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Emerging brain-inspired architectures call for devices that can emulate the functionality

of biological synapses in order to implement new efficient computational schemes able

to solve ill-posed problems. Various devices and solutions are still under investigation

and, in this respect, a challenge is opened to the researchers in the field. Indeed,

the optimal candidate is a device able to reproduce the complete functionality of a

synapse, i.e., the typical synaptic process underlying learning in biological systems

(activity-dependent synaptic plasticity). This implies a device able to change its resistance

(synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing

several stable resistive states throughout its dynamic range (analog behavior). Moreover,

it should be able to perform spike timing dependent plasticity (STDP), an associative

homosynaptic plasticity learning rule based on the delay time between the two firing

neurons the synapse is connected to. This rule is a fundamental learning protocol in

state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact,

STDP-based unsupervised learning has been proposed several times mainly for binary

synapses rather than multilevel synapses composed of many binary memristors. This

paper proposes an HfO2-based analog memristor as a synaptic element which performs

STDP within a small spiking neuromorphic network operating unsupervised learning for

character recognition. The trained network is able to recognize five characters even in

case incomplete or noisy images are displayed and it is robust to a device-to-device

variability of up to ±30%.

Keywords: memristor, resistive switching, HfO2, artificial synapse, synaptic plasticity, spike time dependent

plasticity, spiking neuromorphic network, unsupervised learning

1. INTRODUCTION

The human brain is a massively parallel, fault-tolerant, adaptive system integrating storage and
computation (Kuzum et al., 2013; Matveyev et al., 2015). Moreover, it is able to visually recognize
a large amount of living beings and objects and to process huge volumes of data in real-time
(Kuzum et al., 2013; Yu et al., 2013a; Wang et al., 2015). Therefore, biologically-inspired systems
are attracting a lot of interest as vehicles toward the implementation of real-time adaptive systems
for a variety of applications. In such applications, the system is required to continuously adapt to
time-varying external stimuli in an autonomous way, therefore an on-line learning without external
supervision is preferable (Serb et al., 2016). In neuromorphic hardware, learning is obtained
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through reconfiguration of the connectivity of a network through
local modulation of synaptic weights. The adjustment of the
weight of a single synapse, i.e., plasticity, should follow simple
update rules that can be implemented uniformly across the entire
network and allow unsupervised learning. In this respect, spike
timing dependent plasticity (STDP) has been recognized as one
of most promising, because it establishes that the weight of a
synapse is adjusted according to the timing of the spikes fired
by connected neurons (Serrano-Gotarredona et al., 2013; Bill and
Legenstein, 2014; Ambrogio et al., 2016b).

Recently, the implementation of artificial synapses with
memristor devices has been proposed. Memristors (memory +

resistor) are compact two terminal devices that change their
resistance when subjected to voltage stimulation. The memristor
resistance state can be considered inversely proportional to the
synaptic weight. Various practical implementations have been
proposed, such as phase change (Kuzum et al., 2012; Ambrogio
et al., 2016b), ferroelectric (Du et al., 2015; Nishitani et al.,
2015), spin transfer torque (Querlioz et al., 2015) devices, and
oxide-based resistive switching memristors (Wang et al., 2015;
Ambrogio et al., 2016a). When memristors are employed in
neuromorphic networks, two main operational modes are used,
binary and analog. The former relies on memristors featuring
only two states, high resistance state (HRS) or low resistance state
(LRS), and it is proved to be effective in specific applications
(Suri et al., 2013; Wang et al., 2015; Ambrogio et al., 2016a).
On the other hand, analog evolution of device resistance is
desirable to improve the robustness of the network (Bill and
Legenstein, 2014; Garbin et al., 2015; Park et al., 2015), but the
difficulty of operating memristors in an analog fashion renders
hardware implementations of networks with analog synapses
still challenging (Garbin et al., 2015). Indeed, several memristors
show only a partial analog behavior, either when increasing the
resistance (synaptic depression), which is common in filamentary
devices as oxide-based memristors (Kuzum et al., 2013; Yu et al.,
2013a), or when decreasing the resistance (synaptic potentiation)
as in some kinds of phase change memristors (Eryilmaz et al.,
2014). Well established protocols to obtain analog behavior
require controlling of the current flow through the memristor
(Yu et al., 2011; Ambrogio et al., 2013), or the modulation of
either the time width (Park et al., 2013; Mandal et al., 2014)
or the voltage (Kuzum et al., 2012; Park et al., 2013) of the
spike. However, this device programming requires the use of
extra circuit elements for monitoring the state of the memristor
and shaping the spike accordingly. A second proposed approach
is to consider multi-memristor synapses (compound synapse
with stochastic programming) (Bill and Legenstein, 2014; Burr
et al., 2015; Garbin et al., 2015; Prezioso et al., 2015) at the
expense of increased area consumption. Only recently some
works demonstrated analog behavior in both potentiation and
depression without current or voltage control (Park et al., 2013;
Covi et al., 2015, 2016; Matveyev et al., 2015; Brivio et al., 2016;
Serb et al., 2016).

Within this class of devices, unsupervised learning based
on STDP has been successfully demonstrated and analyzed
in detail for binary synapses or compound synapses (with
binary memristors) (Suri et al., 2013; Bill and Legenstein, 2014;

Ambrogio et al., 2016a,b). Some works deal with networks
utilizing analog resistance transition in only one direction, either
in depression (Yu et al., 2013b) or in potentiation (Eryilmaz
et al., 2014). Only few works use analog synapses to simulate
neuromorphic networks, as an example Querlioz et al. (2013),
Yu et al. (2015), and Serb et al. (2016). The latter, in particular,
proposes a network realized in part with real hardware analog
memristors and in part with software simulation.

In this framework, we propose a fully analog oxide-
filamentary device as a memristive synapse for networks with
deterministic neurons implementing unsupervised learning. The
proposed memristor features an analog modulation of its
resistance in various long-term functional plasticity spiking
conditions and it emulates a type of homosynaptic STDP
learning rule. To prove its usefulness in deterministic STDP-
based networks, a simple fully-connected spiking neuromorphic
network (SNN) for pattern recognition is conceived and
simulated. The SNN consists of 30 neurons (25 pre-neurons
disposed in a 5× 5 layer and 5 post-neurons) and 125 synapses.
The network is trained with an associative unsupervised STDP-
based learning protocol. After training, the SNN is able to
recognize five characters displayed as 5× 5 black-and-white
pixels images even when incomplete characters or noisy ones
(intended as purely additive noise) are displayed. Moreover, the
SNN is proved to be robust against device-to-device variability.

2. MATERIALS AND METHODS

The device stack is made of 40 nm TiN/5 nm HfO2/10 nm
Ti/40 nm TiN layers and the area of the device is 40× 40 µm2.
Ti and TiN layers are deposited by magnetron sputtering and
the HfO2 layer is deposited by atomic layer deposition at 300 ◦C,
as described elsewhere (Brivio et al., 2015; Frascaroli et al.,
2015). The switching mechanism of the proposed memristor is
filamentary (Brivio et al., 2014), i.e., it is based on the disruption
and the restoration of a conductive filament formed inside the
oxide.

The electrical DC characterizations are performed using
Source Measuring Units (B1511B and B1517A) of a B1500A
Semiconductor Device Parameter Analyzer by Keysight. Figure 1
shows a typical I-V curve of the device. In its pristine state, the
device has a conductance of tens of nS (not shown). A forming
operation (DC current sweep up to 150 µA) at around 1.8 V
(data not shown) is needed to bring the device in its LRS for
the first time. To switch the device from LRS to HRS, and vice
versa, DC sweeps from 0 V to 1 V (LRS to HRS) and from
0 V to −0.7 V (HRS to LRS) are applied. The device maximum
resistance (read at 100 mV) ratio obtainable in DC is about one
order of magnitude, which is in agreement with the literature
(Garbin et al., 2015; Matveyev et al., 2015; Wang et al., 2015).

The device response to spike stimulation has been
characterized either by trains of pulses with increasing amplitude
and fixed time width or by repetition of the same spike. In the
former case, during depression spike amplitude ranges from 0.1
to 1.2 V, during potentiation, from −0.1 to −0.65 V. The same
spike is repeated 5 times before the amplitude is incremented
by 50 mV (decremented by −50 mV for negative voltages)
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FIGURE 1 | DC characterization of the device. Transition from LRS to HRS

is obtained with a DC sweep from 0V to 1V, transition from HRS to LRS is

obtained with a DC sweep from 0V to −0.7 V.

and the pulse duration is fixed at 100 µs. Measurements are
performed using the custom instrument described in Berdan
et al. (2015). In the second experiment, the trains of identical
pulses are constituted by 300 repetitions of −550 mV—high
and 25 µs—long pulses for potentiation and 300 repetitions
of 700 mV—high and 20 µs—long pulses for depression.
This second pulse scheme is implemented by a custom setup
interfacing High Voltage Semiconductor Pulse Generator Unit
(B1525A) and Source Measuring Units of a B1500A. The
motivation for the choice of the spike parameters will be given in
Section 3. In both experimental procedures, reading operation is
carried out using a voltage amplitude which induced no changes
in the device resistance.

STDP experiments are carried out placing the device between
two spiking channels, i.e., two Waveform Generator/Fast
Measurement Units (B1530A) of the already mentioned B1500A,
acting as spiking neurons. The relative timing between the two
overlapping spikes from the two neurons is mapped in a voltage
amplitude, as it will be described in Section 3.2.

The SNN is developed and simulated in MATLAB
R©

environment. The network is a simple fully connected
winner-take-all SNN of 30 integrate-and-fire neurons, of
which 25 are pre-neurons and 5 post-neurons. The pre-neurons
are arranged in a 5× 5 layer and each pre-neuron is connected to
all the post-neurons through 125 artificial synapses. The learning
method is unsupervised and the experimental STDP data used
to update the synaptic weights during learning are collected in
a look up table. The operating principle of the network will be
described in detail in Section 3.3. Using the same MATLAB R©

software, a graphic user interface (GUI) is developed to enhance
the software usability (further details in the Supplementary
Figure 1).

3. RESULTS

The tests described in the following are carried out in order
to provide a thorough overview of the device behavior which

is finally exploited in a simple example of neuromorphic
computation. The present section is therefore divided in
three parts. In the first one, long-term functional plasticity is
investigated through two different spiking algorithms, which are
exploited to achieve a form of STDP learning rule, in the second
part. Finally, a SNN is presented.

3.1. Long-Term Functional Synaptic
Plasticity
The plasticity of the device is investigated through two different
spiking stimulations, which are fundamental to achieve the shape
of STDP required in learning.

Figure 2A shows the evolution of the device resistance during
some potentiation and depression cycles (top panel) using trains
of spikes of fixed time width and increasing amplitude (bottom
panel). The maximum voltages for potentiation (−650 mV)
and depression (1.2 V) are those leading to a maximum
resistance change of about one order of magnitude and are
close to the maximum voltages used in DC operation (Figure 1).
During depression (resistance increase, green circles), the first
spikes, corresponding to lower voltages (see bottom panel of
Figure 2A), do not induce any resistance change up to a
voltage threshold which can be identified at about 550 mV.
As the threshold is overcome, the resistance starts increasing
gradually. The device therefore presents several intermediate
resistive states throughout the programming window. Similarly,
during potentiation (resistance decrease, orange circles), several
intermediate states are reached between the maximum and
minimum resistances using spikes with increasing voltage
amplitude. It can be noted that, in this case, the resistance
change begins at different voltage levels from cycle to cycle,
but for voltages higher than −500 mV a resistance decrease
can always be observed. Therefore, −500 mV is considered the
voltage threshold for potentiation. It is worth noticing that time
widths, as well as voltages, influence the resistance evolution, as
already reported by Covi et al. (2015) for similar devices. On
the other hand, resistance changes are more sensitive to voltage
variations rather than to time widths variations, so that for time
widths in the range of 10 to 100 µs roughly the same voltages can
be applied for obtaining the same resistance evolution. It has to be
mentioned that a stair-case like algorithm, like the one used here,
is not practical to implement in real large-scale system, because
requires neurons to keep track of previous activity. On the other
hand, the testing procedure reported in Figure 2A is useful for
characterizing the device and to clarify the functioning principle
of the STDP implementation described below, which has actually
been proposed as a learning rule for practical implementation of
neuromorphic hardware (Saïghi et al., 2015).

In the set of measurements shown in Figure 2B, plasticity
is investigated as a function of trains of identical spikes.
Some depression/potentiation cycles are performed. During both
potentiation and depression, the resistance gradually changes,
featuring several intermediate states between the LRS and
the HRS. In all the cycles, the resistance rate change is not
constant with respect to the number of spikes. Indeed, for both
potentiation and depression the resistance change is faster for the
first spikes. In general, analog resistance variation due to trains
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FIGURE 2 | (A) Potentiation (orange) and depression (green) cycles using ramped trains of spikes. Spike time width 100 µs, 5 repetitions. Potentiation: ramps from

−0.1 V to −0.65 V. Depression: ramps from 0.1 V to 1.2 V. Upper graph: device resistance after spikes; lower graph: spike amplitude. (B) Potentiation (orange) and

depression (green) cycles using trains of 300 identical spikes. Potentiation: spike amplitude −0.55 V, time width 25 µs. Depression: spike amplitude 0.7 V, time width

20 µs. Upper graph: device resistance after spikes; lower graph: spike amplitude.

of identical spikes can be found for voltages values close to the
voltage thresholds, identified by the results of voltage staircase
stimulation for similar time widths (as that shown in Figure 2A).
Indeed, gradual resistance change is achievable as an intermediate
regime between a low voltage stimulation, which does not affect
the resistance, and a high voltage stimulation, which induces
a digital behavior (Covi et al., 2015). The resistance window
obtained through identical pulses is in the order of 2, which
has been considered sufficient when dealing with neuromorphic
systems (Kuzum et al., 2012; Prezioso et al., 2016).

3.2. Homosynaptic Input-Specific Plasticity
Toward Learning
Based on the plasticity results described in Section 3.1 as a
function of voltage modulation and spike repetition, STDP
experiments relying on engineering of pre- and post-spike
superimposition are carried out. Indeed the voltage drop on
the memristor is modulated according to the voltage difference
resulting from the superimposition of pre- and post-spike
waveforms, which depends on their relative timing. To this
aim, pre-spike is shaped as a triangular-like pulse (Figure 3A),
thus acting as a bias performing the voltage-to-time mapping.
The rectangular-like shape of the post-spike (Figure 3A)
determines the supra threshold spike width. Figure 3B reports
two examples of the superimposition of pre- and post-spikes
giving either potentiation or depression and Figure 3C reports
the quantitative voltage-to-delay-timemapping. In particular, the
resulting maximum voltage dropping on the device depends on
1t and varies between−650 mV for potentiation and 800 mV for
depression.

To emulate STDP with 1t > 0 (1t < 0), first the device
is brought in its HRS (LRS) with a DC sweep, then 250
identical pairs of pre- and post-spikes are applied to the
top and bottom electrodes of the device, respectively, keeping
1t constant. The experiment is repeated for different delay
times (1t) and each time the parameter 1t is varied, the

device is reinitialized accordingly. Figures 4A,B show the device
resistance evolution as a function of spike pair repetitions
for different delay times in both potentiation (Figure 4A) and
depression (Figure 4B). During potentiation and for every delay
time, resistance decreases quickly in the initial phase (about
~25 repetitions) before slowing down markedly in later phases
(please notice the vertical scale as going like R0/R with the
increase of the number of spikes, in qualitatively agreement with
Figure 2B). The same qualitative trend is respected also during
depression (Figure 4B): the first 10–20 spike pair repetitions
significantly change the resistance, whereas the following ones are
less effective, until a saturation level is reached after ∼150–200
spikes. In both potentiation and depression, the variation of
1t, i.e., the voltage drop, drives the amplitude of the resistance
change, i.e., the longer the delay time, the lower the change in
resistance. Moreover, 1t affects the resistance change rate in
the initial stage of the plasticity operation, i.e., the smaller the
delay time (i.e., the higher the voltage drop), the sharper the
resistance evolution (e.g., compare the blue and pink curves of
Figures 4A,B).

Figures 4C,D show the STDP curve represented as the
normalized resistance change as a function of the spike delay (and
consequently of the voltage amplitude, as shown in the top x-axis
of Figures 4C,D) for few representative fixed numbers of spike
pair repetitions (1, 10, 25, 50, 100, and 150). The plots, which
are derived from aforementioned results, qualitatively follow the
biological STDP curve shown in Bi and Poo (1998). In accordance
with Figures 4A,C shows that when 1t is positive and small, the
first spike pair induces a resistance variation equal to 75% of the
dynamic range. As a consequence, the following repetitions have
a reduced effect in further changing the device resistance. On
the contrary, when 1t is longer and the resulting spike voltage
amplitude is lower, the spike repetitions play an important role
in the evolution of the device resistance. Indeed, it becomes
progressively more pronounced with increasing 1t. This effect
is valid up to a point where 1t is so large that the voltage
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FIGURE 3 | (A) Setup for Spike Time Dependent Plasticity and waveforms used as pre-spike (left) and post-spike (right) in STDP experiments. (B) Overlapping of

pre-spike and post-spike to obtain a potentiation (left) and a depression (right). (C) Voltage-to-delay time mapping. Resulting voltage across the artificial synapse as a

function of 1t.

drop across the device does not exceed the device threshold and
no more changes in device resistance are induced, regardless of
the number of applied spikes. The same effect is shown also
in Figure 4D, where results for negative 1t are plotted, even
though here the effect is less pronounced. Indeed, a change in the
synaptic weight is present also for 1t=−400 µs. This result is
in agreement both with Figure 2A, where the effect of the voltage
amplitude on the device resistance is shown, and with Figure 2B,
where it is demonstrated that the weight change progressively
decreases with increasing spike repetition number.

It is worth mentioning that when the device behavior is tested

for 1t > 0 (1t < 0), the device is first brought in its HRS (LRS).
In case thememristor in the LRS (HRS) is subjected to pulses with
1t > 0 (1t < 0), no changes in its resistance would occur, since
the synapse is already completely potentiated (depressed). This is
explicitly shown in Figures 4C,D , where for negative (positive)
delay times no resistance changes are shown.

From Figures 4C,D, a behavioral difference between
potentiation and depression dynamics emerges. Despite in both
cases the final resistance is strongly influenced by the applied
voltage amplitude, during potentiation the applied voltage affects
the change in the device resistance starting from the very first

spike pair, whereas during depression the effect of the voltage
is more evident from the second spike pair on, rather than in
the first. Such asymmetry of the curve, even though in principle
improvable by optimizing the spike shapes, does not affect the
possibility of using the STDP rule for a neuromorphic network.

3.3. Associative Unsupervised Learning in
Spiking Neuromorphic Networks
The goal of the following Section is to demonstrate the operation
of a small unsupervised network which makes use of the plastic
response of the memristor described above to emulate the
functionality of a synapse. To this end, we concentrate just
on a network with fixed timings, i.e., restricting for simplicity
to a subset of the STDP data presented in Section 3.2. More
specifically, the curve with 1t = 300 µs of Figure 4A is
selected for potentiation and the one with 1t = −50 µs of
Figure 4B for depression. Of course, the shape of the STDP curve
provides additional degrees of freedom that can be exploited for
addressing more biologically plausible learning algorithms, e.g.,
for the treatment of gray-scale or color images. However, such
applications go beyond the scope of the present manuscript.
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FIGURE 4 | (A) Potentiation and (B) depression dynamics with 250 identical spikes. Different voltage amplitudes and delay times are explored. The values of both

voltage amplitude and 1t are written nearby each curve. Insets: detail of the first 12 spikes. (C,D) Spike Time Dependent Plasticity learning curve for different number

of pre- post-spikes pair repetitions (1t > 0 and 1t < 0). R0 is the initial HRS (C) and LRS (D).

Figure 5 shows the proposed SNN. For ease of visualization,
in Figure 5 only a limited number of the connections between
pre- and post-neurons is shown. Each of the 25 pixels composing
the images is associated to a different pre-neuron. Initially, the
network is untrained and a learning phase is executed. At the end,
the SNN is able to recognize 5, capital characters (A, E, I, O, and
U, Figure 5, inset) given as 5× 5 pixel black-and-white images.
The network learns through an unsupervised STDP protocol.
Once the training session is over, the network is able to recognize
incomplete or noisy images, representing any of the characters,
following a winner-take-all approach.

The plasticity of the memristor plays most of the role in
the learning session of the SNN. The training is performed one
character at a time. As an example, the procedure to make the
network learn letter A is described. The same procedure is then

used for all the other characters. The spiking diagram of the
neurons is shown in Figure 6A and it will be explained together
with the unsupervised learning protocol.

At first, character A is shown to the network. Black pixels
stimulate the associated pre-neurons (Figure 5), which fire
toward all the post-neurons (Figure 6A, top panel). Post-neurons
integrate the signals and the one which first reaches its threshold
voltage (e.g., post-neuron γ ), which is fixed and equal for all
the post-neurons, fires back to all the pre-neurons (Figure 6A,
middle panel). The fired spike has three effects: (i) the discharge
of all the other post-neurons, following the winner-take-all rule;
(ii) the potentiation of the synapses connecting pre-neurons
associated with black pixels and post-neuron γ (1t > 0); (iii)
the triggering of the firing of the pre-neurons associated with
white pixels (Figure 6A, bottom panel). Afterward, about 500 µs
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FIGURE 5 | Proposed fully connected SNN. 25 pre-neurons are connected

to 5 post-neurons through a layer of 125 artificial synapses. Each pixel of the

images shown to the network are associated with a pre-neuron. Inset: images

showed to the SNN during the training phase.

after the first spike, post-neuron γ fires again (Figure 6A, middle
panel), thus depressing the synapses connecting it with firing
pre-neurons (1t < 0). Pre-neurons associated with black pixels
are in their absolute refractory period, therefore the second spike
form post-neuron γ has no effect on them. This procedure
of neurons handshaking, lasting about 2.15 ms, is called epoch
and it occurs each time an image is presented to the SNN
during training session. To reach successful learning (i.e., each
post-neuron is specialized for a different character) with a
probability of 99%, the same character is shown to the network
up to 200 times (epochs).

Figure 6B shows an example of training session for letter A.
The Figure is an excerpt extracted from the video VideoS1.mp4,
which can be found in the Supplementary Material and it
summarizes the whole 200 epochs occurred to specialize the
SNN to recognize character A. In panel (i), the image shown
to the network is represented. In panel (ii), the synaptic weight
after 200 epochs of the subset of synapses contributing to the
firing of post-neuron γ is shown. The potentiated synapses are
the orange squares in the panel, whereas the depressed ones
are colored in black. A close correspondence of panels (i) and
(ii) is evident, which is at the basis of the relationship between
potentiated synapses and character learned. In panel (iii), the
weight evolution as a function of the number of epochs is shown.
The depressed synapses (black lines) tend to converge to the

lowest conductance value of about 800 µS. On the contrary, the
potentiated synapses (orange lines) show a very slight change in
the conductance, if any, due to the limit imposed by the initial
condition of the synaptic layer. Indeed, the initial conductance
of each synapse is set in the range from 1.8 to 2.5 mS. The
initial distribution is the result of a potentiation operation and
it simulates the device-to-device variability plausible in a real
network. Both the width and the average value of the initial
weight distribution are fundamental to allow the SNN to uniquely
specialize post-neurons during learning session. The variability
in the initial resistance, which is actually unavoidable for real
devices, allows one post-neuron to be favored with respect
to the others and therefore to fire first. The narrower the
distribution of initial synaptic weight toward high conductance
values, the higher the probability of success during learning. This
is true up to the unrealistic situation where all the synapses
have the same weight and, therefore, all post-neurons would
fire simultaneously, thus failing the learning task. Similarly, the
widening of the initial state range leads to a situation where two
similar characters, e.g., E and U, fall in the basin of attraction of
the same post-neuron, thus resulting in an unsuccessful learning
(i.e., the SNN forgetting the former character and specializing the
same post-neuron to recognize the latest character presented).
The same erroneous behavior is obtained if the average value of
the initial distribution is moved toward lower conductances.

An example of complete training session is illustrated in
Figure 6C (an animation of the first 50 epochs is shown in
Supplementary Material, VideoS2.mp4). Each 5× 5 matrix in
Figure 6C represents the group of 25 synapses contributing to
the firing of post-neurons α to ǫ. Initially, all the weights are
randomly distributed between 1.8 and 2.5 mS. Increasing the
number of epochs (in the Figure, initial state, 5th, 50th, and 200th
epochs are shown), the weight of each synapse gradually changes
until, at the 200th epoch, the SNN is trained and the characters
are recognizable also in the synaptic layer. In addition, Figure 6D
evidences the distribution of all the 125 synaptic weights in the
initial states and after 5, 50, and 200 epochs. It can be noted
that during the session the initial distribution, which is initially
grouped unimodally toward the highest conductive values, is split
in two, one group for depressed synapses and one for potentiated
ones, which is consistent with the results shown in Figure 6B,
panel (iii).

Similar to the training session, during recognition, when an
image is shown to the SNN, the stimulated pre-neurons fire
toward all the post-neurons. The post-neuron which is first
charged above its threshold fires, both recognizing the character
shown and discharging the other post-neurons.

The recognition tests are carried out on 100 networks
configurations resulting from the same number of learning
simulations with different initial synaptic weights. The test set
can be divided into two classes of images, one with missing pixels
and one with additive noise (Supplementary Figure 2). In the first
test, several images with missing black pixels are shown to the
SNN. The results demonstrate that in the worst case the network
is always (100% recognition rate) able to recognize the character
if the percentage of missing pixel is equal to or lower than 21%
for character A, 27% for character E, 20% for character I, 33% for
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FIGURE 6 | (A) Training session: spiking diagram of one epoch. The training character is shown at 0 s and the duration of an epoch is about 2.15 ms. (B) Image

shown to the network (top left panel), synaptic weights after 200 epochs (top right panel), and detailed synaptic weight evolution during training session of character A

(bottom panel). Black lines represent the synapses which are being depressed during the session and orange lines the ones potentiated. (C) Example of synaptic

weight changes during a learning session. Each 5 × 5 matrix represents the group of 25 synapses contributing to the firing of neurons α to ǫ. Color bar on the right

indicates the conductance range of the synapses. Increasing the number of epochs (from top to bottom), the SNN specializes each post-neuron to recognize a

different character. (D) Distribution of the synaptic weights during the training session.

character O, and 18% for character U. In the second test, noisy
images are shown to the network. The test images are chosen
among the ones considered mostly critical for the SNN to be
recognized, so that worst cases could be explored. Further details
about the images shown and the choice criterion can be found in
the Supplementary Figures 2, 3, and Supplementary Table 1. The
network recognition rate resulted 85.71% for images with up to 4
noise pixels. However, the recognition rate is correlated with the
number of epochs in the training session. As already mentioned,
a training session for a character consists of 200 epochs and it
almost always leads to a successful learning. If the number of
epochs during training is reduced, both the success rate of the
learning session and the recognition rate decrease. Simulations
of learning sessions with different number of epochs (200, 50,
10, 8, and 5) are carried out. With a number of epochs of 8, 2

learning sessions out of 3 failed, and with 5 epochs the SNN can
never perform a successful learning. After concluding a successful
learning session, the same test images (see Supplementary Figure
2) are shown to the SNN during recognition. The recognition
rate decreases from 88.22% (200 epochs) to 82.61% (50 epochs),
75.29% (10 epochs), and 72.03% (8 epochs). This means that,
when a limited number of epochs is performed, the synapses
may be insufficiently depressed and during recognition they may
conflict with the potentiated ones, thus resulting in incorrect
recognition.

4. DISCUSSION

In Section 3 a filamentary HfO2 memristor featuring analog
behavior is presented. The proposed device is able to emulate
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both long-term plasticity and STDP learning rule. Moreover,
a simple fully-connected SNN which takes advantage of the
memristor plastic behavior and which uses an associative
unsupervised STDP-based learning protocol is simulated. After
a training session the network is able to recognize five characters,
even when the images displayed are incomplete or noisy. It
should be mentioned that non-ideal elements, such as parasitic
or jitter, are deliberately not considered in the proposed network,
because the performed investigation focuses on the basic
principles of the network with analog memristor, where a study
at a high level of abstraction is mandatory before considering
practical implementations.

We demonstrate long-term functional plasticity with two
different spiking algorithms, which have been already used in
the literature (Park et al., 2013; Yu et al., 2013a; Li et al., 2014;
Zhao et al., 2014) to emulate plasticity. The two algorithms allow
an investigation on the device behavior as a function of the
voltage amplitude (Figure 2A) and on its integrative response
when stimulated by identical spikes (Figure 2B). An algorithm
that modulates the spike voltage applied to the device is not easy
to be implemented in a system. Indeed, dedicated read-out and
variable voltage biasing circuits are required. On the other hand,
the voltage on the memristor in a system could be modulated
through superimposition of long spikes, as proposed several
times in literature (Serrano-Gotarredona et al., 2013; Saïghi et al.,
2015). This method allows the neuron to always fire the same
spike and let the delay times between spike determine the actual
voltage on the device.

The combined results of the measurements shown in Figure 2

are used to engineer the shape of pre- and post-spikes used to
emulate homosynaptic plasticity and to conceive a biologically
plausible STDP curve (Figures 4C,D), which takes advantage of
both the relative timing between the two spikes (1t) and the
plasticity given by spike pair repetition. It should be noted that,
though analog changes can be obtained around the previously
found thresholds for potentiation and depression, the device
can be operated in an analog fashion in a range of voltage of

some hundreds of mV (Figure 4). From Figures 4A,B, it can
be observed that voltages from 580 to 800 mV for depression
and from −440 to −650 mV for potentiation allow a resistance
evolution as a function of the repetition of identical spikes. In
particular, Figures 4C,D show that the dynamic range decreases
with the decreasing of the applied voltage, but resistance still
gradually changes. In a network, it can be expected that different
devices show analog transitions for a range of voltages whose
end values (Vmin, Vmax) can be different from device to device,
but in general a sub-range of voltages allowing analog resistance
modulation is shared by many devices. A threshold difference
in the devices (provided it is within few tens to one hundred
mV) would not prevent analog behavior, as demonstrated in
Figure 7, which shows the behavior of 3 different devices
during potentiation (Figure 7A) and depression (Figure 7B)
when stimulated by trains of 300 identical spikes. In both
Figures 7A,B, the mean value of 10 repetitions of the same
train of spikes is represented by symbols and the shaded area
indicates the standard deviation of the measurements. It can
be noted that potentiation suffers of major variability with
respect to depression. Nevertheless, despite the device-to-device
variability, all the devices show an analog behavior in both
operations. In addition, different resistance evolutions due to
different device thresholds are compensated in SNNs by the
high parallelism of the architecture itself which enhances the
network tolerance to device variability (Yu et al., 2013a). In this
respect, the performance of the presented SNN against variability
is tested adding±10% (Figures 8A,B) and±30% (Figures 8C,D)
device-to-device variability in the artificial synapses behavior,
i.e., the look up table associated to each synapse has been
multiplied by a random factor extracted between 0.9/1.1 and
0.7/1.3 respectively. Figure 8A summarizes the synaptic weight
evolution during the training session of all the characters as
a function of the epoch number when a variability of ±10%
is set. Each graph shows the weight evolution of the group of
synapses contributing to the firing of a specific post-neuron.
During learning, depression (black) and potentiation (orange)

FIGURE 7 | Variability in the behavior of 3 different devices for (A) potentiation and (B) depression when stimulated by trains of 300 identical spikes.

Potentiation: voltage amplitude −0.55 V, time width 25 µs. Depression: voltage amplitude 0.75 V, time width 20 µs. Symbols indicate the mean value of 10

repetitions of the same train of spikes and the shaded area indicates the standard deviation.
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FIGURE 8 | Simulation of the training session including ±10% (A,B) and ±30% (C,D) of variability in synaptic behavior. (A,C) Detailed synaptic weight

evolution during training session of all characters. Black lines represent the synapses which are being depressed during the session and orange lines the ones

potentiated. Green lines indicate that the neuron did not fire in the corresponding epoch. (B,D) Distribution of the synaptic weights during the training session. (E)

Recognition rate as a function of the number of epochs in the learning session. The blue circles represent the average recognition rate from 100 simulations where

device-to-device variability is not taken into account. The red dotted line and the green dashed one indicate the best and worst results obtained in the simulations,

respectively, whereas the other results lie in the shaded gray area. (F) Average recognition rate of 100 simulations as a function of the number of epochs in the learning

session with device-to-device variability of 0% (blue circles), ±10% (red squares), and ±30% (green triangles). Error bars show the standard deviation of the results.

of synapses occur, but the weight evolution with and without
variability (as in Figure 6B) is different, because in the former
case for some presentation of the images to the network some
groups of synapses are not updated (green lines for synapses
connecting to post-neuron that is finally specialized to characters
A and O). This is explained as follows. In the examples reported
in Figure 8, first, O is presented and post-neuron O (meaning
post-neuron that finally specializes to recognize O) starts firing
and updating its associated synapses in the first epoch. On the
other hand, variability causes that the weight are adjusted in
such a way that from epoch 2 to 6, a different post-neuron fires
and synaptic weights associated to post-neuron O are frozen.
Then, specialization proceeds with one post-neuron specializing
for only one character. The success of the learning session

demonstrates the robustness of the network against device-to-
device variability, in accordance with Yu et al. (2015), provided
analog behavior holds in each device. Figure 8B shows the weight
distribution of the synaptic matrix during training. Increasing
the number of epochs, the initial synaptic weight distribution
tends to separate in two groups, one for depressed synapses and
one for potentiated synapses, as it happens also in Figure 6D.
However, in the case of Figure 8B, the two distribution are
wider than in the case where no variability factor is considered.
The same above observations are valid also when variability
is increased to ±30%, as shown in Figures 8C,D. Indeed, also
Figure 8C shows, in the bottom two graphs, some epochs where
the synaptic weight is not updated. Moreover, considering the
±30% variability test, the final distribution of the synaptic
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weights is larger than the one achieved for ±10% variability
(17% larger for depression and 136% larger for potentiation).
In this respect, it is worth analyzing the recognition rate of the
test set shown in Supplementary Figure 2, as a function of the
number of epochs carried out during learning. Figure 8E shows
the recognition rate (blue circles) as a function of the number of
epochs in a SNN neglecting device variability. Each circle is the
average recognition rate over 100 simulations (i.e., 100 learning
sessions each starting with a different initial configuration of
the synaptic weights) and the results of each simulation lie in
the gray shaded area delimited by the best simulation result
(dotted red line) and the worst one (dashed green line). The
increase of the number of epochs during learning improves the
average recognition rate and decreases the spread of the results.
Indeed, the recognition rate varies between 43.75 and 93.75%
at 8 learning epochs whereas it varies between 75 and 100%
at 200 learning epochs. As already mentioned in Section 3.3,
the recognition rate is closely related to the distribution of the
synaptic weights at the end of the training session. The nearer
the distributions of the potentiated and depressed synapses, the
lower the recognition rate. As a consequence, the increase of the
number of learning epochs contributes to enhance the separation
of the two above-mentioned distributions and, therefore, to
improve the recognition rate. It is interesting to note that in
this respect the impact of device-to-device variability is almost
negligible. Indeed, we performed the same recognition tests
with the same methodology also in case of SNNs with ±10
and ±30% device-to-device variability. Figure 8F shows the
average recognition rate as a function of the epochs during
learning in case of 0% (blue circles), ±10% (red squares),
and ±30% (green triangles) device-to-device variability. The
vertical bars indicate the standard deviation σ . The same
increasing trend can be noted for all the curves regardless of
the variability. In accordance with Figure 8E, in each curve also
σ decreases with increasing number of epochs, but the value
of σ for each number of epochs during learning increases with
increasing variability. On the other hand, the network proves
to be robust also for variability up to ±30%. The network
robustness lies in the gradual synaptic weight update. Indeed
for every post-neuron spike, the weight is adjusted by a small
amount. If an erroneous spiking (like the one of a post-neuron
responding to two different characters) occurs, the weight change
is small enough that the following epochs can recover the
error.

Given the observations above, we would like to stress that it is
fundamental in deterministic networks to have analog synapses
even though, as in the proposed SNN, the images shown are only
black and white. Indeed, in a system with deterministic neurons,
as in the proposed one, binary deterministic memristors would
lead to fast learning (only few epochs would be necessary to
complete the training session), but also to fast forgetting (Fusi
and Abbott, 2007). Indeed, if a noisy image were shown to a
trained SNN employing binary synapses, the network would
classify that image and, therefore, would adjust the synaptic
matrix also according to the pixel which is not representative for
that image, disrupting learning. In the case of analog synapses,
the same permanent and significant change leading to failure

would result only if the same noisy image were shown to the
network for several epochs, which is statistically improbable.

In the presented SNN, using two fixed delay times (one for
potentiation and one for depression) in the STDP is sufficient
as a proof-of-concept. In this respect, two values are selected
(1t= 300 µs and 1t=−50 µs) which are coherent with a post-
neuron firing as a consequence of the stimulation by the pre-
neuron (synapses potentiation for 1t= 300 µs) rather than with
a pre-neuron firing because of the stimulation by the activated
post-neurons in case of synaptic depression (1t=−50 µs). On
the other hand, a network exploiting also the possibility of
variable delay times between pre- and post-spikes, would allow
increasing the available resistance states, therefore, improving the
network robustness even further. As an example, in the case of
input-specific associative learning rules for pattern recognition,
the possibility to combine different parameters (1t and spike
pair repetition) to achieve various resistive states with different
evolution histories offers a further degree of freedom. Indeed,
a possible application could be in networks where images have
different colors o shades of gray, which can be linked to different
delay times. In this case, at the end of a learning session with a
certain number of epochs, the weight distribution of the synaptic
matrix would give an indication of the common features of
the various images presented to the network. More specifically,
the more a group of synapses is potentiated, the more they
are stimulated, i.e., the potentiated group identifies a common
feature in the set of displayed images.

5. CONCLUSION

In summary, a thorough analysis of the synaptic features of
the proposed oxide-based memristor is carried out. Initially,
the device ability to emulate long-term functional potentiation
and depression is proved upon stimulation with spikes with
increasing amplitude (stair-case like) and trains of identical
spikes. These experiments show that the memristor has an analog
behavior in tuning its resistance and it can reach a dynamic
range up to one order of magnitude depending on the spiking
algorithm employed. Then, homosynaptic plasticity is tested
through STDP experiments, which demonstrates the device
biological-like behavior when subjected to synaptic activity.
Finally, the possibility of developing deterministic networks
using unsupervised learning is investigated. A subset of the
STDP collected data is used to simulate a simple fully-connected
SNN featuring an associative unsupervised STDP-based learning
protocol. The network is able, after a training session, to
recognize the five characters, also when partially incomplete or
noisy letters are displayed. Therefore, the SNN proves that the
proposed memristor can be used to emulate the functionality
of an artificial synapse in future neuromorphic architectures
with deterministic neurons, and analog memristive synapses, and
making use of unsupervised learning for real-time applications.
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