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ABSTRACT
In this paper we explore the potential of using a general class of
functional representation techniques, kernel-based regression, in
the nonlinear model reduction problem. The kernel-based view-
point provides a convenient computational framework for regres-
sion, unifying and extending the previously proposed polynomial
and piecewise-linear reduction methods. Furthermore, as many fa-
miliar methods for linear system manipulation can be leveraged in
a nonlinear context, kernels provide insight into how new, more
powerful, nonlinear modeling strategies can be constructed. We
present an SVD-like technique for automatic compression of non-
linear models that allows systematic identification of model redun-
dancies and rigorous control of approximation error.

1. INTRODUCTION
In the past decade, the need to reduce the time and risk required

for implementation of analog/mixed-signal (AMS) designs has be-
come increasingly evident. This is particularly true because of the
complex designs arising in the communications area. As a result,
interest has grown, as witnessed by the emergence of the analog
modeling languages Verilog-AMS and VHDL-AMS, in more struc-
tured design methodologies that utilize behavioral modeling in the
specification, design, and verification stages.

A particularly vexing problem is the verification of the opera-
tion of analog sub-components when integrated into a larger de-
sign such as a wireless communications system. Macromodels are
a potential solution to this problem: they can greatly accelerate
simulation-based verification, are simpler to manipulate, as they
offer isolation from the details of the lower-level implementation,
and offer some degree of IP-protection, as they hide many of the
implementation details. The problem with macromodeling strate-
gies is, first, assuring that they can be made sufficiently accurate,
and, second, the large effort required to create them by hand. Both
concerns motivate the development of mathematically rigorous au-
tomatic macromodeling algorithms.

There has been considerable success, mostly in the context of
interconnect and package modeling, devoted to macromodeling of
linear, time-invariant passive components via model reduction al-
gorithms for large-scale linear systems [1, 2, 3, 4]. Recently, ex-
tensions of these techniques were proposed for time-varying and
weakly nonlinear systems [5, 6, 7, 8]. The trajectory algorithms
of [9, 10] are attempts to extend these Krylov-subspace based ap-
proaches to more strongly nonlinear models.

In this paper we consider projection-based methods for model
reduction of nonlinear systems. We will not directly address the
choice of the projection itself. Instead we will focus on an issue in-
trinsic to nonlinear modeling: efficient representation of nonlinear-
ities whose structure is not known a-priori. Necessarily, the funda-
mental difficulty becomes the manipulation of nonlinear functions
that induce features in high dimensional spaces[11].

Our intent is to demonstrate the utility of kernel-based represen-
tation techniques [12, 13] in manipulating such high-dimensional
data. Kernel methods, perhaps the most recently popular exam-
ple of which are support vector machines (SVMs), provide several
potential advances in analog macromodeling. First, they provide
a common, systematic and computationally convenient framework
for bringing to bear a wider class of mathematical models to the
reduction problem. As an example, we will show how to formulate
an approach that includes both the polynomial and piecewise-linear
techniques as special cases. Second, they bring potentially large
increases in computational efficiency. For example, the polyno-
mial based methods require manipulating a set of functions whose
number grows exponentially with degree and model order. We will
show how to manipulate the same polynomial basis functions at a
cost that is at worst cubic in the number of samples in a chosen set.
When the samples are well chosen, dramatic gains in efficiency
can be obtained. Third, kernel methods, equipped with appropri-
ate techniques of statistical inference, can lead to increased math-
ematical rigour in the model construction process. For example,
in the piecewise-linear technique of [9] there are parameters such
as the number of linearization points, the location of the lineariza-
tion points, the size of the linearization regions, and the way of
combining the linear models, that are chosen in a more or less ad-
hoc manner. As we shall see, in the framework of kernel methods,
these problems can be tackled in a systematic and well understood
manner, since it is possible to develop techniques for exposing and
exploiting redundancy innonlinearfunctions.

The tangible results of these advantages will be shown to be
smaller models, a more systematic way of choosing parameters in
the modeling process, and stronger guarantees on the approxima-
tion error.

2. REDUCTION BACKGROUND

2.1 Two-Stage Projection Methods
Projection-based methods for reducing linear systems of the form

E
dx
dt

= Ax+Bu; y=Cx+Du (1)

whereu(t) represents system inputs,y(t) system outputs,x(t) sys-
tem state, are now highly developed. Reduction is performed by
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drawing an approximate state vectorx(r) =Vzfrom a lower dimen-
sional subspace defined by the column span ofV. With an orthog-
onal projection of the equations (1), the reduced model is of the
same form,

E(r) dz
dt

= A(r)z+B(r)u; y=C(r)x+D(r)u (2)

with the reduced model matrices defined by

A(r) �VTAV B(r) �VTB E(r) �VTEV C(r) �CV;D(r) = D:
(3)

Recently, there have been several techniques proposed in an at-
tempt to generalize reduction techniques to nonlinear systems, which,
for simplicity, we will consider in the somewhat restricted form

dx
dt

= f (x)+Bu; y=Cx+Du (4)

where f (x) is an arbitrary nonlinear function. The projection for-
mula may be applied as in the linear case to obtain (with the addi-
tional constraintVTV = I imposed for convenience of notation) a
reduced model [14, 15, 16, 17, 6]

dz
dt

=VT f (Vz)+VTBu; y=CVz+Du: (5)

This method of reduction requires two computational steps. First
is the basis, or state-variable selection, computation, which boils
down to choice of the projection matrixV. Second, and perhaps
more important, is the computation of the projected model in the
reduced space. For linear systems, projection computation (Eq. 3)
is trivial, but projection computation is very difficult in general. No
practical reduction algorithm can be developed without an efficient
means of performing this computation in fairly general settings.
Consider the cost of evaluatingVT f (Vz). This function can in prin-
ciple be evaluated explicitly in the “reduced” model, by reference
to the original functionf (x), but the difficulty is that, while the
reduced model is of smaller dimension than the original, without
a more compact representation off (r)(z) �VT f (Vz), no practical
acceleration of computation is achieved.

Two techniques have recently been proposed that can reduce the
evaluation cost off (r)(z). Several authors [5, 6, 7, 8, 18] have
proposed using multi-dimensional polynomial representations. In
this approach, the nonlinear function is expanded in polynomial
series,

f (x) = A1x(1)+A2x(2)+A3x(3)+ � � � (6)

with x(1) � x; x(2) � x
x; x(3) � x
x
x; etc, and theAk 2

Rn�nk
are the multi-dimensional (tensor) polynomials coefficients

of the expansion. Under the projection operation, the polynomial
terms may be compressed to lie inRq�qk

by application of the rule

A(r)
k =VTAk(V
V
�� �V): (7)

The order-mcoefficient, withq states preserved, is a factor of(q=n)m

smaller than the original. Even so, because the final coefficients
containqm terms, ifm is the order of polynomial approximations,
these methods are in practice only suitable for fairly weak nonlin-
earities, those that can be represented by a second- or third- order
polynomial expansion.

Another drawback of these methods is that the coefficientsAk
can be difficult to obtain. Obtaining the coefficients by Taylor se-
ries, for example, requires analytical manipulations that are labor-
intensive, and not practical to apply when the functionf (x) is given
by a “black-box”, or when a very large number of complex func-
tions is involved, as is the case in modern semiconductor device
models.

The limitation of the polynomial-based techniques was one mo-
tivation behind development of the trajectory-piecewise-linear al-
gorithm [9], which has been shown capable of treating somewhat
stronger nonlinearities. In this approach, the functionf is approxi-
mated by a linear combination of affine models,

f̂ (x) = ∑
k

wk(x) [ f (xk)+Ak(x�xk)] : (8)

After projection, the reducedf (r)(z) then has the similar form

f̂ (r)(z) = ∑
k

wk(z)
h
VT( f (xk)�Akxx)+VTAkVz

i
: (9)

Next we will discuss further extension of the class of of nonlin-
ear function representations suitable for reduction applications. For
the remainder of the paper, we will assume that an acceptable tech-
nique for choosing the basisV is available. For example, the basis
matrix may be chosen using the time-series analysis techniques [14,
15, 17] or local linearizations [9, 16]. We will concern ourselves
with the second part of the model reduction challenge, the reduced-
model regression problem, finding an efficient way to compute and
representf (r)(z) =VT f (Vz) with an approximatêf (r)(z). We will
also show some interesting interactions between regression and re-
duction via the projectorV.

2.2 Kernel Methods
For the moment, let us leave aside the question of representing

f (r)(z), and consider representing a scalar functiong(x) : Rn !

R of multi-variable argument. Generalization to vector functions
can be done entry-wise. An interesting class of approximations are
those of the form

ĝ(x) =
N

∑
k=1

akK(x;xk) (10)

wherex2 Rn is the evaluation point,K(x;y) : Rn�Rn ! R is the
kernel, and theN vectorsxk 2 R

n we will denote the ”support vec-
tors.”

The most basic kernel methods [13] use simple functional forms
for the kernels, and pick the coefficients based on local properties
of the function. For example, tabulating the functiong(x) at some
sample pointsxk, and using the radial Gaussian kernel,K(x;y) =
exp(�βjjx�yjj2), will lead to an approximation ofg(x) based on a
weighted local average,

ĝ(x) = ∑
k

g(xk)K(x;xk) (11)

Better results are often obtained by renormalizing the kernel so the
weights sum to unity at each point, which is equivalent to using the
so-called Nadaraya-Watson (NW) kernel [13],

K0(x;y) =
∑k K(x;xk)K(y;xk)

(∑k K(x;xk))(∑k K(y;xk))
: (12)

The similarity to the piecewise-linear approximation in Eqn. (9)
should be apparent, and in fact in [9], the exponentially-weighted
radial functions with normalization as in Eqn (12) were used to
obtain the weightswk(z).

Now consider the general regression problem, representing the
functiong(x) in the basis ofM functionshk, k= 1; : : : ;M,

ĝ(x) =
M

∑
k=1

βkhk(x) (13)

which can be written

ĝ(x) = [h1(x) h2(x) � � �hM(x)]β (14)
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whereβ = [β1; � � � ;βM ] is the vector of the expansion coefficients
from (13). Instead of using local-averaging arguments, the coef-
ficientsβk are chosen to minimize aloss function, L(β) =V(e)+
Q(β), whereV(e) is some measure of the approximation errore=

ĝ�g andQ is a regularization term chosen (roughly speaking) to
prevent “over-fitting” of the data (i.e. to penalize choosing an ap-
proximant that is richer or more “complicated” than necessary).

The problem when representing multi-dimensional nonlinear func-
tions is that the number of basis functionsM in Eqn. (13) can be
very large. For example, consider the multi-dimensional polyno-
mials of degree up tod in a space of dimensionn. One choice
of basis functionshk are the monomialshk(x) = xq1

1 xq2
2 xq3

3 � � �x
qn
n of

degreeq = q1 + q2 + � � �qn up to q � d. The number of mono-
mials of a given degree grows combinatorically (there are(d +

n�1)!=(d!(n�1)!) monomials of degreed; the redundant tensor-
product representations used in [6] are larger by more than a factor
of 2d). The space spanned by the basis functionshk, sometimes
called feature space, is thus very high dimensional. Thus any rea-
sonably accurate approximant, even if “low” order, must rely on
thepotentialusage of a fairly large number of basis functions.

The attractiveness of kernel methods is that, for suitably cho-
sen basis functions, we can represent functions with series of the
form in (13), but the results, and all intermediate computations,
are of the form in (10),which only involve N degrees of freedom.
In other words, the representation exists in the input space but all
computations and evaluations can be conducted in the feature space
provided by the kernels. WhenM � N this represents substantial
savings. Kernel methods attain efficiency by expressing all algo-
rithmic operations in terms of inner products in this feature space,
that is, sums of the form

< Φ(x);Φ(y)>=

M

∑
k=1

hk(x)hk(y) (15)

whereΦ : x 7! (h1(x); � � � ;hM(x)); is a map from the input space
to the feature space, Thus the key to kernel methods is the connec-
tion between useful basis functions, and a kernel function that can
be easily evaluated. For example, inner products in the space of
inhomogeneous polynomials can be evaluated by using the kernel

K(x;y) = (1+< x;y>)d: (16)

Likewise, kernel functions for bases of orthogonal polynomials can
be obtained via the Christoffel-Darboux formula. Generally, for
any set of functions that have a closed-form summation rule, we
can find a kernel that reproduces the same function space. Splines
and Fourier series are notable examples.

Conversely, we may choose to construct the (positive-definite)
kernel, and let the basis be thus implicitly defined. A simple way
to construct complex kernels is by taking sums, or coordinate-wise
products, of simpler kernels. For example, taking the kernel to
be a product of Gaussian radial basis function (RBF) kernels and
polynomial kernels leads to a representation very similar to that
used in [9] – more general, in fact, since it leads to a piecewise-
polynomial, rather than just piecewise-linear, basis.

The connection between representations of the form in Eqns. (13)
and (10) is not necessarily obvious, so we now show a restricted
example [13] demonstrating the connection between kernels and
approximation in the basis ofhk(x).

Suppose we are given a set ofN measurementsyi = g(xi); i =
1; : : : ;N. To fit this data with a function ˆy= ĝ(x), of the form (13),
consider obtaining the expansion coefficients from minimizing the

penalized least-squares error,

min
β

L(β) = min
β

n
λkβk2+kŷ(β)�yk2

o
(17)

for some regularization parameterλ andy= [y1; � � � ;yN]. Defining
the matrixHjk = hk(xj),

H =
�

h1 h2 � � � hM
�
; (18)

the fit function values, ˆy, are given by ˆy= Hβ. This minimization
problem can be solved in closed form, via the equations

�HT(y�Hβ)+λβ = 0: (19)

Now it will be convenient to substituteβ = HTα. In this case, we
have h

HTHHT +λHT
i

α = HTy (20)

which after multiplying from the left byH becomes

(HHT )

h
HHT +λI

i
α = (HHT)y (21)

which can be solved by using
h
HHT +λI

i
α = y (22)

to obtain the coefficientsα. With this representation, defining

h= [h1(x) h2(x) � � �hM(x)] (23)

the function has the representation

ĝ(x) = hHT α: (24)

This has the form

ĝ(x) =
N

∑
k=1

M

∑
m=1

hm(x)hm(xk)αk (25)

By defining the kernel

K(x;y) =
M

∑
m=1

hm(x)hm(y) (26)

this can be written more conveniently as

ĝ(x) =
N

∑
k=1

αkK(x;xk): (27)

Note that thei; j entries of the matrixHHT are given byK(xi ;xj ),
thus all operations can be performed by only reference to the kernel
function.

The framework we just established can easily be extended to ac-
comodate more generic objective functions than the one introduced
in Eqn. (17). This will allow us to cast other procedures under
the same framework, in particular, regression via Support Vector
Machines (SVMs) [12]. Typically SVM’s try to fity = g(x) by
minimizing an objective function such as

L(β) =V(e)+Q(β) =C
1
N

N

∑
i=1
kyi �g(xi )kε +

1
2
kβk2 (28)

whereV(e) is known as the regularized risk functional, in essence
a measure of the regression error (k:kε is a particular measure to be
discussed) andC is a constant determining the tradeoff between the
error and the complexity penalizerkβk2. Eqn. (28) is thought to en-
capsulate the main ideas behind statistical learning theory, namely
that in order to obtain a good model for the data available, both
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Figure 1: ε-insensitive penalty functionV(e).

training error and model complexity must be simultaneously con-
trolled. SVMs typically choose the loss functionL(x) to be convex.
This decision enables one to use the power of convex optimization,
take advantage of the existence of fast, efficient solvers, and guar-
antee that the solution obtained is a unique, global optimum.

It is quite common in SVM’s to pickV(e) to be a penalty which
is zero inside some epsilon, linearly growing outside (see Fig. 1).
This penalty term leads to what is known asε-insensitivity. All
samples whose error margin measured against the representation is
smaller than or equal toε are not penalized in the loss function.
Referring to Eqn. (27) which represents the model in terms of the
kernels, and noting that the loss function also attempts to mini-
mize a norm-related complexity penalty, thoseαk that are related
to samples which are within thatε-insensitive bound, can thus be
optimally chosen equal to zero. This leads to a sparsification of the
representation in (27): only samples which do not properly satisfy
the optimal error criteria are needed to generate the representation.
These are termedsupport vectors.

3. SAMPLING-BASED REGRESSION
The above discussion shows how we can potentially use kernel

techniques to representf (r)(z) with an approximant,̂f (r)(z) using
a richer class of functions than has previously been possible. How-
ever, increased flexibility means an increased number of choices
to be made in constructing an algorithm. We must choose a spe-
cific form for the kernels and we must choose parameters for the
kernels. More critically, we must choose the sample pointszi , and
we would like as few as possible, as the cost of the algorithm is
directly related to the number of support vectorsN. In this section
we will consider the relation between the choice of support vectors
and accuracy of the approximation.

3.1 Complete Sampling
Ultimately we wish to represent̂f (z) by the sum

f̂ (r)(z) =
N

∑
k=1

αkK(z;zk) (29)

for someαk;zk (1 � k � N). The most general, and straightfor-
ward, way of choosing the parametersαk for the kernel expansion
is by fitting to a set of sampled̂f (zk) for some set of sampling
pointszk. The fitting procedure may use the least-squares proce-
dure detailed above, theε-insensitive loss function of the support
vector machine (SVM) (presented in Section 2.2), or other met-
rics as desired. For now we will treat the fitting procedure as a
black box. Once have performed the projection, then fit the func-
tion f̂ (r)(z), we will have a reduced model. The first question is
how to pick the vectorszk. Lacking any prior knowledge about
the function, a reasonable choice is to perform random sampling.
This is in some sense the least informative choice; however, should
it give good results, it indicates that the function under considera-
tion is “reducible” in the absence of large amounts of specific prior
knowledge. This is very desirable for an automated procedure.

So for the moment suppose that we have chosenN independent
vectorszk, perhaps at random, perhaps by design. What can we
achieve with simple choices? First, it should be clear that by using
the NW-type kernels (Eqn (12)), we can (by inspection) reproduce
the method of [9], if thezk we are given are the linearization points.
The “linearization points” in [9] will become our “support vectors.”

From considering the space induced by the polynomial kernel, it
is also evident that polynomial methods can be readily replicated.
The space of polynomials up to a given order is a finite-dimensional
space, i.e.,M in Eqns (15) and (26) is a finite integer. From (26) it
is thus clear that the polynomial kernels have finite rankM. With a
sufficient number of sampling points, if the rank of the kernel ma-
trix achievesM, we can exactly match a multi-dimensional poly-
nomial function of the appropriate order. The best-fit polynomial
depends on its construction, whether by Taylor series, least-squares
over a region, the region of operation to consider itself being an-
other degree of freedom, or some other method. Each of these
choices, which can be made implicitly via choice of the pointszk,
leads to a a particular polynomial model, and that model can be
computed implicitly via kernels. Thus, kernel methods with poly-
nomial kernel encompass the polynomial methods of [5, 6, 7, 8].
In and of itself, this is a useful result, because of the computational
simplicity of the kernel methods, that only samples of the multi-
dimensional functions are required. In contrast, analytic methods
of obtaining the polynomial coefficientsAk, such as Taylor series,
are essentially impractical in many contexts, in particular, circuit
simulation, because of the size and complexity of the model equa-
tions involved.

3.2 Incomplete Sampling: No Free Lunch
The point of introducing the kernel methods was to be able to

manipulate complex functions – higher order polynomials, for ex-
ample. Note also, that the functionsK(x;xk), as functions ofx,
lie in a space spanned by thehk(x). For a set ofxk, appropriately
chosen, theK(x;xk) will span the full (Hilbert) space spanned by
the hk(x). For exact representations of all possible functions, we
need generally as many sample pointsN as basis functionsM. We
must trade either accuracy – representing some components of the
Hilbert space approximately – or comprehensiveness – hoping that
some components will not appear in the functions we need to ap-
proximate. However, problem-specific knowledge may reduce the
number of basis functions we need in a specific context.

Consider fitting using polynomials of order 1 (i.e., affine func-
tions). Suppose it is known that the target functiong(x) is also
affine, g(x) = cTx+ a for somec 2 Rn;a 2 R. Givenn+1 sup-
port vectors that are linearly independent, it is always possible to
recoverg(x) exactly. The situation withm< n+1 vectors depends
on the choice of vectors. If the column span of the set of vectors
happens to includec, the function will be exactly recovered. But
exact representation can be done with only two vectors, if they are
chosen wisely. More generally, the accuracy will depend on the
angle between the subspace spanned by the sample vectors andc.
This argument generalizes to more complex basis functions, for
example, polynomials. If the image in the feature space of the the
chosen set of candidate support vectors spans a given basis func-
tion, the representation of that basis function in the function sam-
ples can be recognized and reproduced, in principle without error.
In general, the minimum achievable fitting error will depend on the
norm of the projection of the sampled function orthogonal to the
space implied by the kernel and the sample point.

The analogy to the moment-matching properties of the linear
Krylov-subspace projection methods should be clear. If the column
span of the projection matrixV in Eqn. (3) spans a Krylov-space,
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moments will be matched in the final solution of the state equa-
tions. Here, we may match, approximately or exactly, components
of a more general space used to approximatef (z).

Thus, the regression problem boils down to picking sample vec-
tors whose image will represent the image of the test vectors well.
Kernel methods help with the mechanics of the representation, as
well as the problem of regularization that we have not discussed in
detail, but the central problem, or assumption, is really the selection
of appropriate sampling vectors. It may be that simple selections
(e.g., random) cover the space ”well enough” for 5% or 10% accu-
racy. Or maybe not. Now we consider ways to restrict the choice
of sample points in order to improve the accuracy/cost tradeoff.

4. BOTTOM-UP KERNEL PROJECTION
For a certain class of kernels, inner product kernels, an inter-

esting result is available that allows us toautomaticallyobtain a
kernel representation of the reducedf̂ (z), if we have a kernel rep-
resentation of the originalf (x). This result is a generalization of
the formulas (3) for linear functions, and (7) for polynomial func-
tions. This technique may be useful since in many applications,
circuits in particular, the nonlinearities in the originalf (x) live in a
much lower dimensional space, and there are relatively few distinct
types of them. It is possible, for example, to fit kernel models to
each of the different types of semiconductor devices in a circuit,
models which would need to fit over only two or three dimensions.
Then the nonlinear̂f (z), which lives in a high-dimensional space,
can be automatically constructed.

4.1 Projection Formulas
Suppose the kernel of interest is an inner product kernel,K(x;y)=

K(< x;y >), and suppose that the kernel representation for the
“unreduced” system is available as

f̂ (x) =
N

∑
k=1

akK(x;xi): (30)

Now consider performing the standard projection-based model re-
duction, with reduced state variablez, andx=Vz. For any compo-
nent j of f̂ , we have

f̂ j(Vz) =

N

∑
k=1

akK(Vz;xk) =

N

∑
k=1

ak; jK(<Vz;xk >)

=

N

∑
k=1

ak; jK(< z;VTxk >) =

N

∑
k=1

ak; jK(< z;zk >) (31)

wherezk �VTxk. Thus, the substitution leadsautomaticallyto a
kernel expansion in the space of reduced dimension! To finish, we
consider the reduced vector function̂f (r)(z) = VT f̂ (Vz). In this
case, withvi the ith column ofV,

f̂ (r)i (z) = vT
i f̂ (Vz) =

n

∑
j=1

vi( j) f̂ j (Vz) (32)

=

n

∑
j=1

vi( j)
N

∑
k=1

ak; jK(< z;zk >) (33)

=

N

∑
k=1

(

n

∑
j=1

vi( j)ak; j )K(< z;zk >) (34)

=

N

∑
k=1

âk;iK(< z;zk >) (35)

(36)

so that the vector expansion off (x), in a kernel representation,
is automatically reduced to a kernel representation of the vector
function f̂ (r)(z).

4.2 Reduced Set Expansions
There is one drawback to the above procedure – the same num-

ber of support vectors,N, are required in both sums, andN could
be large in the original space. To make the technique practical,
an automatic way of compressing the kernel expansion is needed.
Several techniques are possible, all falling under the heading of “re-
duced set” methods [12]. These methods attempt to construct new
kernel expansions that represent the function described by the origi-
nal kernel expansion, but with fewer support vectors. Full treatment
of reduced set methods is beyond the scope of this paper; we will
briefly describe one method based on the singular value decompo-
sition (SVD). This technique illustrates one way in which familiar
techniques from linear modeling can be efficiently applied in the
nonlinear context.

Suppose the kernel matrixK(zi ;zj); i; j 2 1:::N has rankr < N.
This means that the columns ofK are not independent; some of
them can be expressed in terms of the others. If a subset of size
r is selected (see [19] for a robust computational procedure), the
coefficients of a reduced set expansion

f̃ (z) =
r

∑
k=1

βkK(z; z̃k) (37)

may be found by minimizing the normjj f̃ (z)� f̂ (z)jj, which can
be accomplished by computing [12]

β = K�1
2 K1α; (38)

where the entries ofK1;K2 are given byK2(i; j) = K(z̃i ; z̃j) and
K1(i; j) = K(z̃i ;zj ).

It is generically plausible that some compression is possible,
simply because the size of feature space of functions in lower di-
mensions is intrinsically smaller. However, as will be shown em-
pirically in Section 6, dramatic reductions in complexity can be ob-
tained by exposing structure that is specific to an individual prob-
lem, and not predictable based on generic arguments. In fact, the
reduced set methods give us a precise tool to reason about such
structure. For example, in [9], there is no formal way to choose
the linearization points. How many are needed, and what is the
error based on neglecting a given point? Likewise, in the polyno-
mial methods, there is no clear way to select particular (i.e., sparse)
combinations of polynomials that may dominate the reduced model
structure. Reduced set methods, in the kernel context, can answer
both questions,with consideration to the nonlinear structure of the
problem under investigation. In [9], an SVD technique was used
to compress the basis formed from a union of Krylov vectors. This
exposeslinear relations among components of the state space. By
manipulating the nonlinear kernel, the above procedure can expose
relations among components of thefeature space, which are non-
linear transforms of the state-space components. It is thus posible
to compress nonlinear functions such asf̂ (z) in a rigorous way, i.e.
with errors (measured in a feature-space norm) controlled by the
singular values of the kernel matrix.

5. STATISTICAL TRAJECTORY SAMPLING
The second method to be considered we term trajectory-sampling.

We adopt a similar strategy as used in [14, 15, 17] to select basis
vectors, and [9] to pick samples. We choose a set of “test” inputs
and take sample points from the evolution of the state equations of
the original model under time-domain simulation. These pointsxi
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can be projected into the reduced spacezi =VTxi to obtain sample
points for f̂ (z).

For efficient computation, it is important to choose as small a
subset as possible, especially in least-squares fitting since all the
sample points will be involved in the sum that defines the final func-
tion (other methods, in particular SVMs, may result in a sparser
expansion). For purposes of generating the sample points them-
selves, we exploit the fact that often we have more simulation data
than is needed to generate a good regressor. Therefore, we gen-
erate sample points by randomly selecting subsets from the union
of stimulus trajectories. We fit each model, and if the fit is suffi-
ciently accurate for all the subsets, proceed to the validation stage.
As in the projection algorithm of Section 4, this procedure can also
lead to a regressor with many support vectors. The reduced set
regression procedure (Section 4.2) is thus also of interest for the
trajectory-based algorithm.

We also must address the question of deciding whether or not
the model obtained is accurate. To address these issues, we have
adopted a two-stage sampling and cross-validation strategy. For
each circuit to be modeled, we establish a set of inputs to be be
used in stimulating the circuit, for purposes of generating data for
the reduction and regression stage. We also form a set of inputs, of
distinct form (different waveform shapes, amplitudes, frequencies)
for use only as “test” signals to validate the regression/reduction.

6. COMPUTATIONAL EXPERIMENTS
The following set of experiments were performed to demonstrate

various aspects of kernel methods in the nonlinear model reduction
problem. In order to illustrate properties of the algorithm we have
concentrated on the nonlinear delay line example [7, 9, 6] that has
been a popular test case for reduction techniques. Unless otherwise
noted, projection matricesV were obtained using an input-oriented
principal components analysis[14, 15, 17] of simulation trajecto-
ries (this is analogous to projection onto the dominant controllable
subspace in linear reduction). To choose the kernels and kernel
parameters, we introduce an additional modeling stage. Kernel pa-
rameters are chosen by optimizing over a set of small, but distinct,
circuits that contain similar nonlinear devices. We found this to
be a tricky step, with poor choices leading to unacceptable results.
We have found that careful attention to data scaling dramatically
improves the accuracy of the procedures.

6.1 Piecewise Forms
Before beginning the reduction studies, in our first example, we

compare the kernel-based regression schemes to function represen-
tations used in previous work on nonlinear model reduction. In or-
der to best illustrate the differences in behavior between the various
approximation schemes, we will first fit a simple, one-dimensional
function composed of the difference of two shifted tanh(x) func-
tions. Figure 2 shows the results of approximating the function
using locally weighted linear approximations. Figure 2(a) uses the
scheme of [9], exponentially weighted linear models obtained from
the analytic derivative at each of the function sample points. Figure
2(b) uses penalized least-squares regression (Eq. 17), using a ker-
nel constructed from products of Gaussian radial basis functions
and linear polynomials (no derivative information was used in the
fit), normalized as in (12).

The least-squares approximation is observed to be more accu-
rate, as we would expect from using a more powerful fitting strat-
egy, but also does not illustrate the large anomalies around changes
in the function slope that are found in the locally-weighted scheme.
This is due to two reasons. First is the more flexible, global, pa-
rameter adjustment, of least-squares. Local weighting was found
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Figure 2: Piecewise-linear regressors. Solid line shows actual
function, dashed line regressor, and diamonds sample points
for regression. (a) Weighting-based regressor. (b) Regularized
global-fit regressor.

to illustrate best overall behavior for relatively strong exponential
decay, probably because it has no effective way to blend informa-
tion from multiple samples in the function. Global least-squares,
on the other hand, tends to choose parameters that allow it to uti-
lize information from multiple sample points in constructing the
regressor at intermediate points. Second, the global least squares
strategy contains a regularization term that helps to control these
“overfitting” effects. “Flatter”, less complex functions are favored,
all other things being equal. If the regularization term is removed,
the results in Fig. 2(b) become somewhat more oscillatory.

6.2 Polynomial-Based Reduction
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Figure 3: Polynomial-based model reduction using random
function sampling. Solid line shows full model response, dashed
line reduced model response. (a)q= 2. (b) q= 3. (c) q= 4, par-
tial sampling. (d) q= 4, full sampling.

Next, using the nonlinear delay line example, of 30 starting states,
we demonstrate implementation of polynomial-based model reduc-
tion using kernel techniques. Thirty random vectors inR4 were
used for the sampling points to fit̂f (z). Figure 3 shows results of
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a square-wave validation input applied to the reduced model ob-
tained from nonlinear regression on the projected model of four
states. From Figures 3(a) and 3(b), it is clear that the regression
strategy effectively generated the polynomial models. Figure 3(c),
a fourth-order model, however, demonstrates the difficulties with
random sampling: the model is fairly representative of the original
system, but it is actually less accurate than either of the lower order
models. This is a result of under-sampling of the polynomial basis
space. The space of polynomials up to fourth-order, in four dimen-
sions, is dimension 70, and 30 random samples will not generally
capture enough of the needed space. Using 80 independent random
vectors, shown in Figure 3(d), recovers the expected behavior of
a fourth-order model. These results were done withL2 minimiz-
ing fits that produce a maximal set of support vectors; we found
that usingν-SVMs [12] reduced the number of support vectors by
typically 60%-70% on average.

6.3 Reduced-set selection from a trajectory
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Figure 4: Seventh-order polynomial-based model reduction us-
ing sampling from simulation trajectories. Solid line shows full
model response, dashed line shows reduced model response af-
ter reduced-set selection, solid-crossed line shows seventh or-
der model response computed using 100 random samples (note
large error).

In the next example, we consider obtaining the regressor by sam-
pling from simulation trajectories. A set of sinusoidal inputs was
applied to generate both the projection matrix and the sampling
basis for regression. We used a slightly different configuration of
the transmission line, driven harder, to exhibit more nonlinear be-
havior. To compensate, we took five states in the reduced model,
and used a seventh-order polynomial kernel. The full feature space
is potentially of dimension 792, and using the random vector tech-
nique on this example requires an excessively large number of sam-
ples to obtain good results. However, we were able to reliably ob-
tain results such as shown Figure 4 using 80-100 samples from the
stimulus trajectories, far too few to obtain accurate answers with
random vector samples. This is still a large number of support vec-
tors, particularly for a five-state model, so we applied the reduced-
set technique of Section 4.2. By performing an SVD analysis on
the kernel matrix (ala kernel-PCA [12]), and discarding singular
values less in relative magnitude than 10�8, we were able to reduce
the number of support vectors to 17. No additional loss of accuracy
relative to the 100-vector model was incurred. Thus, this example
demonstrates the detailed analysis, and reduction, potential of the

SVD and reduced-set techniques for nonlinear modeling. Explicit
polynomial representations were not practical; the tensor-product
forms have 80,000 entries in the reduced space, and potentially
over 1010 entries were the full tensors in the dimension-30 space to
be enumerated. More importantly, it illustrates emphatically that,
at least for some circuits, reduction and approximation with some
degree of statistical knowledge of behavior (or, as we shall see in
the next example, structure) dramatically improves the efficiency
of modeling. Using kernels, it is possible to efficiently encode, and
manipulate, this structural, or statistical, knowledge in the kernel
matrix. Note that random samples would not lead to a reduced set
of support vectors, even if the full feature space of dimension 792
was sampled.

6.4 Kernel-Projection Example
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Figure 5: Singular values of kernel matrix in bottom-up pro-
jection example. Solid line: random vectors in original space.
Diamonds: random vectors in reduced space. Dash line: kernel
matrix for structured vectors in unreduced regression. Dash-
dot line: kernel matrix for reduced support vectors.

Next we consider the bottom-up projection procedure of Section
4, again to form a five-state model of the delay line. To demonstrate
use of a different kernel we used the sigmoid,k(x;y) = tanh(�β(<
x;y>)+θ), also often found in neural networks. The nonlinearities
in the delay line have a particular form (two-terminal near-neighbor
coupling) due to the connectivity of the delay line. Such structure
is easily found in practical circuits. For the detailed model regres-
sion, we generated 12 support vectors per dimension, all multiples
of the corresponding unit vector, spaced along the expected opera-
tion range (i.e. voltage swing) of the circuit, which can be shown
sufficient to capture each of the detailed two-terminal nonlineari-
ties. This generates 360 support vectors. By way of comparison,
the space of 12th order polynomials in a thirty-state model has di-
mension over 1010. Reduced-set selection was able to reduce the
number of support vectors in the five-state projected model from
360 to 28 (a factor of 12.9X) and still maintain a model superior
in accuracy to those previously shown. The singular value analy-
sis upon which the support-vector reduction was based is shown in
Figure 5.

From this figure it should be clear that the extreme reduction
wasnot a property of the basis functions, wasnot due to the ker-
nel alone, and it wasnot a result of the decreased size of the state
space. The projected version of the structured regressor illustrates
rapid decay of singular values, thus compressibility. Kernels using
random support vectors, of similar scaling, do not illustrate this de-
cay, either in the full or reduced state space. Likewise, the detailed
model is not highly compressible, presumably because its potential
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response is quite complex. Only when the behavior is restricted,
such as in this case focusing on a state-space constructed by atten-
tion to a single input, with a kernel matrix that encodes structure
of the nonlinearities, is the compressibility of the circuit exposed.
And kernel methods quantitatively expose the possibilities for com-
pression.

In summary, this example illustrates how kernel methods can ex-
ploit easily-obtainable information about nonlinear structure to im-
prove the reduction process, and how, with such information, quan-
titative estimates for optimal model size, and achievable error, are
obtainable.

6.5 Realistic Circuit
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Figure 6: Response of UA741 amplifier. Solid line: full circuit.
Dotted line: reduced model, unscaled regressors. Dashed line:
reduced model, scaled regressors.

As a final example, we take the UA741 operational amplifier,
configured as a small-gain non-inverting amplifier. Using sinu-
soidal stimulus inputs, we obtained reduced models based on poly-
nomial and sigmoid kernel regression on the stimulus trajectories.
Results are shown in Figure 6 for a pulse wave validation simula-
tion. This example also illustrates that both a good choice of kernel
parameters and careful data scaling is needed to obtain accurate
results.

7. CONCLUSIONS
We have demonstrated how kernel methods (1) provide a conve-

nient framework for more flexible approximation strategies in ana-
log macromodeling, (2) are able to exploit statistical data, or struc-
tural information, to provide rigorous guidance about nonlinear re-
duction. These methods are not a panacea, however. With more
complex functional representations comes the additional problem
of parameter choice, increased sensitivity of the models to pertur-
bations, and increased likelihood of generating models with non-
physical artifacts. We believe that global stability and/or passivity
of the nonlinear models is a particular concern.
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