing

So far we have assumed that every pending message should eventually be sent.

Scheduling only answers the question of when. We are beginning to understand

however, that sometimes we do not want to send every pending message on every

time-step. We call this novel concept “routing” and take it mean the choosing to

send some subset of all possible messages on the graph. At best, routing can signifi-

cantly reduce the computational complexity of the sum product algorithm. At least,

it can greatly reduce the complexity of the implementation hardware.

For example by choosing to only pass messages forward (rolling-up) the noise lock

loop, we are able to re-use the same few soft-gates for each received data value, rather

than storing a long analog time-series and parallel processing with a large number of

soft-gates required by the complete shift graph. In essence, routing has enabled us to

build pipe-lined signal processing architectures for the sum-product algorithm.

Another use of routing would be as follows. Suppose we want the quality of the

complete trellis for LFSR synchronization, but not the computational complexity. We

could try running the sum product algorithm on a (loopy) graph composed of a 3

time-step section of the LFSR shift graph in the example above. The marginals would

be calculated for 3 time-steps, say s0, s1, s2. With any luck, after several iterations

of the message-passing schedule on this section of the shift graph, these marginals

would approximate the joint marginal p(S0,S1,S2)(s0, s1, s2). We can then move forward

on the shift graph by one time-step just as we do above. This does indeed seem to

improve performance of the NLL, but further experimentation is required.

If successful, this idea could also potentially be applied to extended Kalman filters

and other applications of probabilistic message passing on graphs. If the update

function of the nonlinear system is a function of several variables, it may indeed make

sense to allow messages to share information within the system so that estimates of

each of the variables can act on one another before the entire system shifts forward

in time.

The path to further studies of routing seems clear. We will study other periodic

127

Delay
Delay

Delay�

✁

✂

Figure 4-21: Block diagram for a binary counter

finite-state machines (FSM) such as a binary counter like that shown in figure 4-21.

First we draw the complete “un-rolled” shift graph for the FSM as shown in figure

4-22. Then we study how choosing different routing schemes on this graph, such as

forward-only and global forward-only/local forward-backward affect the performance

of detection. We can actually study how decoding certainty spreads through the

graph, by visualizing the entropy at every nodes as the sum product algorithm runs.

To calculate the entropy at a node in the graph we must average over multiple de-

tection trials. By gathering experience with different routing schemes on shift graphs

for several different periodic FSM, we should be able to gain more intuition about

what constitutes a useful routing scheme. The simulation tools to perform these

experiments are currently under construction.

128

�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁✡✄✠✆ ✞✠✟�✂✁☎✄✝✆ ✞✠✟�✂✁✡✄✠✆ ✞✠✟�✂✁✡✄✠✆ ✞✠✟�☛✁☎✄✠✆ ✞✝✟

�✂✁ ☞✌✆ ✍✎✟�✂✁ ☞✌✆ ✍✎✟�✂✁ ☞✌✆ ✍✎✟�✂✁ ☞✌✆ ✍✠✟�✂✁ ☞✌✆ ✍✎✟�✂✁ ☞✌✆ ✍✎✟�✂✁ ☞✏✆ ✍✎✟�✂✁ ☞✌✆ ✍✎✟

✞ ✞ ✞ ✞ ✞ ✞ ✞✞

✍ ✍ ✍ ✍ ✍ ✍ ✍✍

�✂✁✡✑✠✆ ✒✓✟�✂✁✡✑✠✆ ✒✓✟�✂✁☎✑✝✆ ✒✔✟�✂✁✡✑✠✆ ✒✓✟�✂✁☎✑✝✆ ✒✔✟�✂✁✡✑✠✆ ✒✓✟�✂✁☎✑✝✆ ✒✔✟�✂✁☎✑✝✆ ✒✓✟

✒ ✒ ✒ ✒ ✒ ✒ ✒✒

Figure 4-22: Shift graph for a binary counter

129

130

Chapter 5

Analog VLSI Circuits for

Probabilistic Message Passing

5.1 Introduction: The Need for Multipliers

In order to build circuit implementations of the sum-product algorithm, we will need

circuits that compute products of parameters of probability distributions and cir-

cuits that sum over these parameters. Summing operations are trivial with currents,

because of Kirchoff’s Current Law (KCL); one simply ties wires together to sum cur-

rents. Summing voltages is a bit more difficult, but one can use a summing amplifier.

Multiplication poses more choices for the designer. In this document we will inves-

tigate many of the most important ways to implement a multiply operation with

low-complexity analog transistor circuits.

An analog multiplier is a circuit which produces a scaled product Z of two inputs,

Z = kXY, (5.1)

where k is a scaling constant. The values of X, Y and Z can be represented by the

magnitude of a current or voltage. These values can also be represented by voltage

or current spikes or pulses; by the rate of repetition of a series of voltage spike

(pulse rate modulation or PRM), by the width of one or more spikes (pulse width

131

modulation or PWM), by the delays between spikes (Phase or Delay Modulation), or

by a combination of the number of spikes and the spaces between them (pulse code

modulation). Beyond spikes, other bases can be used to represent the values of X,

Y, and Z, for example, the frequencies of sinusoids or any other basis that allows

the design of a compact circuit for performing a multiply. The disadvantage of these

various modulation schemes is that they require time to convey a value. Time is

precious in RF applications, so we will primarily review a variety of known circuits

for performing an analog multiply operation directly on current or voltage levels.

Amplitude

Time

Amplitude

Time

Amplitude

Time

Non-Return-to-Zero (NRZ)

Return-to-Zero (RZ)

Return-to-zero, Antipodal

Figure 5-1: Signal consisting of successive analog samples represented by, respectively,
NRZ analog levels with smooth transitions, RZ analog levels with a soliton-like wave-
form, and RZ antipodal soliton waveforms

132

We represent probabilities as successive analog samples. These could be clocked

analog values with discrete transitions. In practice, we would prefer smooth transi-

tions that don’t generate high-frequency “glitch” noise and which tend to synchronize

by entrainment. As shown in figure 5-1, the representation could be analog samples

with smooth transitions, or it could be smooth unipodal or antipodal return-to-zero

(RZ) analog bumps resembling solitons.

5.2 Multipliers Require Active Elements

Vin

Vout

Figure 5-2: Resistor divider performs scalar multiplication, Vout = Vin(R1/R1 + R2).

In the algebraic sense, multiplication is a linear operation. To be a linear operator

an operator L must satisfy the condition, L(A) + L(B) = L(A + B). Multiplication

of variables A and B by the scalar a satisfies this definition, a(A)+a(B) = a(A+B).

Scalar multiplication of a constant by a variable actually helps to define the most

linear thing there is, a line, y = a(x) + b. A linear completely passive (un-powered)

circuit can perform this kind of multiply. For example, a simple resistor divider like

the one shown in figure 5-2 can multiply an input voltage by a fixed value between

0 and 1. If, however, we want to multiply two variables by each other such as x ∗ y,

or even a variable by itself x ∗ x = x2, then we require a quadratic operation. A

quadratic operation is by definition, nonlinear.

A nonlinear operation could be as simple as the function y = x2 defined over

inputs x = {0, 1} and yielding outputs y = {0, 1}. This is known as a single-quadrant

multiply. It is a monotonic function and therefore performs a one-to-one map. Due

to the nonlinearity however, a uniform distribution of input values will yield a non-

133

uniform distribution of output values compressed toward y = 0. Real valued voltages

that were evenly spaced apart over Vin, are now closer together in V out. Physical

systems with finite energy which are measured over finite time, have finite resolution.

Because of this compression and the resolution limit, implementation of a single-

balanced multiply will erase some information about the input. Bennett’s formulation

of Maxwell’s Demon teaches us that it takes energy to erase information [25]. So a

single-quadrant multiply operation implemented by a physical system must dissipate

some amount of the energy. This energy can come from the input signal though, and

does not necessarily require an external power source.

Multipliers are often characterized as single quadrant (x ≥ 0 and y ≥ 0), double

quadrant (x ≥ 0 or y ≥ 0) or four-quadrant (no restriction on the signs of x and y).

A four-quadrant multiply maps inputs between {−1, 1} to outputs between {−1, 1}.
It performs a many-to-one mapping from input state space to output state space,

meaning that different inputs can produce the same output, for example, (−1)(−1) =

1 and (1)(1) = 1. This many-to-one mapping erases an entire bit of information, the

sign of the input. We can see this because we would require the sign of at least

one input in order to reverse the operation. Therefore implementing a irreversible

four-quadrant multiply in a physical system requires power. All quadratic multiplier

circuit designs will use at least one active, powered circuit element.

We can approximate any nonlinear function with a Taylor series expansion. The

Taylor series expansion of a nonlinear function will include quadratic or higher order

terms. It will therefore require power to implement a nonlinear function in a physical

system. There is one special exception to this rule. It is possible to carefully construct

special multi-dimensional nonlinear functions which perform a one-to-one (unitary)

mapping and therefore do not require power when physically implemented.

134

5.3 Active Elements Integrated in Silicon: Tran-

sistors

In practice, if we want to build integrated circuits in silicon, the active components

available to us are diodes and transistors. A single transistor can in fact perform

a rudimentary multiply, but we will use more than one in order to achieve better

performance. Given layer-deposition 2-dimensional semiconductor fabrication, there

are essentially two possible types of transistors, Bipolar Junction Transistors (BJTs)

and Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs). High perfor-

mance analog multipliers using BJTs have been available since Barry Gilbert proposed

translinear circuits in the 1970’s. High-performance MOSFET based multipliers are

still the subject of active research.

We will eventually be interested in using analog multiply circuits on a chip that

also contains digital circuits in order to integrate analog signal processing for radios

together with digital logic in a single architecture. Large numbers of MOSFETs are

much more economical to produce than BJTs, so digital circuits are generally manu-

factured in semiconductor manufacturing processes that can only produce MOSFETs.

BiCMOS processes which offer both MOSFETs and BJT are also becoming available

for integrating analog RF signal processing with digital circuits, but are not as eco-

nomical as MOSFET-only processes. Circuits using MOSFETs (CMOS) will therefore

be of greatest interest to us.

5.3.1 BJTs

C (collector)

B (base)

E (emitter)

NPN PNP

E

B

C

Figure 5-3: Bipolar Transistors

135

Bipolar Transistors (BJT) like the ones in figure 5-3 exhibit an exponential depen-

dence of the collector current on the voltage difference between the base and emitter,

IC = AEJS(T)eVBE/nUT = IS(T)eVBE/nUT , (5.2)

where AE is the emitter area, JS is the saturation current density, and IS is

the saturation current. The absolute temperature is T and UT denotes the thermal

voltage kT
q

. The “emission coefficient” n is generally close to 1.

5.3.2 JFETs

A field effect transistor (FET) has a different arrangement of p-n junctions than

a BJT and is easier to fabricate accurately and can therefore be made smaller and

cheaper. In a junction field effect transistor (JFET), the base silicon directly contacts

the channel silicon. Operating in the “saturated mode” (VDS ≥ VGS − Vsat), JFETs

can be modelled by

Idsat
=

G0Vp

3



1 − 3(Vp + VT − VGS)

Vp

+ 2

(

Vp + VT − VGS

Vp

)3/2


 . (5.3)

The 2(· · ·)3/2 term can be written as 2[1− (VGS −VT)/Vp]
3/2 and expanded in a three

term binomial series

2

[

1 −
(

VGS − VT

Vp

)]3/2

= 2



1 − 3

2

(

VGS − VT

Vp

)

+
3

2

1

2

1

2

(

VGS − VT

Vp

)2


 (5.4)

so that equation 5.3 becomes

Idsat
=

G0Vp

3



1 − 3 + 3

(

VGS − VT

Vp

)

+ 2 − 3

(

VGS − VT

Vp

)

+
3

4

(

VGS − VT

Vp

)2


 .

(5.5)

Cancellation of terms gives

Idsat
=

G0

4Vp

(VGS − VT)2. (5.6)

136

If we let

β ≡ G0

4Vp

=
µ

2a

W

L
ǫSi. (5.7)

then we may write a simplified model of the JFET [6]

Idsat
= β(VGS − VT)2. (5.8)

5.3.3 MOSFETs

Metal Oxide Semiconductor Field Effect Transistors (MOSFET) like the ones shown

in figure 5-4 are an innovation over JFETs. MOSFETs incorporate a thin layer of

silicon dioxide (SiO2) known simply as an oxide layer separating the base from the

channel. This essentially eliminates the flow of current from the base into the channel.

pFETnFET

G (gate)

D (drain)

S (source)

D

G

S

Figure 5-4: MOSFET transistors

MOSFETs exhibit a similar behavior to BJTs when they operate “below thresh-

old” with the gate voltage less than the threshold voltage Vgs ≤ Vt.

Id =
W

L
J0(T)e(VG−nVS)/nUT = I0(T)e(VG−nVS)/nUT , (5.9)

where W and L are the width and length of the transistor, J0 is the specific current

density, I0 is the specific current, and the slope factor n is generally ≃ 1. At higher

base voltages Vgs ≥ Vt, MOSFETs are said to be operating “above threshold” and

they exhibit different behavior. When Vds < Vgs − Vt, the MOSFET operates in its

“linear” region and is governed by

id = K[Vgs − Vt −
Vds

2
]Vds

137

= K[VgsVds − VtVds −
V 2

ds

2
], (5.10)

where K = µ0Cox
W
L

. When Vds > Vgs −Vt, the MOSFET operates in its “saturation”

region and is governed by an equation resembling the JFET

id =
K

2
[Vgs − Vt]

2

=
K

2
[V 2

gs − 2VgsVt − V 2
t]. (5.11)

5.4 Single-Quadrant Multiplier Circuits

5.4.1 Multiply by Summing Logarithms

ln(.)

ln(.)

e^(.)

X

Y

Z

Figure 5-5: Logarithmic Summing Circuit

Besides translinear circuits, there are some other circuits for performing analog

multiplication. A logarithmic summing circuit is shown in figure 5-5. In this circuit

we take advantage of the fact that

Z = XY = eln XY = eln X+ln Y (5.12)

to implement a multiply.

One way to implement a logarithmic summing circuit with transistors is shown

in figure 5-6. First we use the exponential relationship of bipolar transistors (or

FETs below threshold) to take the natural logarithm of the input currents, X and Y.

Then we sum the resulting output voltages from these transistors using a summing

138

amplifier. Finally, we use another transistor to take the exponential of this summed

current to produce an output current, Z = XY .

IZ

+

-

IY

IX

Figure 5-6: Logarithmic Summing Circuit

Alternatively, one could input voltages instead of currents to logarithmic opera-

tional amplifiers, then sum the resulting output currents from these log-amps using

KCL by simply tying the output currents together, and finally inverting the logarith-

mic with an exponential amplifier.

Before we stated that addition was easy with KCL and that multiplication was

more difficult. With the log-summing circuits, we seemingly get around thsi problem

by reducing multiplication to summation. The catch is that we always end up using

summing amps or log amps which yield circuit complexity on par with the complexity

of other multiply circuits.

One drawback of any logarithmic summer circuit is that both inputs must be

greater than zero. If they weren’t, then the output from ideal logarithm elements

would be ln(0) = −∞ which is not possible in practice. So this is a “single quadrant

multiplier” for which the inputs X, Y ≥ 0.

5.4.2 Multiply by Controlling Gain: The Differential Pair

The circuit shown in figure 5-7 is known as a differential pair. Like its component

transistors, the differential pair accepts a voltage input outputs a current; it is a

139

V1
V2

I1 I2

Ib

Figure 5-7: Differential pair

transconductor. The “diff-pair” is an essential gain element for building amplifiers.

The amount of gain is controlled by the bias current. We can use this gain knob on the

diff-pair as an input to perform a single-quadrant multiply of the differential voltage

input. This is sometimes called a “programmable transconductor”. As we will see

later, more programmable transconductors can be combined to make four-quadrant

multipliers.

Let us analyze the diff-pair in more detail. We will use the expressions for IDS

given for a BJT or for a MOSFET operating below threshold, so that

I1 = I0e
V10/VT (5.13)

I2 = I0e
V20/VT (5.14)

where V10 = V1−V0 and V20 = V2−V0. The sum of the currents IDS through each

transistor in the diff-pair must equal the bias current Ib,

I1 + I2 = I0e
V10/VT + I0e

V20/VT = Ib. (5.15)

By bringing out I0e
V10/VT , this can be rewritten as

I0e
V10/VT

(

1 + e
V20−V10

VT

)

= Ib. (5.16)

140

Or by bringing out I0e
V20/VT as

I0e
V20/VT

(

1 + e
V10−V20

VT

)

= Ib. (5.17)

Furthermore, since V20 − V10 = (V2 − V0) − (V1 − V0) = V2 − V1 ≡ V21 and using

equation 5.14, with a little algebra we can write

I1 =
Ib

1 + e
V21

VT

=
Ib

2

[

1 + tanh
(

V21

2VT

)]

(5.18)

and

I2 =
Ib

1 + e
−

V21

VT

=
Ib

2

[

1 − tanh
(

V21

2VT

)]

. (5.19)

So the output of the differential amplifier is a function tanh ∆V of the input

voltage differential, ∆V = V1 − V2 multiplied by Ib. When operating in the linear

part of this tanh function, the differential pair acts as a single-quadrant multiplier.

The differential pair has another important for the systems discussed in this disser-

tation. The tanh function off the differential pair approximates the erf function(the

integral of a Gaussian distribution) quite well. The differential pair therefore turns

out to be an extremely efficient way to implement a model of a channel with additive

white Gaussian noise (AWGN). Not only will we use this circuit to condition our re-

ceived data, but we will also use it after each internal filter in circuit implementations

of the NLL in order to convert the filter outputs back to well-posed probabilities. We

call this the soft-limiter circuit.

5.5 General Theory of Multiplier Circuits

5.5.1 Nonlinearity Cancellation

Now that we have some hands-on knowledge of analog multiplier circuits, let us try

to understand them better from a theoretical point of view. The essential idea behind

an analog multiplier is shown in figure 5-8. The signals v1 and v2 are applied to a

141

V1

V2

Nonlinear

Device

i0 = avi + bvi

2 + cvi
3 + ...

Nonlinearity

Cancellation

Scheme

i0 = kv1 v2 {
Vi

Figure 5-8: multiplier using a nonlinearity

nonlinear device which can be approximated by the first few terms of its Taylor series

approximation. The Taylor series polynomial produces terms like v2
1, v2

2, v3
1, v3

2, v2
1v2

and many more besides the desired term, v1v2. It is then necessary to remove the

unwanted terms by some form of nonlinearity cancellation circuit. For example, when

we use a mixer to multiply two sinusoids, nonlinearity cancellation involves removing

unwanted harmonic components by filtering the output.

Ib1

io

v1

Gm1

+

-

Figure 5-9: operational transconductance amplifier (OTA)

We can follow this idea of nonlinearity cancellation to construct a multiplier by

combining programmable gain transconductors. The output of a transconductor such

as a diff-pair represented here by the symbol in figure 5-9 is

io = Gm1v1 (5.20)

where Gm1 is a function of Ib1. For a BJT based transconductor,

Gm1 = Ib1/2Vt (5.21)

where Vt is the thermal voltage kT/q.

142

Ib1

io

v1

Gm1

+

-

I2

Figure 5-10: OTA with additional bias current i2

Next we add a small current i2 to the bias current as shown in figure 5-10.

Gm2

+

-

Ib1

io = k1v1v2 + k2v1

v1

Gm1

+

-

I2

Ib2

v2

Figure 5-11: Controlling i2 from v2

We can control the current i2 by a voltage v2 via another transconductor so that,

i2 = Gm2v2 (5.22)

as shown in figure 5-11. Then the output current becomes

io = Gm1v1 =
Ib1 + Gm2v2

2Vt

v1 (5.23)

io =
Gm2v1v2

2Vt

+
Ib1

2Vt

v1 (5.24)

io =
Ib2v1v2

4V 2
t

+
Ib1v1

2Vt

(5.25)

io = k1v1v2 + k2v1. (5.26)

The output includes the desired term k1v1v2 and an unwanted term k2v1. We

143

Gm2

+

-

Ib1

io = k1v1v2
v1

Gm1

+

-

I2

Ib2

v2

Gm1

+

-

Ib1

Figure 5-12: cancelling k2v1 with a third transconductor

can cancel this unwanted term by adding a third transconductor that adds a current

−k2v1 to the output as shown in figure 5-12.

Gm2

+

-

io = k1v1v2

v1 Gm1

+

-

I2
v2

Gm1

+

-

Ib1

{

{
v1

{

Ib1

I2

Ib2

Figure 5-13: fully differential design

Finally, making the circuit completely symmetrical by making the third transcon-

ductor fully differential as seen in figure 5-13 improves the accuracy of the cancellation

should there be any mismatch between the components. If the transconductors in this

last circuit are BJT differential pairs, it is known as a Gilbert cell. Implementation

144

of this circuit with Operational Transconductance Amplifiers (OTA) have also been

reported in the literature.

5.5.2 The Translinear Principle

Another way to understand the four-quadrant Gilbert multiplier is the way Barry

Gilbert himself understood it in 1975 in terms of the translinear principle. The

translinear principle can be used to generalize the analysis of the large-signal behavior

of an important class of transistor circuits, of which multipliers are a special case.

Using the equations for the behavior of transistors, we can use the translinear principle

to analyze the differential pair in figure 5-7.

If V1 and V2 are connected together so that V1 = V2, then by Kirchhoff’s voltage

law,

(V1 − V3) = (V2 − V3) (5.27)

Substituting

ICi
= IS(T)eVBEi

/nUT ⇐⇒ VBEi
= nUT log(ICi

/IS(T)) (5.28)

into 5.27 yields

IC1
/IS(T) = IC2

/IS(T). (5.29)

Generalizing to the translinear loop in figure 5-14, we write

∑

CW

VBEi
=

∑

CCW

VBEi
(5.30)

and

∏

CW

ICi
/ISi

=
∏

CCW

ICi
/ISi

(5.31)

where CW denotes clockwise and CCW denotes counter-clockwise. With this for-

145

ICi (CCW)

VBEi (CCW)

VBEi (CW)

ICi (CW)

Figure 5-14: Translinear Loop Circuit

mula we can synthesize a large family of circuits which compute products of currents.

5.5.3 Companding Current-Mirror Inputs

Iout1 Iout2

Iin1 Iin2

Figure 5-15: Current Controlled Current Divider

So far, our multiplier circuits multiply an input voltage VX by an input current IY

and produce an output current IZ . It would be advantageous for system modularity

however, if we could operate entirely on voltages or entirely on currents. We can

multiply a current IX by another current IY = Ib using a circuit known as a current

controlled current divider shown in figure 5-15. This circuit uses current mirrors

to convert input currents to voltages which are suitable for input into the familiar

146

differential pair. The current mirrors form a companding circuit. They take the log of

the input current and use this to control the transistors of the differential pair. Since

the transistors in the differential pair take the exponential of their gate voltages,

the currents through the transistors in the diff-pair exactly equal the input currents.

Since the input voltages to the diff-pair transistors in the log domain, the dynamic

range of the signal is small and the diff-pair tends to operate in the linear range of

the tanh function. Since a current mirror is a translinear loop, this circuit also obeys

the translinear principle, which makes it robust and allows it to be analyzed within

the translinear framework.

5.6 Soft-Gates

Lustenberger has proposed a class of relatively low-complexity translinear circuits

which implement the soft-gate functions precisely.

Iyp(y=0)

Izp(z=0) =

Iyp(y=0)Ixp(x=0) +

Iyp(y=1)Ixp(x=1)

Ixp(x=0)

Iyp(y=1)

Izp(z=1) =

Iyp(y=0)Ixp(x=1) +

Iyp(y=1)Ixp(x=0)

Ixp(x=1)

Iyp(y=1)Ixp(x=0)

Iyp(y=1)Ixp(x=1) Iyp(y=0)Ixp(x=1)

Iyp(y=0)Ixp(x=0)

Figure 5-16: Gilbert Multiplier Implements Softxor Function

As can be seen in figure 5-16, a re-labelling of the Gilbert multiplier circuit is

sufficient to implement the soft-xor function. A slight modification of the Gilbert

multiplier implements the soft-equals function (variable node with more than 2 inci-

dent edges) as shown in figure 5-17.

147

Iyp(y=0)

Izp(z=0) =

Iyp(y=0)Ixp(x=0)

Ixp(x=0)

Iyp(y=1)

Izp(z=1) =

Iyp(y=1)Ixp(x=1)

Ixp(x=1)

Figure 5-17: Modified Gilbert Multiplier Implements Softequals Function

5.7 Figures of Merit

A “mixer” is an analog multiplier circuit used in radio applications for modulation or

demodulation. It is in this context that analog multipliers will likely be most familiar

to RF designers. Typically one or both of the inputs to a mixer is a sinusoidal or

modulated sinusoidal signal. By subtracting one trigonometric identity

cos(u + v) = cos(u) cos(v) − sin(u) sin(v) (5.32)

from another trigonometric identity

cos(u − v) = cos(u) cos(v) + sin(u) sin(v), (5.33)

we find that the product of two sinusoids of frequencies u and v

2 sin(u) sin(v) = cos(u − v) − cos(u + v) (5.34)

consists of a sinusoid with the “sum” frequency u+ v and a sinusoid with the “differ-

ence” frequency u− v. When multiplying sinusoids, one typically filters out the sum

frequency in order to leave the difference frequency. This is known as mixing-down

148

or down-conversion and is the essential building block in a heterodyne radio receiver.

We are using mixer-type circuits, but are using them to operate on completely

different signals. Instead of sinusoidal signals, we have analog probability levels. The

question is how well can mixer-type circuits perform this function?

The merit of a mixer is evaluated according to its “linearity”, port-to-port isola-

tion, gain, noise figure, and dynamic range [54]. Attenuation or conversion loss and

port-to-port isolation are generally measured in dBm = log(signalpower/1mW) with

a 50Ω load. Port-to-port isolation will effect our resolution to some degree, but it

will be much less important for us than it is in sinusoidally based RF demodulation.

This will be described in greater detail when we discuss the soft-MUX, but the basic

idea is that leakage signals don’t tend to have as drastic impact on soft-decoding as

it does on RF down-conversion. In any event, the best isolation is achieved by PIN

diodes which are used as analog switches and offer approximately 70dBm of isolation.

Typical “Gilbert cell” active mixers offer on the order of 30dB of isolation.

Linearity in this context means how accurately the actual mixer function adheres

to an ideal mathematical multiplication. It is an open and interesting research ques-

tion to fully characterize how linearity of the multiplies will affect the sum-product

algorithm, but we know from preliminary simulations that the affect will not be

catastrophic. Linearity should therefore be de-emphasized as a design constraint.

In practice, this means we can push our circuits to operate outside of their linear

range and therefore obtain a larger dynamic range from the same circuit for the same

amount of power.

The sum-product algorithm is guaranteed to reach a maximum-likelihood estimate

on a graph without cycles. By turning up the gain on a multiply in the sum-product

algorithm it is actually possible to speed up the sum-product algorithm, while sac-

rificing the guarantee that the algorithm will converge to the maximum-likelihood

estimate. Since we have already sacrificed this guarantee in graphs with cycles, we

might even desire non-ideal multipliers to get quick and dirty estimates. If the actual

multiplier gives a function which is steeper than a “linear” multiply in the middle

range and then less steep at the edges, this may effectively schedule the annealing

149

process for the sum-product algorithm so that it goes faster in the beginning and

then slows down as it refines its answers at the end. This may be a good thing to do

in high SNR environments or in relatively easy searches where hasty early decisions

are unlikely to freeze the answer irrevocably into a bad region of the search space.

Passive mixers have attenuation and depend on post-amplification for their gain.

We are interested in active mixers which tend to have gain between 0 and 5. 8 would

be a lot of gain for a mixer. For our purposes, we are free to scale our signals in

any way we please so that we do not need gain from our mixer circuits, although we

would prefer not to have attenuation. We simply take the ratio of dynamic range and

the noise to obtain the resolution.

A typical mixer has 5-8 bits of resolution. This is pretty useful for decoding. In

soft decoding we would like our resolution to be at least 2 bits and would prefer

as much as 8 bits of resolution. By way of comparison, demodulation of sinusoids

by digital signal processing uses 12 or 14 bits of resolution and CD quality audio

utilizes 16 bits of resolution. The best analog-to-digital converters today offer 24 bits

of resolution. Mixer circuits, like all all analog circuits, tend to be specified with

dynamic range and a noise figure in SNR and not in bits of resolution. The table

below converts some common values of resolution (in bits) to SNR (power)

SNR = 20 log
(

PS

PN

)

(5.35)

where PS is the signal power and PN is the noise power.

150

resolution (bits) power SNR (dB)

1 bit 3dB

2 bits 6dB

5 bits 15dB

8 bits 24dB

12 bits 36dB

14 bits 42dB

16 bits 48dB

24 bits 72dB

The following table converts resolution (in bits) to SNR (voltage),

SNR = 20 log
(

VS

VN

)

(5.36)

where VS is the signal dynamic range in volts and VN is the RMS noise voltage.

resolution (bits) voltage SNR (dB)

1 bit 6dB

2 bits 12dB

5 bits 30dB

8 bits 48dB

12 bits 72dB

14 bits 84dB

16 bits 96dB

24 bits 144dB

5.7.1 Resolution and Power Consumption of Soft-Gates at

1GHz

Let us examine the performance of the simple circuit shown in figure 5-18.

In the TSMC .18 µ m process, the smallest possible dimension of any feature is

λ = .18µm. We would like the circuit to perform a multiply operation on V0 and V1

151

�

✁✄✂✆☎

✝✟✞

✝✡✠

Figure 5-18: 2 transistor multiply single-quadrant multiply (component of a soft-gate)

once every nanosecond (1Gops) while consuming a maximum of 10uW of power. We

only allow the circuit to consume 10uW of power, because then we will be able to use

100’s of such circuits and still have very moderate power consumption for a portable

wireless front-end. The question is how many bits of resolution can we expect from

the circuit with these constraints? We define the resolution (in bits) as

R = log2

(

∆Iout

Inoise

)

(5.37)

where ∆Iout is the output current dynamic range and Inoise is the output-referred

RMS current noise.

Devices in this process are designed to operate between GND=0V and VCC=1.8V.

So the power supply rails are approximately 2V apart. 10uW of power gives us a

maximum of 5uA of current at the output with 2V rails since P = IV . The minimum

output current is very close to 0uA. So the output current dynamic range is 5uA.

Now we must find the output-referred current noise to complete the calculation

of the resolution. The output referred current noise power is given by

I2
RMS = kT

8

3
gm∆f (5.38)

where Boltzman’s constant k = 1.38(10−23) and we assume a circuit at room temper-

ature, T = 300 degrees Kelvin. In this process, µCox = 391e − 6, so MOSFETs with

152

W/L ≈ 10 have

β = µCox
W

L
≈ 3.9e − 3 (5.39)

We can therefore calculate the transconductance gm ≈ 200uS from

gm = β

√

2I

β

=
√

2Iβ. (5.40)

We are interested in a soft-gate that operates over a bandwidth of 1GHz so that

∆f = 109Hz. We can now calculate I2
RMS ≈ 10−15 and therefore the output-referred

current noise is IRMS ≈ 3.3(10−8)A. The resolution is therefore approximately R =

log2(5uA/.047uA) = log2(106), or slightly less than seven bits.

We might wonder what range of voltages we should use to drive this circuit at

the input in order to achieve the above performance. For a transistor in this process,

Cox ≈ .02µA/V 2. With W/L = 2um/.18um ≈ 10, the gate capacitance is about

Cgs = (2/3)WLCox ≈ 4fF . Assuming a sinusoidal signal

V = Vp sin(2πfc)

dV

dt
= Vp2πfc cos(2πfc)

max
dV

dt
= Vp2πfc|cos(2πfc)=1, (5.41)

and substituting into the definition of capacitance I = C dV
dt

, we find that

Vp =
C

I
2πfc ≈ 200mV (5.42)

where I=5uA, C=4fF, and fc = 1GHz. So vpp = 400mV .

Further simulation is needed to verify and extend these back-of-the-envelope cal-

culations, but it seems promising that MOSFET soft-gates in non-heroic processes

can operate on reasonably high-frequency signals.

153

154

Chapter 6

The Sum Product Algorithm in

Continuous-Time

6.1 Differential Message Passing

Annealing is what happens when we try to cool a material so that it forms a per-

fect crystal without “discontinuities”. At the atomic level, a perfect crystal would

be spatially invariant; Every part of the crystal would be a perfect copy of every

other part of the crystal. This perfectly symmetrical state, although it is the lowest

possible energy state of a crystal, is actually quite difficult to achieve, because differ-

ent parts of the crystal often grow from unconnected “seeds”. Crystal will start to

form independently at different places in a liquid that is beginning to freeze, and by

time the entire material is frozen, there may be several different crystal orientations

present. The frozen material tends to break more easily along the discontinuities

between neighboring regions of differing orientation. To avoid this problem, Japanese

Samurai swords were painstakingly annealed through a process of successive heating

and cooling. On each heating stage, the metal crystal would be melted a bit, allowing

regions of the crystal that might have been misaligned with one another to work out

some of their “kinks.” Then the metal is cooled again and the process is repeated.

Annealing works because adjacent atoms in the material would prefer to be in

alignment than randomly oriented to one another. This preference can be modelled

155

by an energy function over the possible alignments or states of the two atoms. In this

way the total energy of a crystalline material is composed of a very large number of

pairwise energy functions over pairs of atoms. As a crystal is annealed, the atoms are

all acting on each other in continuous-time, trying to lower the energy of all of the

pairs in which they participate.

Physicists model each atom in an annealing crystal as having a probability dis-

tribution over its possible states. The energy function, when normalized, is then

really a joint probability distribution. Such a model should by now appear rather

familiar. Physicists call such models a spin-glass, and research on spin-glasses was an

important ancestor of probabilistic message passing algorithms.

When a crystal is annealed, the atoms in the material are in effect performing a

constraint satisfaction computation. The converse is also true - constraint satisfaction

problems in computer science bear a deep resemblance to spin-glass annealing. All

the sum-product algorithm is really doing is performing pairwise interactions between

adjacent states in an attempt to settle to a mutually compatible solution. Just like

annealing, probabilistic message passing algorithms ought properly to be implemented

as a continuous-time parallel process.

Unfortunately, because discrete-time serial computers are generally the only ones

readily available to us, we adopt a discrete-time approximation to the continuous-

time process. Such a discrete-time approximation should have the property that

every message gets updated when there is enough new information available from

other messages to justify recomputing the message. One definition of “enough” could

be that a message is computed for an (outgoing) edge from a given node when all

of the other (incoming) edges to that node have new messages coming in. This idea

is the origin of the message passing schedule discussed in the last chapter. There is

no proof, however, that this schedule is guaranteed to find the same answer as the

continuous-time process would have. In fact, it will often diverge from the continuous-

time solution, producing wrong answers which are merely an artifact of the scheduling.

When this happens, we use damping.

156

6.1.1 Damping

Damping means that messages consist of a linear combination of the current calcu-

lated message and the last calculated message in the same direction on the same

edge,

µt = αµt + (1 − α)µt−1. (6.1)

6.1.2 Von Neuman Stability Analysis of Finite Differences

Finite difference models of partial differential equations (PDE) have much in common

with probabilistic message passing algorithms on a Markov Random Field. In each

case we have a grid of states which update in time based on functions of their local

neighbors. And in both cases, we approximate continuous-time updates with discrete-

time updates. Of course there is an important difference; In a finite difference model

of a PDE, the functions impose constraints on the derivative of the solution, while in

probabilistic message passing, the constraints can be more general.

It is not yet understood under which conditions damping stabilizes discrete-time

probabilistic message passing so that it converges to the continuous-time solution.

There is, however, a suggestively similar procedure for stabilizing the discrete-time

(and discrete-space) finite difference model of a PDE. A Von Neumann stability anal-

ysis is a well-understood way to analyze the stability of a finite difference model of a

PDE.

Our finite difference model in one dimension will consist of a row of states, u

indexed in space by j and in time by n. So at time n, a point in space on the solution

of the PDE is a real number, un
j . To perform the stability analysis, we linearize the

PDE (if it is not already) and observe the growth of sinusoidal modes

un
j = A(k)neikjx (6.2)

in the system, where A(k) gives an exponentially growing amplitude in time for

157

the sinusoidal spatial oscillation. We can substitute this into the finite difference

equation as an ansatz. If |A(k)| > 1 for any k, then those modes will grow without

bound and the model will be unstable.

Let use as an example, a first order PDE in one dimension,

∂u

∂t
= −ν

∂u

∂x
. (6.3)

Any function of the form u = f(x− νt) can solve this equation exactly, as can be

seen by substitution of this ansatz into the PDE. A naive finite difference model of

this PDE would be first-order in time and second-order in space,

un+1
j − un

j

∆t
= −ν

(

un
j+1 − un

j−1

2∆x

)

. (6.4)

Re-arranging terms this is written,

un+1
j = un

j − ν∆t

∆x
(un

j+1 − un
j−1). (6.5)

Choosing equation (6.1.2) as an ansatz and so substituting into the finite difference

update we get

An+1eikjx = Aneikjx − ν∆t

2∆x
(Aneik(j+1)x − Aneik(j−1)x)

A = 1 − ν∆t

2∆x
(eikx − e−ikx)

= 1 − i
ν∆t

∆x
sin kx (6.6)

The absolute magnitude of this is always greater than one, so the model will

always diverge. This can be remedied by the LAX method which averages neighbors

for the time derivative,

un+1
j =

1

2
(un

j+1 + un
j−1) −

ν∆t

2Deltax
(un

j+1 − un
j−1). (6.7)

Performing the stability analysis again yields an amplitude,

158

A = cos kx − ν∆t

∆x
sin kx (6.8)

For the model to be stable, we require the magnitude of this complex amplitude

to always be less than 1 so that

|A|2 = cos2 kx +
(

ν∆t

∆x

)2

sin2 kx ≤ 1 (6.9)

which is true under the condition that

|ν|∆t

∆x
≤ 1. (6.10)

This is the Courant-Friedrichs-Levy stability criterion, which essentially says that

“the velocity at which information propagates in the numerical algorithm ∆x/∆t,

must be faster than the velocity of the solution ν... Otherwise there will be a numerical

“boom” as the real solution tries to out-run the rate at which the numerical solution

can advance [15].”

Damping in probabilistic message passing solves the same problem that the LAX

method solved in our finite difference model. If the true continuous-time annealing

process is trying to out-run the flow of information by message passing updates,

then the states need to change slower over more message updates. We can update

messages more slowly by averaging a message update with previous messages on the

same edge, ie. damping. It still remains for us to find an analogous bound to the

Courant-Friedrichs-Levy stability criterion for sum product which would tell us how

much and what kind of damping is enough to ensure stability and convergence of the

discrete-time model to the continuous-time solution. It is likely for example, that

for many inhomogeneous graphs, different amounts of damping could be tolerated at

different places in the graph.

159

�✂✁☎✄✝✆✟✞

✠☛✡✌☞ ✠✎✍ ☞

�✂✁☎✄✝✆✟✞

✏✒✑✔✓✖✕ ✡✘✗ ✏✒✑✔✓✖✕ ✍ ✗
✏✒✑✔✓ ✗

✞ ✑✙✓ ✗

Figure 6-1: A two-tap FIR filter with tap weights a1 and a2

6.1.3 Filtering Probabilities and Likelihoods is Equivalent to

Damping

The difference equation for the two-tap 1-pole FIR low-pass FIR filter illustrated in

figure 6-1, above is given by

y[k] = a1x[k − 1] + a2x[k − 2]. (6.11)

If we pass a probability p(1) or p(0) through such a filter, then we obtain

py[k](1) = a1px[k−1](1) + a2px[k−2](1) (6.12)

py[k](0) = a1px[k−1](0) + a2px[k−2](0). (6.13)

Summing these two equations we find

py[k](1) + py[k](0) = a1[px[k−1](1) + px[k−1](0)] + a2[px[k−2](1) + px[k−2](0)]

py[k](1) + py[k](0) = a1 + a2. (6.14)

Since we require py[k](1) + py[k](0) = 1 for proper normalization, a1 + a2 = 1 for

probabilities to be preserved under filtering. This is not at all an onerous constraint

on the filter. Forcing 1 − a1 = a2 means that a 2-tap low-pass FIR filter is precisely

160

equivalent to our prior definition of damping.

In general, if we pass a probability p(1) through a unitary FIR filter with N taps,

where N is large, and where 〈an〉 = 1
N

, we find that we obtain the expectation of

p(1),

N
∑

n=1

anpt−nτ (1) =
1

N

N
∑

n=1

pt−nτ (1) = 〈p(1)〉. (6.15)

The same holds for likelihoods l ≡ p(1)
p(0)

N
∑

n=1

an
pt−nτ (1)

pt−nτ (0)
=

1

N

N
∑

n=1

pt−nτ (1)

pt−nτ (0)
= 〈l〉. (6.16)

6.1.4 Filtering Log-Likelihoods

However, filtering does not operate on log-likelihoods in the same way that it operates

on probabilities. From the definition of a log-likelihood,

L = log

[

p(1)

p(0)

]

. (6.17)

We can see that

N
∑

n=1

anLt−nτ =
N

∑

n=1

an log

[

pt−nτ (1)

pt−nτ (0)

]

= log

[

N
∏

n=1

(

pt−nτ (1)

pt−nτ (0)

)an
]

. (6.18)

For example, Simply substituting the log-likelihood into the difference equation

for the two-tap FIR filter from above, we obtain

y[k] = a1 log

[

px[k−1](1)

px[k−1](0)

]

+ a2 log

[

px[k−2](1)

px[k−2](0)

]

.

= log

[(

px[k−1](1)

px[k−1](0)

)a1
(

px[k−2](1)

px[k−2](0)

)a2
]

(6.19)

161

Let us suppose that the resulting y[k] is a valid log-likelihood and see if that results

in a contradiction. So let

Ly ≡ log

[

py[k](1)

py[k](0)

]

= log

[(

px[k−1](1)

px[k−1](0)

)a1
(

px[k−2](1)

px[k−2](0)

)a2
]

py[k](1)

py[k](0)
=

(

px[k−1](1)

px[k−1](0)

)a1
(

px[k−2](1)

px[k−2](0)

)a2

(6.20)

If a1 = a2 = 1, this is the likelihood form of a soft-equals gate. For arbitrary

choices of a1 and a2 it is a weighted soft-equals gate. So the FIR filter acting on

a log-likelihood representation does not perform the filtering operation that we had

desired, but does something else entirely.

6.2 Analog Memory Circuits for Continuous-Time

Implementation

Continuous-time (CT) analog memory will have a number of benefits for soft-gate

systems. It will greatly reduce noisy glitches and can potentially run at much faster

speeds compared to clocked analog memory. It should also be possible to invent active

CT delay-line circuits such as soliton waveguide circuits or linear-phase filter circuits

which are less susceptible to drift, parasitics, and leakage than passive charge storage

such as S/H circuits. Perhaps the most important benefit, however, is that there is

no sampler which must be synchronized to the transmitter’s bit clock.

In the existing implementations of analog circuits computing the sum-product

algorithm for error correction decoding, [28] et al. have presented the analog inputs

simultaneously to all of the leaf nodes of the factor graph using Digital-to-Analog

Converters (DAC). Demosthenous et al. have used a delay-line composed of sample

and hold (S/H) circuits in a 2.8V CMOS current-mode analog Viterbi decoder to

decode an 100Msps serial data stream [10]. I also implemented my own S/H delay

line circuit shown in figure 6-2. Although the performance was acceptable, it was

162

difficult to compensate a string of sample-and-holds to have unity gain. The clocking

also inserted significant glitch noise into the entire system.

�✂✁
✄✆☎✞✝

✟✡✠☞☛✍✌

✠☞☛✍✌ ✎
✏✒✑

✎
✏✒✑

✓

✔
✕✗✖

✓

✔
✕✗✖

✟✡✠☞☛✍✌

✠☞☛✍✌
�✘✁ ✄✆☎✞✝✙✛✚✢✜ ✝✤✣✦✥

✧ ★ ✩ ✪ ✫

Figure 6-2: Schematic of sample-and-hold delay line circuit

Figure 6-3: Sample-and-hold delay line circuit operating on sinusoidal signal

Although a worthwhile demonstration, S/H circuitry is relatively slow and noisy,

and will not scale to RF. Another way to create analog memory is to sample the

analog signal with an ADC and then use a DAC to convert it back to analog for

presentation to the analog circuitry when it is needed [5]. While potentially useful in

some applications, this Analog-to-Digital-to-Analog (A/D/A) approach is also only

a competitive option in low frequency applications [41].

163

There are a number of possible ways to implement analog CT delay-lines. In

this thesis I demonstrate a proof of principal by implementing analog CT delay with

linear-phase FIR low-pass filters. Unfortunately, linear phase low-pass filters are

likely to be too complex to be cost-effectively integrated. This is because by pre-

serving linear phase, the FIR filters are actually preserving much more information

than is absolutely necessary. It should be possible to build simpler CT delay circuits

which still preserve the analog amplitudes and perform appropriate smoothing with-

out the overhead of maintaining linear phase delay. A hint is offered by Carver Mead’s

much simpler CT delay-line circuits which delay (digital) “neural” pulses. What is

needed are circuits which, like Mead’s simple spike delay-lines, are less complex than

linear-phase FIR filters, but which preserve the (for us) crucial analog amplitude

information.

The engineering decisions for CT delay line circuits trade-off length, noise perfor-

mance, bandwidth, and dispersion. Future work will be directed at finding circuits

in this middle ground, perhaps drawing on integrated micro-strip transmission lines,

nonlinear transmission lines, or soliton waveguide circuits [46].

6.2.1 Active Low-Pass Filters

I have implemented CT analog delay-lines with FIR Chebychev filter circuits. The

FIR filters are designed to have linear phase delay over frequencies up to the cut-off, so

they tend to preserve the coherence of the CT waveform. This kind of analog memory

has not been used before. While there has been progress in analog computing by the

invention of translinear circuits to implement sum-product computations, storing a

baseband RF signal and presenting it to the decoder is a more open problem. We

have analog logic, now we need analog memory.

The system was first simulated using the MATLAB filter design toolbox. Then

the filter circuits schematic were designed using a filter design program from Filter

Solutions. Once the filters were designed, the entire system was simulated using

PSpice circuit simulator. Finally, it is a relatively straight-forward matter to convert

the Spice net-list schematic representation into an actual printed circuit board or

164

0 1 2 3 4 5 6 7

x 10
−3

−5
0
5

input sequence

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 1 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 2 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 3 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 4 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 5 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 6 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 7 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 8 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 9 output

0 1 2 3 4 5 6 7

x 10
−3

−10
0

10
filter 10 output

Figure 6-4: Spice simulations of serial delay line composed of 10 Chebyshev filters

integrated circuit (IC) layout. As can be seen in figures 6-5 and 6-5, the finished

circuits show a close qualitative correspondence to simulations.

The delay element circuit in figure 6-6 was a fifth order Chebyshev type I low-pass

filter with pass-band ripple of .01dB and pass-band frequency of 2kHz. This filter was

implemented using a “positive SAB” circuit topology, with gain of 1. A characteristic

resistance of 10k was chosen. The transfer function is given as,

4.079(1020)

S5 + 3.323(104)S4 + 7.495(108)S3 + 1.042(1013)S2 + 9.251(1016)S + 4.079(1020)
.

(6.21)

Ten of these circuits were connected in series as shown in figure 6-4.

The poles of this transfer function are visualized in the complex plane in figure

6-7. The filter has frequency, phase, and group delay shown in figures 6-8, 6-9, and

6-10 respectively. Ten of these filters were combined in series as shown in figure 6-6.

In Spice simulation, a test signal was input to this delay line. The results of the

simulation are shown in figure 6-4.

165

Figure 6-5: Oscilloscope traces of input to (top) and output from (bottom) a fifth
order Chebychev filter delay line

�✂✁☎✄
✆✞✝✠✟ �
✡ � ✆ �

☛✌☞ ✍✏✎✒✑☎✓✕✔
✖✘✗✚✙
✡ � ✖ �

�✜✛✌☞ ✢✌✁☎✓✕✔
✖✣✗✤✙
✡ � ✖ ✎ ✎✚☞ ☛✌�✜✥☎✓☎✔

✖✦✗✧✙
✡ � ✖ ✥

✛★☞ ✑✒✛✏☛☎✓✕✔
✖✣✗✧✙
✡ � ✖ ✢

✥✚☞ ✍✪✩✒✢☎✓✤✔
✖✘✗✫✙
✡ � ✖ ✩

✎✒☛★☞ ✛✬�✤✄
✆✭✝✠✟ �
✡ � ✆ ✢

�✜✁★✄
✆✭✝✫✟ �
✡ � ✆ ✎

�✮✁✌✄
✆✭✝✫✟ �
✡ � ✆ ✥

�✜✁★✄
✆✞✝✌✟ �
✡ � ✆ ✑

✢✒✢✌☞ ✩✚✍✯✄
✆✞✝✠✟ �
✡ � ✆ ✍

✢✒✛✌☞ ✥✰�✮✄
✆✞✝✠✟ �
✡ � ✆ ✛
�✜✁★✄
✆✞✝✌✟ �
✡ � ✆ ✩

✡✲✱ ✳ ✴ �✶✵ ✱ ✓
✡✠✱ ✳ ✴ �✕✵✤✷✹✸ ✴

✺ ✻✼ ✽
✾❀✿✻ ❁

✡✠✱ ✳ ✴ �✕✵✤✷✹✸ ✴
❂ ✖✦✖

❂ ✖✣✖

❂❄❃✦❃
❂✞❃✦❃

✢
✎

�

❅

❆

❇
❈✣❉ ✢✰✛✠✢✰❊✬❋

✡ � ✗❍●■✙ � ❇

✢
✎

�

❅

❆

❇
❈✣❉ ✢✰✛✠✢✰❊✬❋

✡ � ✗✯●❏✙ ✢ ❇

Figure 6-6: Schematic diagram of Chebychev continuous-time delay circuit

6.3 Continuous-Time Dynamical Systems

6.3.1 Simple Harmonic Oscillators

The “simple harmonic oscillator” model in physics describes the dynamics of a particle

trapped in a second order (quadratic) energy potential. A particle moving in such

a potential will produce sinusoidal vibrations. The simple harmonic oscillator is an

abundantly useful model for many phenomena in nature since a rugged energy surface

can always be approximated as a quadratic potential near to its minimum by taking

its second-order Taylor series approximation,

166

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ � ✁ ✂ ✟ ✄ ☎ ✆ ✝ ✞ � ✁ ☎ ✆ ✝ ✞ � ✠ ✂ ✄ ☎ ✆ ✝ ✡ � ✄ ☎ ✆ ✝ ✡ � ✟ ✂ ✄ ☎ ✆ ✝ ✡ ✝ ✟ ✂ ✄ ☎ ✆ ✝ ✡ ✄ ☎ ✆ ✝ ✡

✄ ☛ ☞✍✌✍✎ ✏ ☎ ✎ ✑ ✒ ✓✕✔ ✖ ✗ ✗✙✘✙☞ ☎ ✚ ✛ ✗ ☞ ☎ ✜✣✢

✤✦✥★✧✪✩ ✫ ✧✕✬✭✥✮✬✭✯✱✰✲✥✮✳ ✴✱✵✲✴★✶ ✥✷✰✸✳ ✥✹✩

✺✼✻✾✽✪✿

� ✟ ☎ ✆ ✝ ✞

� ✁ ✂ ✄ ☎ ✆ ✝ ✞

� ✁ ☎ ✆ ✝ ✞

� ✄ ☎ ✆ ✝ ✡

✝

✄ ☎ ✆ ✝ ✡

✁ ☎ ✆ ✝ ✞

✁ ✂ ✄ ☎ ✆ ✝ ✞

✟ ☎ ✆ ✝ ✞
❀ ❁✲✽✣❂

Figure 6-7: Poles of Chebychev delay filter

V (x) = V |x=0 +
1

2

d2V

dx2
x2|x=0 + O(x3)

V (x) = V0 +
1

2
V2x

2 + O(x3). (6.22)

The first order term of the series is not present, because the slope at a minima is zero.

Taking the gradient of the potential to find the force, F = ma becomes

m
d2x

dt2
= −dV

dx
= −V2x

mẍ + V2x = 0 (6.23)

which is the equation of motion for a simple harmonic oscillator, a second order linear

ordinary differential equation. If we can approximate a dynamical system as linear in

this way, the solutions of the system will be a linear combination of rising or falling

exponentials and complex sinusoids. Sinusoids are eigenfunctions of linear systems.

So sine-wave oscillators are easy to make - they are the default behavior for any

energy potential with a minima.

167

� ✁✄✂ ☎✆✂ ✝✞✂ ✟✆✂ ✠✞✂
✠ ✡ ☛✄☞✍✌ ✎ ✏ ✌ ✑ ✒ ✓✕✔ ✖ ✗ ✗✄✘✙☛ ✏ ✚ ✛ ✗ ☛ ✏ ✜✞✢

✣✥✤✧✦✩★ ✪ ✦✬✫✭✤✧✫✯✮✱✰✧✲ ✳✬✴✧✫✭✳✕✦✯✵✷✶✹✸✺✳✻✮✯✼✭✤✧✦✭✮✩✳

✽✆✾ ✿✍❀✆❁✍✿✞❂✄❃❅❄✺❆ ❇✬❈❊❉

�

� ❋ ✁

� ❋ ☎

� ❋ ✝

� ❋ ✟

� ❋ ✠

� ❋ ●

� ❋ ❍

� ❋ ■

� ❋ ❏

✁ ❑ ✖ ▲ ▼ ◆ ✡ ❖ ✎ ✏

Figure 6-8: Frequency response of Chebychev delay filter

6.3.2 Ring Oscillator

One of the simplest nonlinear energy potentials is the bistable potential shown in

figure 6-11. This potential consists of two adjacent quadratic troughs with a low

barrier between them. The barrier between the two troughs is often referred to as

the threshold. A particle in this kind of energy potential will occupy one of the two

troughs and will require some amount of energy to switch over the threshold into the

other trough. A system which can switch between two states with the application of

a small amount of energy, is bi-stable. Such bistable switching systems are the basic

building block of a digital computer.

In digital computers, we wire up such switches so that when one switch changes

state it can send a signal to force another switch to change state. Digital computing

consists of a cascade of these switching events. Of course such chains of switches

will only work if there is no energy lost in any of the switching events or if we

supply energy to the system to ensure that when a switch is triggered, there is energy

available to cross the threshold. If we wanted to, we could connect a bistable switch

to itself so that when it switches state it actually sends a signal to itself which forces

it to switch again. This is called a ring oscillator. The default nonlinear oscillator is

168

� ✁✄✂ ☎✆✂ ✝✞✂ ✟✆✂ ✠✞✂

✠ ✡ ☛✄☞✍✌ ✎ ✏ ✌ ✑ ✒ ✓✕✔ ✖ ✗ ✗✄✘✙☛ ✏ ✚ ✛ ✗ ☛ ✏ ✜✞✢

✣✥✤✧✦✩★ ✪ ✦✬✫✭✤✧✫✯✮✱✰✧✲ ✳✬✴✧✫✭✳✕✦✯✵✷✶✹✸✺✳✻✮✯✼✭✤✧✦✭✮✩✳

✽✆✾ ✿✍❀✆❁✍✿✞❂✄❃❅❄✺❆ ❇✬❈❊❉

❋ ✟

❋ ✝

❋ ☎

❋ ✁

�

✁

☎

✝

✟

✔ ☛ ✖ ✗ ✏✞● ❍ ✖ ✎ ■

Figure 6-9: Phase response of Chebychev delay filter

a ring oscillator. Ring oscillators, like simple harmonic oscillators are ubiquitous in

Nature as well as engineered systems. Any time the outcome of a decision reverses the

assumptions by which the decision was made we have a ring oscillator. For example

a person trying to work out a paradox constitutes a ring oscillator.

“The following sentence is true. The previous sentence is false.”

To build a ring oscillator with electronic circuits, we build an inverter and feed its

output back to its input. If we make the inverting gain small compared to the

switching speed of the ring oscillator, it will try to return to the trough it began

in, before it even reaches the other trough. Without enough gain, the system will

operate around the threshold point, never falling completely into one trough or the

other. In this case, we can model the potential as a quadratic minima centered at

the threshold, and the ring oscillator becomes a simple harmonic oscillator and will

produce (very low amplitude) sinusoidal dynamics.

6.3.3 Continuous-Time LFSR Signal Generator

The system in figure 6-12 will generate an LFSR waveform with 8 samples per LFSR

bit. We call this a pseudo-continuous-time LFSR because it does has more than one

169

� ✁✄✂ ☎✆✂ ✝✞✂ ✟✆✂ ✠✞✂

✠ ✡ ☛✄☞✍✌ ✎ ✏ ✌ ✑ ✒ ✓✕✔ ✖ ✗ ✗✄✘✙☛ ✏ ✚ ✛ ✗ ☛ ✏ ✜✞✢

✣✥✤✧✦✩★ ✪ ✦✬✫✭✤✧✫✯✮✱✰✧✲ ✳✬✴✧✫✭✳✕✦✯✵✷✶✹✸✺✳✻✮✯✼✭✤✧✦✭✮✩✳

✽✆✾ ✿✍❀✆❁✍✿✞❂✙❃❅❄✺❆ ❇✬❈❅❉

�

✁ � �✆❊

☎ � �✆❊

✝ � �✆❊

✟ � �✆❊

✠ � �✆❊

❋ ✌ ✒ ❊ ●✞❍■✏ ❏ ✖ ✛✍❑ ▲ ✏ ▼ ◆

Figure 6-10: Group delay of Chebychev delay filter

Figure 6-11: “W” shaped (nonlinear) energy potential with ball trapped in one min-
ima

sample per LFSR bit. I have implemented this system using MN series bucket-brigade

(BBD) chips intended for use in guitar delay pedals. The BBD chips were clocked at

8 times the desired LFSR bit-rate. The output of the free-running circuit is shown

in figure 6-13. Unfortunately, for radio applications this is not a very attractive

system because we would need to clock the memory nearly an order of magnitude

faster than the signal processing sample rate. Furthermore in the continuum limit

this system would have an infinite number of samples per LFSR bit, which requires

infinite bandwidth and therefore infinite power. We need to put an upper bound on

the bandwidth of the delay elements, if this system is to be physically realizable. We

do this with a low-pass filter.

170

�✂✁☎✄✝✆
✞✠✟☎✡

Figure 6-12: Continuous-time LFSR

Figure 6-13: Output of continuous-time LFSR circuit

Figure 6-14 shows the construction of a CT LFSR using linear-phase low-pass

filters as delay elements. The filters can be any IIR or FIR low-pass filters. The

choice of filters greatly effects the signal generated by the system. In fact the system

can be chaotic and non-periodic for some choice of filters.

These filters act like a AWGN channel, accepting inputs and producing outputs

over the range [+1,−1]. The XOR gate on the other hand operates on bits and

produces bits {0, 1}. We therefore need two new elements, the mapper and the

limiter, to map values between these two representations. The mapper maps the

logic bits x(t) ∈ {0, 1} to antipodal signals x̌(t) ∈ {+1,−1} such that

x̌(t) = 1 − 2x(t). (6.24)

The hard limiter transforms a signal ǔ(t) ∈ R back to a bit u(t) ∈ {0, 1} such that

ǔ(t) > 0 → 0

ǔ(t) ≤ 0 → 1. (6.25)

171

�✂✁☎✄✝✆✟✞✂✠ �✡✁☛✄☞✆✌✞✂✠

✍✏✎✒✑

✓✕✔✂✖✗✖ ✞✂✠z(t)

x(t) y(t)

y(t)

^

x(t)

^

z(t)

^

Figure 6-14: Continuous-time LFSR circuit with mapper and limiter

When we design receiver system it will require soft version of these elements, a soft-

mapper and soft-limiter.

� ✁✂ ✄
☎ ✆✁
✝

✞✠✟✡✟ ✞☞☛✌☛

✞✎✍✑✏✠✟✞✓✒ ✞✑✍✔✏✠✟✞✎✕

✖✘✗ ✙ ✚ ✒✜✛ ✗ ✢ ✖✣✗ ✙ ✚ ✒✤✛✦✥✔✧ ✚
★✪✩✬✫ ✖✘✗ ✙ ✚ ✒★✪✩✬✫ ✖✘✗ ✙ ✚ ✒✮✭ ✍✘✯✱✰✲★✎✥✳✯

� ✁✂ ✄
☎ ✆
✴ ✵✄

� ✁✂ ✄
✶ ✆✁
✝

✖✘✗ ✙ ✚ ✕✷✛ ✗ ✢ ✖✘✗ ✙ ✚ ✕✪✛✦✥✔✧ ✚
★✪✩✬✫ ✖✣✗ ✙ ✚ ✕★✪✩✬✫ ✖✣✗ ✙ ✚ ✕✤✭ ✍✦✯✸✰✹★✠✥✷✯ ✖✣✗ ✙ ✚ ✕✪✛✮✥✎✧ ✚ ✺ ✥✪✻ ✛✜✥✪✧

✚

✞✔✍✔✏✠✟✼ ✞✾✽✸✥✱✿

❀ ✼❁ ✼

✞✔✍✔✏✎✟✼ ✞ ✢✘❂❄❃

✒
✕ ❅

★✔❆❈❇✪❉✦✍✳❊❄❋✔●
✺ ✥✹✻ ❍

Figure 6-15: Block diagram of noise lock loop (NLL) transmit system

A circuit implementation of this system was modelled in spice as shown in figure

6-15. The model incorporates the continuous-time delay filters from section 6.2.1 and

a standard 74 series TTL XOR logic gate. The first filter acts as a single bit delay,

while the second filter block contains such delay circuits connected in series. The

172

�✂✁ ✄✆☎

✝ ✞
✟✠✡ ☛
☞✌ ✍

✎ ✁ ✏✒✑✔✓✖✕ ✗✘✁ ✑✚✙✜✛✣✢✥✤✒✑✦✤✒✄✆✤✖✛✔✗★✧✪✩✫✩✬�✮✭✯✓✖✑✔✗✔✄✰✁ ✢✱✢✥☎✖✭✫✲✳✁ ✢✵✴★✶✜✴✦☎✒✷✣✸✦✹✔✴✔☎✔✺✼✻✽☎✒✕ ✓✾✸✿✗

Figure 6-16: Output of filter 1 and XOR in NLL transmit system

circuit ought therefore to behave approximately like a 4-bin 2-tap LFSR with the

taps on the first and last bins which produces the sequence (111101011001000)*.

The LFSR-like waveform shown in figure 6-16 was produced by Spice simulation.

It is not a perfect LFSR waveform like the one in figure 6-13 due to the low-pass cutoff

and (minimal) phase distortion of the delay filters. The waveform is quite repeatable,

however as can be seen in the lag-space plot of the waveform shown in 6-17 which

was generated from approximately 30 simulated cycles of the waveform.

In figure 6-16, we see that we do not achieve a perfect LFSR signal. This problem

gets worse when we try to implement CT LFSRs with more bins. As we try to design

filters with longer delays it gets more difficult to determine the filter parameters and

implement them with a sane number of devices. The feedback will cause even small

errors in the filter to distort the signal so that it is not recognizable as an LFSR

signal composed of discrete bits. However, it is not necessary to create perfect delay

filters. We can actually use arbitrary low-pass filters as long as they impose a delay.

Such a system may produce an unexpected waveform which may even be chaotic and

not periodic. As long as the transmitter and receiver system have the same filters,

however, the systems will synchronize.

173

−5

0

5

−5

0

5
−5

0

5

Figure 6-17: Phase space lag plot of output of filter1 in NLL transmit system

6.4 Continuous-Time Synchronization by Injection

Locking as Statistical Estimation

6.4.1 Synchronization of Simple Harmonic Oscillator by En-

trainment

Injection locking or real addition of the (noisy) transmitter state into the receiver is

the mechanism for entrainment of all coupled oscillators. Let us examine injection

locking of coupled simple harmonic oscillators (such as pendulums). The equation

for an unforced mechanical pendulum is

mẍ + k sin(x) = 0 (6.26)

174

For small angles of deflection, we can approximate sin(x) by x leaving he equation

for a simple harmonic oscillator (SHO)

mẍ + kx = 0. (6.27)

Setting m ≡ k ≡ 1

ẍ + x = 0 (6.28)

We will parameterize this second order differential equation as two first order differ-

ential equations by defining

x0 ≡ ẋ (6.29)

x1 ≡ ẋ0. (6.30)

(6.31)

Equation (6.28) then becomes

ẋ1 + x0 = 0

x0 = −ẋ1 (6.32)

(6.33)

It can now be written as a system of first order ordinary differential equations (ODE).

x1 = ẋ0

x0 = −ẋ1. (6.34)

(6.35)

The factor graph for two coupled SHO is therefore given by figure 6-18. Drawing the

factor graph for a SHO required a rather strange function node, the time derivative.

But what does it mean to take the derivative of a probability? The definition of the

175

�✂✁�☎✄

✆✞✝✠✟✡✝☞☛

✝✠✟✡✝☞☛

✌ ✁✌ ✄

✆✞✝✠✟✡✝✠☛

✝✠✟✍✝✠☛

Figure 6-18: Factor graph for two coupled simple harmonic oscillators

time derivative is

df(x)

dt
=

∆f(t)

∆t
=

f(t + ∆t) − f(t)

(t + ∆t) − t
=

f(t + ∆t) − f(t)

∆t
. (6.36)

In discrete time we define ∆t ≡ 1 so that

df(x)

dt
= [f(t + 1) − f(t)]. (6.37)

So in discrete-time we see that a derivative is essentially a two-tap filter with taps of

a1 = 1 and a2 = −1. Unlike the two-tap filter we required for damping, a1 + a2 = 0.

This may be obvious to many readers, however we write it explicitly because it helps

us to see a trend: any oscillator can be written as a cyclical factor graph with one or

more filter functions. And in fact, this teaches us enough to characterize entrainment

as a statistical estimator.

The optimum (maximum-likelihood) estimator of the state of a SHO in AWGN

is a Kalman filter. The derivative introduces memory into the system in the same

way that the delay line did in the LFSR and the Kalman filter acts like the trellis

decoder over the (real-valued) states of these memory elements. This real-valued state

is usually parameterized in the Kalman filter in terms of a mean µ and the variance σ

of the noise around this mean. The Kalman filter can then use the known dynamics

of the SHO and the last three state estimates to calculate an estimate of the next

state. If we roll up this Kalman filter, we find that it is identical to the SHO factor

graph where the variable (soft-equals) node calculates the Kalman gain matrix.

176

6.4.2 Noise Lock Loop Tracking by Injection Locking

A digital software radio must estimate the phase of the transmitter’s bit clock in order

to properly sample the code bits. This synchronization function is known as tracking.

In a software radio tracking is a separate function performed by a system such as a

PLL, DLL or Tau-Dither Loop. The DT NLL performs acquisition, but it needs to

be clocked synchronously with the transmitter’s LFSR in order to do this. We might

hope that if implemented with CT circuits, it might also be able to perform tracking

without an external tracking loop. The NLL would then not only estimate the state

of the transmit LFSR, but also entrain to its bit clock. This would be useful, because

then we would get tracking essentially for free by implementing the DT algorithm

with CT circuits. It might also lead to more robust hand-off between acquisition and

tracking which are separate functions in digital software radios.

Synchronization of coupled continuous-time oscillators occurs by entrainment. En-

trainment requires that the coupled oscillators (or at least the “receive” oscillator)

be dissipative. Dissipation means that the volume of the phase space of the entire

coupled system must shrink over time. With coupled linear oscillators, the dissipation

could be friction - energy lost to heat. With coupled nonlinear oscillators, the dissipa-

tion can be provided by the nonlinearity itself. In either case, coupling the oscillators

involves summing a small amount of the state of one of the independent variables

from the “transmit” oscillator into the equivalent state in the receive oscillator.

In electronic systems, coupling two oscillators by adding some of the output of

one oscillator to the input of another oscillator is called injection locking. This is just

real addition of the (attenuated) transmitter’s signal to the receiver’s signal. Injec-

tion locking has been used in electronics to produce extremely stable high-frequency

sinusoidal oscillators by injecting the output of a digital clock into a sinusoidal ring

oscillator. When driven by a square wave, the ring oscillator still produces a sinusoid,

but with decreased phase jitter [4].

The CT NLL receiver system is shown in figure 6-19. The soft-xor and channel

model p(y|x) have been explained previously. The soft-mapper is a probabilistic

177

�✂✁☎✄✝✆✟✞✡✠ �✂✁☛✄☞✆✌✞✡✠

✍✏✎✒✑

✓✕✔✡✖✗✖ ✞✡✠✘✚✙✜✛✣✢ ✤✦✥

Figure 6-19: Block diagram of noise lock loop (NLL) receiver system

generalization of the mapper in the CT LFSR which mapped x ∈ {0, 1} → x̌ ∈
{1,−1}. The output of the soft-mapper is the expectation

m(t) = E[x̌(t)]

= p(x̌(t) = 1) − p(x̌(t) = −1)

= p(x(t) = 0) − p(x(t) = 1). (6.38)

In other words, the soft-mapper presents a mean as the input to the first delay filter.

The filters, filt1 and filt2, in the receiver CT NLL are identical to those in the CT

LFSR transmitter. Let mfilt1 and mfilt2 be the outputs of a filt1 and filt2 in the

receiver. mfilt1 and mfilt2 will be the expectation of the output of the corresponding

filter in the transmitter E[x̌(t)] and E[y̌(t)], respectively.

x̌(t) = ž(t) ∗ hfilter(t) (6.39)

y̌(t) = x̌(t) ∗ hfilter(t) (6.40)

(6.41)

178

E[x̌(t)] = E
[
∫

hfilt1(τ)ž(t − τ)dτ
]

=
∫

hfilt1(τ)E[ž(t − τ)]dτ

= (hfilt1 ∗ m)(t)

= mfilt1(t) (6.42)

and similarly,

E[y̌(t)] = (hfilt2 ∗ m)(t)

= mfilt2(t) (6.43)

So the outputs of the filters in the receiver are the expectations of the outputs of the

corresponding filters in the transmitter.

The soft-limiters in the receiver compute the messages pX(x) and pY (y) given

expectations mfilt1 and mfilt2, respectively [24]. The design of the soft-limiter is de-

pendent on the probability density function of the filter outputs. Recalling the central

limit theorem, we can approximate any sufficiently high-order filter as a channel that

adds Gaussian noise to the signal x̌ or y̌ passing through it. Therefore we will as-

sume the outputs of the filters to be Gaussian distributed with (mean, variance),

(mfilt1, σ
2
1) and (mfilt1, σ

2
2), respectively. The soft-limiter must in this case compute

an erf function, for example

pX(x(t) = 0) =
1

2

(

1 + erf

(

mfilt1(t)√
2σ1

))

(6.44)

pY (y(t) = 0) =
1

2

(

1 + erf

(

mfilt2(t)√
2σ2

))

. (6.45)

In the circuit implementation, we approximate the sigmoidal shape of the erf function

with a tanh function which can be easily implemented by a differential pair.

After much experimentation with MATLAB simulations, the NLL shown in figure

179

�✂✁☎✄✝✆✟✞✡✠ ☛☎☞✡✌✍☛✏✎☎✑✒☛☎✓✕✔✖✠ ✓✡☞✏☛✍☞✏✗✙✘✖✚✛✠ ✜✢✁✤✣✦✥✧✥★✆☎✓✝✩✪✑✒☛✍✜✬✫✝✆☎✌✭✆✏✔✭☛☎✌

✚✛✠ ✜✮✁

✯ ✰
✱✲✳ ✴
✵✶ ✷

Figure 6-20: Performance of NLL and comparator to perform continuous-time esti-
mation of transmit LFSR in AWGN. The comparator (second line) makes an error
where the NLL (third line) does not. The top line shows the transmitted bits. The
fourth line shows the received bits with AWGN. The fifth line shows the received bits
after processing by the channel model. The other lines below show aspects of the
internal dynamics of the NLL.

6-21 was able to perform both acquisition and tracking as shown by the third trace in

figure 6-20. The CT NLL is bench-marked against a comparator. In the second line of

figure 6-20 there is a red “x” that indicates where the comparator makes an incorrect

estimate of the transmitter’s state. The CT NLL however properly guesses this same

bit using the same received information. It is also obvious that this continuous-time

NLL is properly tracking the transmitter, but it is not clear whether the dissipation

necessary for entrainment is being provided by the soft-gates or by the smoothing in

the FIR filters.

As we showed in equation (eq:log-likelihood-soft-equals), injection locking by sum-

ming a voltage into the receiver’s state is the probabilistically correct way to achieve

maximum-likelihood synchronization in discrete-time. But is injection locking also

180

optimum in continuous-time? What is the connection between DT and CT estima-

tion? The simulation shown in figure 6-20 assumes AWGN synchronous with and

on the time scale of the bits. In the language we have been using, this is essen-

tially “discrete-time noise.” Can injection locking also synchronize in the presence of

continuous-time noise?

It is not obvious that injection locking would act as a good estimator in continuous-

time, because there is a kind of contradiction in the system. In order to allow entrain-

ment, the CT delay-lines (analog memory) in some sense need to accurately reproduce

the waveform as it occurs within a single bit period, but in order to perform DT sta-

tistical estimation, the analog memory needs to average this waveform information

away, retaining only the amplitude of the bit. The CT synchronization operates at a

much finer time-scale than the DT statistical estimation, and these two time scales

must be reconciled. The time scale is an outcome of the fact that we attempt to stay

on a bit for some time and then transition quickly. Acquisition happens at the bit

time-scale while tracking happens at the tracking time-scale.

If we use arbitrary low-pass filters with arbitrary phase-distortion in the trans-

mitter system, the waveform produced will not have sharp bits and transitions. If we

properly design the system for spread spectrum, then the waveform will behave across

a wide range of time-scales. The distinction between bit and transition time scales

then becomes less important. The synchronization error in such a fully continuous-

time transmit-receive system can be quantified as the mean squared error between

the transmitter and receiver signals.

� ✁ ✂ ✄ ☎ ✆ ✁ ✝ � ✁ ✂ ✄ ☎ ✆ ✞ ✟ ✄

� ✁ ✂ ✄ ✠ ✡ ☎
� ✁ ✂ ✄ ✠ ✡ ☎ ☛ ☞ ✌ ✍ ✎ ✞ ✌

� ✁ ✂ ✄ ✏ ✆ ✁ ✝ � ✁ ✂ ✄ ✏ ✆ ✞ ✟ ✄

� ✁ ✂ ✄ ✠ ✡ ✏
� ✁ ✂ ✄ ✠ ✡ ✏ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✑ ✒ ✓ ✒ ✔ ✑ ☎ ✓ ☎
✑ ✒ ✓ ☎ ✔ ✑ ☎ ✓ ✒

✓ ✒
✓ ☎
✑ ✒
✑ ☎

✕ ✞ � ✄ ✠ ✖
✕ ✞ � ✄ ✠ ✖ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✂ ✁ ✗✘✁ ✄ ✠ ✡ ✆ ✁ ✝ ✙ ✒
✙ ☎

✕ ✞ � ✄ ✚ ✂ ✁ ✗✛✁ ✄ ✠ ✡
✕ ✞ � ✄ ✚ ✂ ✁ ✗✛✁ ✄ ✠ ✡ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✗ ✜ ✢ ✢ ✠ ✡ ✆ ✣ ✞ ✟ ✄✗✛✜ ✢ ✢ ✠ ✡ ✆ ✙ ✁ ✝

✕ ✞ � ✄ ✚ ✗ ✜ ✢ ✢ ✠ ✡
✕ ✞ � ✄ ✚ ✗ ✜ ✢ ✢ ✠ ✡ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✂ ✁ ✗✘✁ ✄ ✠ ✡ ✆ ✁ ✝ ✙ ✒
✙ ☎

✕ ✞ � ✄ ✚ ✂ ✁ ✗✘✁ ✄ ✠ ✡
✕ ✞ � ✄ ✚ ✂ ✁ ✗✘✁ ✄ ✠ ✡ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✂ ✁ ✗✘✁ ✄ ✠ ✡ ✆ ✁ ✝ ✙ ✒
✙ ☎

✕ ✞ � ✄ ✚ ✂ ✁ ✗✘✁ ✄ ✠ ✡
✕ ✞ � ✄ ✚ ✂ ✁ ✗✘✁ ✄ ✠ ✡ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✑ ✒ ✓ ✒ ✔ ✑ ☎ ✓ ☎
✑ ✒ ✓ ☎ ✔ ✑ ☎ ✓ ✒

✓ ✒
✓ ☎
✑ ✒
✑ ☎

✕ ✞ � ✄ ✑ ✞ ✡
✕ ✞ � ✄ ✑ ✞ ✡ ☛ ☞ ✌ ✍ ✎ ✞ ✌

✣ ✤ ✤ ✣ ✥ ✥

✣ ☞ ✦ ✤
✣ ☎

✣ ☞ ✦ ✤
✣ ✏

✣ ☞ ✦ ✤
✧ ✣ ✢ ✞ ✕

✔ ✧✚ ✧

✣ ☞ ✦ ✤
✧ ✣✘✝ ✠ ★

Figure 6-21: Block diagram of Spice model of noise lock loop (NLL) receiver system

181

182

Chapter 7

Systems

“Most verification of VLSI designs, synchronous and asynchronous, as-

sumes discrete models discrete models for signal values and transition

times. These discrete models lend themselves well to event-driven simu-

lation, model checking, and theorem proving. However, many important

circuit phenomenon cannot be modelled with discrete time and values,

and failure to account for these phenomena can lead to faulty designs.

These problems are especially apparent in the design of asynchronous cir-

cuits where computation is driven by internal events and not regulated

by an external clock. This has led to many heuristic guidelines for de-

signing such circuits referring to such things as “monotonic transitions,”

“isochronic forks,” and debates of “interleaving semantics” versus “true

concurrency.” Underlying these issues is a more basic question, “can dis-

crete models of circuit behavior be based on a physically sound model of

circuit behavior?” [17]

7.1 Extending Digital Primitives with Soft-Gates

We have seen that we can abstract the truth table of any digital logic gate into

a probabilistic soft-gate. We might therefore be curious what would happen if we

attempt to combine these probabilistic logic primitives to create probabilistic versions

183

of digital building blocks such as logic arrays, registers, multiplexers, etc. One way

to look at these systems would as simulating an ensemble of digital building blocks

operating in noisy conditions. Future work will examine whether this way of thinking

might point towards a useful methodology for studying lock-up, race conditions, and

other results of asynchrony and noise in high-speed digital systems by performing

efficient statistical simulations of the continuous-time analog dynamics of the circuits.

To begin this investigation, let us start with a soft multiplexer, the “soft-MUX” and a

soft fli-flop, the “soft-flip-flop.” These circuits have interesting and useful properties

in their own right.

7.1.1 Soft-Multiplexer (soft-MUX)

Q

Q
_

A

D

Figure 7-1: One bit multiplexer

A multiplexer is shown in figure 7-1. In digital logic, multiplexers provide routing

functionality so that we can address digital signals to different outputs. By con-

trast, routing of analog signals is difficult. Transistors do not make very good analog

switches. When they are on, they are not really on and often attenuate the signal.

They also add noise to the signal. When they are off they are not really off and

provide poor isolation by leaking.

The message from a soft-and gate with three connections x, y, z is

pZ(1) = pX(1)pY (1)

184

pZ(0) = pX(0)pY (0) + pX(0)pY (1) + pX(1)pY (0). (7.1)

We might wonder what would happen if we build a multiplexer with soft-and gates

instead of digital and gates. Could such a circuit be useful for routing analog signals?

If we naively pursue such a circuit, we do get a circuit which passes the analog currents

in an addressable manner. The addressed output produces a (normalized) copy of

the input signal.

We find that the output from the other soft-and gate, however, has an output of

(pZ(0) = 1, pZ(1) = 0). This is not precisely what we want. We would like the gate

that is off to output nothing, i.e. (pX(0) = .5, pX(1) = .5). We can accomplish this

with a modified soft-and gate that obeys the equation,

pZ(1) = pX(1)pY (1) + pX(0)pY (0) + pX(0)pY (1)

pZ(0) = pX(0)pY (0) + pX(0)pY (1) + pX(1)pY (0), (7.2)

Let x be the address signal and y be the data signal. Let us examine only one modified

soft-and in the soft-multiplexer - say the one with the Q output in figure 7-1. If x = 1,

then pX(0) = 0, pX(1) = 1 which means that the output of the soft-and gate mirrors

the y input,

pZ(1) = pY (1)

pZ(0) = pY (0). (7.3)

But if x = 0, then pX(0) = 1, pX(1) = 0. This means that the other modified soft-and

should be mirroring the data signal. The Q modified soft-and does the right thing.

pZ(1) = pY (0) + pY (1) = 1

pZ(0) = pY (0) + pY (1) = 1. (7.4)

185

After normalization, this becomes pZ(1) = .5, pZ(0) = .5 which contains no informa-

tion to effect further soft-gate computations downstream. The circuit in figure 7-2

implements the modified soft-and gate.

p(y=0)

p(z=0) =

p(y=0)p(x=0) +

p(y=0)p(x=1) +

p(y=1)p(x=0)

Ixp(x=0)

p(y=1)

p(z=1) =

p(y=1)p(x=1) +

p(y=0)p(x=0) +

p(y=0)p(x=1)

Ixp(x=1)

p(y=1)p(x=0) p(y=1)p(x=1) p(y=0)p(x=1)p(y=0)p(x=0)

p(y=0) p(y=1) p(y=0) p(y=1)

p(y=1)p(x=0) p(y=0)p(x=0)

Figure 7-2: A modified soft-and gate for the soft-MUX

7.1.2 Soft Flip-Flop

In conventional digital logic circuits, memory is often implemented using “dynamic

RAM” or shift registers which are composed of bistable circuits known as flip-flops.

Figures 7-3, 7-4, and 7-5 show the schematic diagrams for several kinds of digital flip-

flop. The simplest is known as an RS flip-flop. It is composed of two interconnected

digital NAND gates. Its behavior for every possible input is enunciated in the truth

table below.

186

R

S

Q

Q

Figure 7-3: RS flip flop

S

R

CLK

RS flip-flop

D

Figure 7-4: D flip-flop

R S Q Q

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0/1 1/0

We define a “soft” RS-flip-flop as a conventional RS-flip-flop composed of two

interconnected soft-NAND gates. The equation for a soft-NAND is

pZ(1) = pX(0)pY (0) + pX(0)pY (1) + pX(1)pY (0)

pZ(0) = pX(1)pY (1). (7.5)

187

R

S

RS flip-flop

R

S

RS flip-flop

Q

Q

D

CLK

Figure 7-5: Edge-triggered D flip-flop

We might wonder if a flip-flop composed of soft-gates instead of digital logic gates

might be useful as an analog memory element? Unfortunately this is not the case,

as we might have realized upon further reflection. A bistable circuit like a flip-flop

with a “W” shaped energy potential well is useful for storing digital information,

precisely because it is digital information with two possible states. The bistable

circuit remains in one state or the other until it receives enough energy to switch

state across its threshold. By contrast an analog storage device would need many

thresholds and a minima for every value that we would like to store. Since we would

like to store at least 256 different levels for 8-bit accuracy in our analog circuits, such

a circuit would be of much greater complexity than the soft-flip-flop. Such a circuit,

if it were possible to construct one, would also not really be analog in the pure sense

since it has discretized states. Instead it would really be a base-256 digital storage

system.

The soft-RS-flip-flop actually does do something quite interesting, even if it may

not be useful as an analog storage device. It acts as a digital flip-flop when the inputs

are digital. The (un-normalized) behavior of the soft-RS-flip-flop with the internal

feedback states initialized to (.5,.5) is summarized in the table below.

R S Q Q

.5 .5 .6 .6

0 0 1 1

0 1 1 0

1 0 0 1

1 1 .5 .5

188

If we normalize this we get

R S Q Q

.5 .5 .5 .5

0 0 1 1

0 1 1 0

1 0 0 1

1 1 .5 .5

.9 .1 .9 .1

The table above 7.1.2 is necessarily incomplete as the inputs (R, S) to the soft

RS flip-flop can be any real valued numbers between (0, 1). Figures 7-6, 7-7, and 7-8

below plots the behavior of the circuit in time given input values (R,S) = (1,1), (1,0),

(0,1) and (.5,.5) respectively. The internal feedback states are initialized to (.5,.5) in

each case.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5
Prob(outA=1)

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5
Prob(outB=1)

Figure 7-6: Time course of outputs Q and Q with inputs (R,S)= (1,1) and initial
internal states = (.5,.5)

We have been initializing the internal states to (.5, .5), but this prevents us from

seeing how the bi-stability of the soft RS flip-flop depends on the inputs. Figures

7-10, 7-11, and 7-12 below show the final output of the circuit for initial values of

the internal state (R,S) = (1,1), (1,0), (0,1) and(.5,.5). The x and y axes range over

189

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5
Prob(outA=1)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Prob(outB=1)

Figure 7-7: Time course of outputs Q and Q with inputs (R,S)= (1,0) and initial
internal states = (.5,.5)

all possible values of the inputs (R,S). It can be seen from these figures that, just

as we would expect, the initial values of the internal state only matter when the the

flip-flop is in its bi-stable ”memory” state for which the inputs have no effect on the

outputs. Because it is a soft flip-flop, there are values of the inputs (R,S) near this

extreme where the inputs matter a bit, but the initialization of the internal states

also matters. So it is possible to have the outputs be partially effected by the inputs

and partially by the previous internal state.

The RS-flip-flop is a component in a D-flip-flop. A soft-D-flip-flop has very in-

teresting behavior. By tuning the CLK input between 0 and 1, we can turn the

bi-stability of the soft-D-flip-flop up and down. In effect the CLK line controls the

height of the threshold peak in the middle of the “W” shaped energy potential. Even

though soft-flip-flops do not act individually as static random-access memory (SRAM)

for analog values, shift registers made of soft-slip-flops may still be promising as delay

lines for analog signals.

190

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Prob(outA=1)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5
Prob(outB=1)

Figure 7-8: Time course of outputs Q and Q with inputs (R,S)= (0,1) and initial
internal states = (.5,.5)

7.2 Application to Wireless Transceivers

7.2.1 Conventional Wireless Receiver

A conventional “digital” wireless front-end is illustrated in figure 7-15. The digital

circuitry in a receiver can generally be divided into “fast” digital and “slow” digital.

First the RF signal is demodulated using analog circuitry to produce the baseband

signal. Then this information is over-sampled by the ADC in the front-end of a “fast”

digital signal processor (DSP) chip. Statistical signal processing algorithms in this

“fast” digital chip then infer the actual transmitted message from the encoded and

corrupted baseband information. Baseband signal processing includes such operations

as channel equalization, error correction, interference cancellation, and multiuser de-

tection.

Once the transmitted message is extracted from the baseband signal, this lower

bit-rate data stream can be passed to the “slow” digital part of the system which

implements the interface between the received bits and the user as well as providing

coordination and control of the receiver’s subsystems such as communication hand-

shaking and protocols, the screen, keypad, speaker, microphone, etc. The “slow”

digital performs less demanding tasks and therefore uses a lower complexity, less

191

0 10 20 30 40 50 60 70 80 90 100
0.66

0.68

0.7

0.72

0.74

0.76
Prob(outA=1)

0 10 20 30 40 50 60 70 80 90 100
0.66

0.68

0.7

0.72

0.74

0.76
Prob(outB=1)

Figure 7-9: Time course of outputs Q and Q with inputs (R,S)= (.5,.5) and initial
internal states = (.5,.5)

expensive, and lower power chip than the “fast” DSP. The “fast” digital signal pro-

cessing system in a cell-phone handset is typically more than an order of magnitude

more resource intensive than the “slow” digital.

A programmable array of analog CT statistical signal processing circuits could one

day replace some or all of the “fast” digital in a conventional data wireless receiver,

and could enable much higher processing speeds. Figure 7-16 shows a conceptual

sketch of reconfigurable analog signal processing circuits, much like programmable

logic blocks. The result would be a “software” radio implemented with programmable

analog hardware.

The ability to perform decoding operations at demodulation frequencies (Gbits/second)

could change the entire design of wireless receivers and protocols in significant ways.

We could speculate, for example, that programmable CT analog VLSI used in this

context could replace demodulation entirely. This could eliminate the necessity to

use sinusoidal carriers at all since the power spectrum of the transmitted signal could

be matched to an arbitrary channel by the proper encoding. Without sinusoidal

carriers, a receiver would no longer be shackled to a front-end designed for a par-

ticular set of carrier signals. In turn, this would lead to a large increase in the

inter-operability of diverse wireless systems - the so-called “tower of Babel problem”

192

00.20.40.60.81

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7-10: Map of final output Q for all possible inputs (R,S) and initial internal
states = (1,1)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7-11: Map of final output Q for all possible inputs (R,S) and initial internal
states = (0,1)

for wireless transceivers. A wireless transceiver could learn to “speak the right lan-

guage” in order to communicate with a newly encountered transmitter. Solving the

wireless “tower of Babel” problem would be significant, because it could allow a roam-

ing device to bargain for connectivity with any networked wireless base station in its

vicinity, making wireless access much more ubiquitous. The internet revolutionized

the desktop by exploiting the ubiquity of personal computers and phone lines. Ac-

cording to many industry analysts, ubiquitous multi-protocol wireless could lead to

a similar revolution for mobile devices and the telecommunications industry [23].

Less speculatively, high-speed analog circuits performing statistical estimation

193

0

0.5

1 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7-12: Map of final output Q for all possible inputs (R,S) and initial internal
states = (1,0)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7-13: Map of final output Q for all possible inputs (R,S) and initial internal
states = (0,0)

could perform signal processing on conventional carrier or intermediate frequency

(IF) signals. The resulting estimates of interference and spectrum availability in the

channel could be used to tune filter and amplifier parameters in the analog front-end

of a conventional radio.

7.2.2 Application to Time-Domain (Pulse-based) Radios

The first radio was built by Guglielmo Marconi in 1894 when he was 21 years old.

It was a spark gap radio. The transmitter produced a high-voltage spark. A spark,

194

0
0.5

1
00.20.40.60.81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7-14: Map of final output Q for all possible inputs (R,S) and initial internal
states = (.5,.5)

Analog-to-Digital

 Converter

Fast Digital

Signal Processor

Signal

Many

Digital

Bits Fewer

Digital

Bits

Analog

Filter

Phase Lock Loop

VCO

Analog

Filter

Slower

Digital

Controller

Figure 7-15: Conventional radio receiver signal chain

since it is a delta in time, has a very wide frequency range. Marconi’s sparks had

high enough frequency components to radiate from the antenna and be received at

distances of thousands of miles. The very success of a high-powered spark to radiate

great distances on a wide-frequency range also led to its demise. A pure spark based

radio made it impossible for any other spark radio to operate within its transmission

radius. By the mid-twentieth century, the spark gap radio had been largely abandoned

in favor of radios based on sinusoidal oscillators which allowed multiple users to

communicate simultaneously without interfering with one another.

But the demise of the pulse based radio was only temporary. In recent years, the

emergence of inexpensive high speed signal processors with exquisite timing accuracy

has led to a revival of the spark based radio idea. Often known as ultra-wideband,

the idea is that a microprocessor can open and close a switch to produce a tiny

195

1/z 1/z 1/z 1/z

Input Multi-GHz

Analog Signal

Output Baseband

Digital Bits

10110001010...

Figure 7-16: Conceptual sketch of CT softgate array in a radio receiver

electrical spike or pulse. A single such pulse would be very difficult to detect, but

a receiver microprocessor synchronized to the transmitter can detect a sequence of

such pulses by closing its switch only when it expects a pulse to be transmitted and

correlating over a long sequence of pulses. In theory, the advantages of such a system

would be extremely low hardware complexity, it would consist purely of a digital

microprocessor and digitally controlled pulse generating or receiving switch. Multiple

users could be accommodated by, for example, time interleaving of pulses intended

for different users.

The reality has not been so elegant and these pulse-based radios have encountered

exactly the same problem as the first spark radios - the pulses produce wide-band radio

energy that have the dangerous (and possibly unpredictable) potential to interfere

with other essential wireless services such as GPS. Solutions to this problem have so

far primarily focused on filtering the shape of the pulses so that they fit within a

required spectral envelope. Pulses in modern ultra-wideband systems are intended

to last on the order of .1ns, enabling communication at frequencies up to 10GHz.

At these frequencies, real-world indoor and outdoor channels disperse the pulses.

Furthermore, a slight change in the relative positions of reflectors can have a large

effect on the extremely short wavelength, high-frequency components that are present

196

Source Encoder

(compression)
Error Correction

Encoder

Multiuser Encoder

(DS CDMA)

Spectral Shaping

for Channel

Source Decoder

(decompression)
Error Correction

Decoder

Multiuser Decoder

(DS CDMA)

Undo

Spectral Shaping

for Channel

Receiver

Transmitter

Figure 7-17: Time-domain (pulse) radio communications system

in the pulse. This sensitivity to the spatial relations of the channel reflectors, requires

that the channels be modelled as time-varying. The receiver in such a system must

be equipped with complex time-domain signal processing at very high frequencies to

decode high data-rate transmissions. Unfortunately, there has not a practical scheme

for performing such high-speed decoding operations with practical receiver hardware.

Until now.

Chaotic

Source

Delay

Data

Delay

Signal Out

Signal In Σ

Accumulator

Correlator

Data

Figure 7-18: Chaotic communications system proposed by Mandal et al. [30]

The beginnings of an idea are present in the chaotic communication literature.

Mandel et al. proposed a transmitter based on a controlled chaotic system and

197

a receiver with a correlator as shown in figure 7-18 [30]. They called this scheme

modified differential chaos shift keying (M-DCSK).

M-DCSK is a novel scheme for spread spectrum communication using

chaotic signals. It relies upon using a chaotic signal as the spreading se-

quence, instead of the more conventional PN-sequences. The advantage

of such a system is that of simplicity and true randomness of the spread-

ing sequence; the disadvantage is that it is very difficult to recreate and

synchronize the spreading sequence at the receiver end. To avoid this

problem, DCSK uses a transmitted reference system where for half a bit

period, a reference chaotic waveform is transmitted; then another half bit

period is transmitted, which is either the same as the reference waveform

(if the bit is a ’0’) or it’s inverted version (if the bit is a ’1’). A trans-

mitted reference system intrinsically has a higher error probability than

a stored reference system such as CDMA; this is because in such a sys-

tem, the reference itself is transmitted over a noisy channel and suffers

from quality degradation. Nevertheless, previous experiments with DCSK

have shown bit-error-rate (BER) performance approaching conventional

systems especially at low values of SNR.

They recognize that synchronization is an important consideration in such a

scheme.

“For this to work in practice, the clock at the receiver must be synchro-

nized to the transmitted clock. In commercial spread spectrum systems,

chip clock recovery is generally done in two stages: a coarse synchroniza-

tion known as acquisition, which aligns the waveforms to within one chip

period, and a fine synchronization known as tracking, which corrects re-

maining timing errors between the two waveforms. Tracking is generally

done using a Delay Locked Loop (DLL). Since there was insufficient time

to build a chip synchronization unit in this case, the receiver block uses

198

the same base clock as the transmitter. This is, however, not a major lim-

itation, since the system being built is an experimental/ proof-of-concept

one.”

There is actually a deep reason why synchronization and pulse shaping are salient

issues in pulse-based radios. Pulse radios are essentially the Fourier transform of

conventional sinusoidal radios. Therefore the purposes of this discussion, I call pulse-

based radios, time-domain radios, and I call conventional sinusoidal-based radios,

frequency-domain radios. Frequency-domain radios employ a delta in frequency, while

pulse-based time-domain radios employ delta’s in time. (DS/CDMA should also be

properly considered time-domain radio, but it uses a pseudo-random bit stream to

produce a wideband frequency spectrum instead of short pulses.) The frequency-time

translation carries over to issues in hardware design. Every difficulty in controlling

frequency in a frequency-domain radio rears its head as a difficulty with control-

ling timing in a time-domain radio. For example, local high-frequency oscillators

with good phase-stability are difficult to build in frequency-domain radios. In time-

domain radios, delay-lines with stable delay-times are challenging to build. Making

good receiver filters to detect particular frequencies translates into requiring good

receiver synchronization to pick out particular instants in time. Making good filters

and designing modulation schemes using oscillators to shape the transmitted spectral

envelope translates into controlling timing and designing sequences which accomplish

this same end in the time domain. Since time-domain signal processing has tradition-

ally been the domain of digital signal processors, time-domain radios have not been

able to overcome these hurdles cost-effectively at high-frequencies. In fact, in the

commercialization of ultra-wideband wireless systems, sinusoidal based radios seem

poised to win yet again. The technology presented in this dissertation, however, seems

uniquely suited to solve precisely the problem of high-speed low-power analog circuits

for time-domain statistical signal processing.

199

200

Chapter 8

Biographies

8.1 Anantha P. Chandrakasan, MIT EECS, Cam-

bridge, MA

Anantha P. Chandrakasan received B.S, M.S. and Ph.D. degrees in Electrical Engi-
neering and Computer Sciences from the University of California, Berkeley, in 1989,
1990, and 1994 respectively. Since September 1994, he has been at the Massachusetts
Institute of Technology, Cambridge, and is currently an Associate Professor of Elec-
trical Engineering and Computer Science. He held the Analog Devices Career Devel-
opment Chair from 1994 to 1997. He received the NSF Career Development award in
1995, the IBM Faculty Development award in 1995 and the National Semiconductor
Faculty Development award in 1996 and 1997. He is a Co-founder and Chief Scientist
at Engim, a company focused on high-performance wireless communications.

He has received several best paper awards including the 1993 IEEE Communica-
tions Society’s Best Tutorial Paper Award, the IEEE Electron Devices Society’s 1997
Paul Rappaport Award for the Best Paper in an EDS publication during 1997 and
the 1999 Design Automation Conference Design Contest Award.

His research interests include the ultra low power implementation of custom and
programmable digital signal processors, distributed wireless sensors, multimedia de-
vices, emerging technologies, and CAD tools for VLSI. He is a co-author ”Low Power
Digital CMOS Design” by Kluwer Academic Publishers and ”Digital Integrated Cir-
cuits” (second edition) by Prentice-Hall. He is also a co-editor of ”Low Power CMOS
Design” and ”Design of High-Performance Microprocessor Circuits” from IEEE press.

He has served on the technical program committee of various conferences including
ISSCC, VLSI Circuits Symposium, DAC, and ISLPED. He has served as a technical
program co-chair for the 1997 International Symposium on Low-power Electronics
and Design (ISLPED), VLSI Design ’98, and the 1998 IEEE Workshop on Signal
Processing Systems, and as a general co-chair of the 1998 ISLPED. He was an as-
sociate editor for the IEEE Journal of Solid-State Circuits from 1998 to 2001. He

201

served as an elected member of the Design and Implementation of Signal Processing
Systems (DISPS) Technical Committee of the Signal Processing Society and serves
on the SSCS AdCOM. He was the Signal Processing Sub-committee chair for ISSCC
1999 through 2001, the program vice-chair for ISSCC 2002, the technical program
chair for ISSCC 2003.

8.2 Hans-Andrea Loeliger, ETH, Zurich, Switzer-

land

Hans-Andrea Loeliger has been full Professor of Signal Processing at the Signal Pro-
cessing Laboratory of ETH Zurich since June 2000. He studied Electrical Engineering
at ETH Zurich, and there he also received the Ph.D. degree in 1992. He then joined
Linkping University, Sweden, as assistant professor (“forskarassistent”). In 1995,
he returned to Switzerland and (together with Felix Tarky) founded the consulting
company Endora Tech AG, Basel, with which he remained until his return to ETH.

His research focuses on error correcting codes and coded modulation, modelling
and analysis of signals and systems, and robust nonlinear analog computation net-
works. His research interests include Information theory and its applications in
communications and signal processing Error correcting codes and coded modula-
tion schemes Digital signal processing in communications, acoustics, and other fields
Graphical models (“factor graphs”) for coding and signal processing Signal processing
with robust nonlinear analog networks (“analog decoder”).

8.3 Jonathan Yedidia, Mitsubishi Electronics Re-

search Lab, Cambridge, MA

Jonathan Yedidia’s graduate work at Princeton (1985-1990) and post-doctoral work
at Harvard’s Society of Fellows (1990-1993) focused on theoretical condensed-matter
physics, particularly the statistical mechanics of systems with quenched disorder.
From 1993 to 1997, he was a professional chess player and teacher. He then worked
at the internet startup company Viaweb, where he helped develop the shopping search
engine that has since become Yahoo’s shopping service. In 1998, Dr. Yedidia joined
the Mitsubishi Electric Research Laboratory (MERL)Cambridge Research Labora-
tory. He is particularly interested in the development of new methods to analyze
graphical models. His work has applications in the fields of artificial intelligence,
digital communications, and statistical physics.

Most of Yedidia’s current research involves the application of statistical methods
to “inference” problems. Some important fields which are dominated by the issue of
inference are computer vision, speech recognition, natural language processing, error-
correction, and diagnosis. Essentially, any time you are receiving a noisy signal, and
need to infer what is really out there, you are dealing with an inference problem. A
productive way to deal with an inference problem is to formalize it as a problem of

202

computing probabilities in a graphical model. Graphical models, which are referred to
in various guises as “Markov random fields,” “Bayesian networks,” or “factor graphs,”
provide a statistical framework to encapsulate our knowledge of a system and to infer
from incomplete information.

Physicists who use the techniques of statistical mechanics to study the behavior of
disordered magnetic spin systems are actually studying a mathematically equivalent
problem to the inference problem studied by computer scientists, but with different
terminology, goals, and perspectives. Yedidia’s own research has focused on the sur-
prising relationships between methods that are used in the two communities, and on
powerful new techniques and algorithms that exploit those relationships. A major
current project involves analyzing and designing error-correcting codes using gener-
alized belief propagation algorithms.

8.4 Neil Gershenfeld, MIT Media Lab, Cambridge,

MA

Professor Neil Gershenfeld is the Director of MIT’s Center for Bits and Atoms, an
interdisciplinary initiative that is broadly exploring how the content of information
relates to its physical representation, from atomic nuclei to global networks. CBA’s
intellectual community and research resources cut across traditional divisions of in-
quiry by disciplines and length scales in order to bring together the best features of the
bits of new digital worlds with the atoms of the physical world. Dr. Gershenfeld has
also led the Media Lab’s Things That Think industrial research consortium, which
pioneered moving computation out of conventional computers and into the rest of the
world, and works with the Media Lab Asia on coordinating the technical guidance
for this ambitious international effort based in India that is investigating technol-
ogy for global development. His own laboratory studies fundamental mechanisms
for manipulating information (which led to the development of molecular logic used
to implement the first complete quantum computation and to analog circuits that
can efficiently perform optimal digital operations), the integration of these ideas into
everyday objects such as furniture (seen in the Museum of Modern Art and used in
automobile safety systems), and applications with partners ranging from developing
a computerized cello for Yo-Yo Ma and stage for the Flying Karamazov Brothers to
instrumentation used by rural Indian villagers and nomadic reindeer herders. Beyond
his many technical publications and patents, he is the author of best-selling books
including “When Things Start To Think” and the texts “The Nature of Mathemat-
ical Modelling” and “The Physics of Information Technology.” His work has been
featured by the White House and Smithsonian Institution in their Millennium cele-
brations, and been the subject of print, radio, and TV programs in media including
the New York Times, The Economist CNN, and PBS.

Dr. Gershenfeld has a B.A. in Physics with High Honors from Swarthmore College,
was a member of the research staff at Bell Labs where he studied laser interactions
with atomic and nuclear systems, received a Ph.D. in Applied Physics from Cornell

203

University for experimental tests of order in complex condensed matter systems, and
was a Junior Fellow of the Harvard Society of Fellows where he ran an international
study on prediction techniques.

8.5 Biography of Author

Figure 8-1: Benjamin Vigoda

Benjamin Vigoda is an PhD candidate and Intel Fellow in the Center for Bits
and Atoms at the MIT Media Laboratory. His research has been at the boundary of
machine learning and wireless communication systems.

While at the Media Lab, Vigoda helped found the Thinkcycle.org and the Design
that Matters studio seminar, which have had great success bringing engineering stu-
dents together to work on technical problems posed by NGO’s serving under-served
communities across the world. He also created a shadow juggling system which now
tours on stage with a vaudeville juggling troupe, the Flying Karamazov Brothers as
well as a number of other technologically enhanced musical instruments.

Ben earned his undergraduate degree in physics from Swarthmore College in 1996.
He has worked at the Santa Fe Institute on alternative models of computation, and
at Hewlett Packard Labs where he helped transfer academic research to product
divisions. He won second place in the MIT $50K Entrepreneurship Competition and
first in the Harvard Business School Competition using a business plan based on this
PhD research.

204

Bibliography

[1] K. Abend and B. D. Fritchman (May 1970). Statistical Detection for Communi-
cation channels with intersymbol interference. Proc. IEEE, vol. 58, pp. 779–785

[2] P. Bardell, W. McAnney, and S. Jacob (1987). Built-In Test for VLSI: Pseudo-
random Techniques. New York, NY: John Wiley and Sons.

[3] S. E. Bensley and B. Aazhang (1998). Maximum Likelihood Synchronization of
a Single User for Code Division Multiple Access Communication Systems. IEEE
Transactions on Communications, COM-46, no. 3, pp. 392–399

[4] Rafael J. Betancourt-Zamora, Shwetabh Verma and Thomas H. Lee (2001). 1-GHz
and 2.8-GHz CMOS Injection-locked Ring Oscillator Prescalers. 2001 Symposium
on VLSI Circuits, Kyoto, Japan, June 14, 2001, pp. 47–50

[5] G. Cauwenberghs (1995). Micropower CMOS Algorithmic A/D/A Converter.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, Vol. 42, No. 11, pp. 913–919

[6] H. C. Casey, Jr. (May 1998). Supplemental Chapter to Introduction to Silicon
and III-V Compound Semiconductor Devices for Integrated Circuits. Department
of Electrical and Computer Engineering Duke University

[7] K. M. Cuomo and Alan V. Oppenheim (Jul. 1993). Circuit Implementation of
Synchronized Chaos with Applications to Communications. Physical Review Let-
ters, 1993, Vol. 71, No. 1.

[8] Jie Dai (Aug. 2002). Doctoral Dissertation: Design Methodology for Analog VLSI
Implementations of Error COntrol Decoders. Salt Lake City, Utah: University of
Utah.

[9] A. S. Dmitriev, A. I. Panas, S. O. Starkov (Oct. 2001). Direct Chaotic Commu-
nication in Microwave Band.

[10] Andreas Demosthenous and John Taylor (Feb. 2001). A 100Mb/s, 2.8V CMOS
Current-Mode Analogue Viterbi Decoder. IEEE Trans. Inform. Theory, vol. 47,
pp. 520–548

205

[11] Jose E. Franca and Yannis Tsividis (1994). Design of Analog-Digital VLSI CIr-
cuits for Telecommunications and Signal Processing, second ed. Englewood Cliffs,
NJ: Prentice Hall.

[12] M.A. Franklin and T. Pan (Nov. 1994). Performance Comparison of Asyn-
chronous Adders. Proceedings of the International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, 1994, pp. 117–125

[13] G. D. Forney (Feb. 2001). Codes on Graphs: Normal Realizations. IEEE Trans.
Inform. Theory, vol. 47, pp. 520–548

[14] Neil Gershenfeld and Geoff Grinstein (1995). Entrainment and Communication
with Dissipative Pseudorandom Dynamics. Physical Review Letters, 74, pp. 5024

[15] Neil Gershenfeld (1999). The Nature of Mathematical Modeling. Cambridge, UK:
Cambridge University Press.

[16] T. R. Giallorenzi and S.G. Wilson (Sept. 1996). Suboptimum Multiuser Receivers
for Convolutionally Coded Asynchronous DS-CDMA Systems. IEEE Transactions
on Communications, 44, pp. 1183–1196

[17] M.R. Greenstreet and P. Cahoon (Nov. 1994). How Fast Will the Flip Flop? Pro-
ceedings of the International Symposium on Advanced Research in Asynchronous
Circuits and Systems, 1994, pp. 77–86

[18] David J. Griffiths (1995). Introduction to Quantum Mechanics. Upper Saddle
River, NJ: Prentice Hall.

[19] J. Hagenauer (Feb. 1998). Decoding of Binary Codes with Analog Networks.
Proc. 1998 Information Theory Workshop, San Diego, CA, Feb. 811, pp. 1314.

[20] J. Hagenauer and M. Winklhofer (Feb. 1998). The Analog Decoder. Proc. 1998
IEEE Int. Symp. on Information Theory, Cambridge, MA USA, Aug. 1621, p. 145.

[21] Gunhee Han and Edgar Sanchez-Sinencio (Dec. 1998). CMOS Transconductance
Multipliers: A Tutorial. IEEE Transactions on Circuits and Systems II: Analog
and Digital signal Processing, VOL.45, NO.12

[22] Tom Heskes (2002). Stable fixed points of belief propagation are minima of the
Bethe free energy. Proceedings of Neural Information Processing, 2002

[23] Erika Jonietz (Dec. 2001). Community-Owned Wireless Networks Are Gaining
Popularity and Could Help Bridge the Digital Divide. Innovation: Unwiring the
Web Technology Review, December 2001

[24] Tobias Koch. Advisor: Justin Dauwels, Matthias Frey and Patrick Merkli in
collaboration with Benjamin Vigoda (Feb. 2003). Continuous-Time Synchroniza-
tion. Zurich, Switzerland. Semester Project at Institute for Signals and Information
(ISI), ETH.

206

[25] Ed. H. S. Leff and A. F. Rex (Jan. 1990) Maxwell’s Demon: Entropy, Informa-
tion, Computing Washington State, USA: Institute of Physics Publishing.

[26] H. Li (Mar. 2001). Building a Dictionary for DNA: Decoding the Regulatory
Regions of a Genome. Institute for Theoretical Physics (ITP) Program on Statistical
Physics and Biological Information

[27] Douglas Lind and Brian Marcus (Dec. 1995). An Introduction to Symbolic Dy-
namics and Coding. New York, NY: Cambridge University Press

[28] Frank R. Kschischang, Brendan J. Frey and Hans-Andrea Loeliger (Feb. 2001).
Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Informa-
tion Theory, 47:2, pp. 498–519

[29] Felix Lustenberger (Nov. 2000) Doctoral Dissertation: On the Design of Analog
VLSI Iterative Decoders Zurich, Switzerland: Swiss Federal Institute of Technology
(ETH).

[30] Soumyajit Mandal and Soumitro Banerjee (2003). Analysis and CMOS Im-
plementation Of A Chaos-based Communication System. IEEE Transactions on
Circuits and Systems I,

[31] G. J. Minty. (1957). A Comment on the Shortest-Route Problem. Operational
Research, vol. 5, p. 724

[32] Andreas F. Molisch (2001). Wideband Wireless Digital Communications. Upper
Saddle River, NJ: Prentice-Hall

[33] S.V. Morton, S.S. Appleton, and M.J. Liebelt (Nov. 1994). An Event Controlled
Reconfigurable Multi-Chip FFT. Proceedings of the International Symposium on
Advanced Research in Asynchronous Circuits and Systems, 1994, pp. 144–153

[34] Jan Mulder, Wouter Serdijn, Albert C. van der Woerd, Arthur H.M. van Roer-
mund (1999). Dynamic Translinear and Log-Domain Circuits. Boston, Ma: Kluwer
Press

[35] Alison Payne,Apinunt Thanachayanont, and C.Papavassilliou (Sept. 1998). A
150-MHz Translinear Phase-Locked Loop. IEEE Transactions on Circuits and
Systems II:Analog and Digital signal Processing, Vol.45, No.9

[36] L. M. Pecora and T. L. Caroll (1990). Synchronization in Chaotic Systems.
Physical Review Letters, vol. 64, pp. 821–824

[37] John G. Proakis (2001). Digital Communications. Boston, MA: McGraw-Hill

[38] L. R. Rabiner and B. H. Juang (Jan. 1986). An Introduction to Hidden Markov
Models. IEEE ASSP Magazine, pp. 4-15

207

[39] Mark C. Reed (Oct. 1999) Doctoral Dissertation: Iterative Receiver Techniques
for Coded Multiple Access Communication Systems School of Physics and Elec-
tronics Systems Engineering, University of South Australia.

[40] P. V. Rooyen, M. Lotter, D. v. Wyk. (2000). Space-Time Processing for CDMA
Mobile Communications. Norwell, MA: Kluwer Academic Publishers.

[41] Rahul Sarpeshkar. (Apr. 1997) Doctoral Dissertation: Efficient Precise Compu-
tation with Noisy Components: Extrapolating From an Electronic Cochlea to the
Brain Pasadena, CA: California Institute of Technology (CalTech).

[42] Evert Seevinck (1999). Analysis and Synthesis of Translinear Integrated Circuits.
Amsterdam, Netherlands: Elsevier Press

[43] M.H. Shakiba, D.A. Johns and K.W. Martin. (Dec. 1998). BiCMOS Circuits for
Analog Viterbi Decoders. IEEE Trans. on Circuits and Systems - II: Analog and
Digital Signal Processing, VOL.45, pp. 1527-1537.

[44] S. Sheng and R. Brodersen. (1998). Low-Power CMOS Wireless Communica-
tions: A Wideband CDMA System Design. Boston, MA: Kluwer Academic Pub-
lishers.

[45] Semiconductor Industry Association. (2002). International Technology Roadmap
for Semiconductors, 2001. SEMATECH http://public.itrs.net/Reports.htm

[46] A.C. Singer and A.V. Oppenheim. (1999). Circuit Implementations of Soliton
Systems. International Journal of Bifurcation and Chaos, Vol. 9, No. 4, pp. 571–
590.

[47] Robert H. Walden.(Feb. 1999). Performance Trends for Analog-to-Digital Con-
verters. IEEE Communications Magazine, pp. 96–101

[48] Remco J. Wiegerink (1993). Analysis and Synthesis of MOS Translinear Circuits.
Boston, Ma: Kluwer Press

[49] Sergio Verd.(Jan. 1986). Minimum Probability of Error for Asynchronous Gaus-
sian Multiple Access Channels. IEEE Trans. on Info. Theory, pp. 85–96

[50] Sergio Verd. (Jan. 1989). Computational Complexity of Optimum Multiuser
Detection. Algorithmica Vol. 4, No. 3, pp. 303–312

[51] Sergio Verd (1998). Multiuser Detection. New York, NY: Cambridge University
Press

[52] Benjamin Vigoda, Justin Dauwels, Neil Gershenfeld, and Hans-Andrea Loeliger.
(In Press). Low-Complexity LFSR Synchronization by Forward-Only Message Pass-
ing. Submitted to IEEE Transaction on Information Theory

[53] A.J. Viterbi (1995). CDMA, Principles of Spread Spectrum Communication.
Reading, MA: Addison-Wesley Longman Inc.

208

[54] Glenn Watanabe, Henry Lau and Juergen Schoepf. (Aug. 2000). Integrated Mixer
Design. Proceedings of the Second IEEE Asia-Pacific Conference on ASIC

[55] J. S. Yedidia, W. T.Freeman and Y. Weiss. (2001). Understanding Belief Prop-
agation and Its Generalizations. published as chapter 8 of ’Exploring Artificial
Intelligence in the New Millennium eds. G. Lakemeyer and B. Nebel, pp. 239-269,
Morgan Kaufmann 2003

[56] J. S. Yedidia, W. T.Freeman and Y. Weiss. (Apr. 2002). Constructing Free
Energy Approximations and Generalized Belief Propagation Algorithms.

209

