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ABSTRACT In this paper a comprehensive procedure for the analog modeling of Fractional-Order 

Elements (FOEs) is presented. Unlike most already proposed techniques, a standard approach from classical 

circuit theory is applied. It includes the realization of a system function by a mathematical approximation of 

the desired phase response, and the synthesis procedure for the realization of basic fractional-order (FO) 

one-port models as passive RC Cauer- and Foster-form canonical circuits. Based on the presented one-

ports, simple realizations of two-port differentiator and integrator models are derived. Beside the 

description of the design procedure, illustrative examples, circuit diagrams, simulation results and practical 

realizations are presented. 

INDEX TERMS Fractional-order element, Fractional-order differentiator and integrator, Fractional 

immittance, Constant-phase element, Approximation, Synthesis, Cauer one-port, Foster one-port. 

I. INTRODUCTION 

There are many processes in technology and science which 

can be efficiently interpreted and analyzed using fractional-

order (FO) derivatives and integrals. Fractional calculus 

which involves these operations, was developed several 

centuries ago, most of the time as a subject of purely 

mathematical interest. During the last century it became 

apparent that in many areas of science, various real systems 

can often be more accurately described by FO rather than by 

traditional integer-order (IO) models [1][2]. This awareness 

has resulted in the increased development of fractional 

calculus applications in various fields of engineering and 

science. They include more efficient PID controllers 

compared to conventional PID controllers [3]-[6], more 

precise lead/lag compensators [7][8], a FO model that 

efficiently approximates the electroencephalographic 

measurement chain system [9], high-speed FO PLLs with 

broader capture range and bandwidth, lower phase error and 

shorter locking time [10], active-RC FO filters that allow for 

a fractional step in the stopband [11]-[15], FO resonators 

which can have infinite Q-factors [16], FO oscillators for 

very high or very low frequency signals [17], FO band-pass 

filters and resonators realized in integrated form allowing 

low frequency operation, huge inductance values and 

electronic tunability of order and other parameters [18][19]. 

Besides, Westerlund has shown that capacitors with 

dielectric can only be modelled accurately with FO 

derivatives [20], because nature works with FO derivatives 

[21]. This property of capacitors directly affects modelling 

and measurement of supercapacitors, which can be fitted 

more precisely with an FO RC model than with a 

conventional RC model [22][23]. Some authors have recently 

used FO mathematical models of capacitors and inductors in 

buck-boost and buck-converters, that allow a more accurate 

analysis of many properties, including the voltage gain of 

these converters [24][25]. There are many other applications 

of FO models in the literature, including those in the digital 

domain [26]. A time and frequency analysis of electrical 

circuits with FO elements is presented in [27]. The 

application of FO derivatives in system theory and their 

relevance in representation of dynamical systems is shown in 

[28]. As a consequence of the raising applications, the 

development of new FO system models has become a 

challenging subject for many authors, particularly in the 

circuit theory field. A comprehensive overview of FO 

calculus and various developed models is given in [1][2].  

The definition of FO derivatives and integrals requires the 

use of special mathematical functions, making the analysis of 
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such systems difficult in the time domain. However, the 

Laplace transform can be applied to FO derivatives and 

integrals as well as to IO systems permitting the analysis and 

design of FO systems in the frequency domain with less 

difficulty than in the time domain. 

As seen so far, one of the most intriguing problems for many 

authors dealing with this subject is to find a definition for the 

most suitable models of basic fractional-order elements 

(FOEs) that can be used as standard components of FO 

systems. Since the most convenient models are realized as 

electrical circuits, this problem necessarily involves circuit 

and systems theory methods for their design and realization. 

Note that some devices in the electrical engineering field, 

such as some forms of transmission lines, can be considered 

and analyzed as FO systems. Also, an important device used 

in audio signal processing is the well-known pink noise filter, 

whose transfer function is a typical model of an elementary 

FO function [29][30]. References [31]-[33] provide an 

overview of how FOEs are realized in two approaches: 1) as 

a single component (e.g. fractal structures realized on silicon 

by micro-electronic process using MOS technology or in 

electrolyte, ionic gel-copper electrode based packaged FOEs, 

electrochemical, solid-state, metal-polymer composite based 

FOEs, ferro-electric polymer based FOEs, and so on.); 2) as a 

multi-component device (e.g. electrical circuits). It is not 

easy to produce a high-quality single-component device 

because such FOEs are cumbersome and unstable or have a 

narrow operating frequency bandwidth. Therefore, the 

second approach has been investigated recently [34]-[40] and 

in the past [26], [41]-[54], and is the subject of this paper. 

In this paper we present a method for designing basic FO 

models as RC circuits using standard circuit-theory synthesis 

methods, which involve the approximation of a system 

function, and its realization as a final circuit. As expected, the 

circuit synthesis solution, if it exists, is not unique. Generally, 

there is an unlimited number of solutions and the designer 

has the possibility of choosing the one which best suits his 

application. We present solutions based on the realization of 

canonical one-port RC circuits for a given system function, 

as well as simple passive RC circuit models of FO integrator- 

and differentiator-derived two-port models. 

The paper is structured as follows. In section II a definition 

and properties of the FO element are described. In section III 

two basic approximations, the maximally flat and the 

minimax approximation of the ideal system FO phase 

response, resulting in rational functions, are described. In 

section IV, an alternative approximation of the same phase 

response is derived, using the inverse rational function 

applied to the complementary constant phase. The frequency 

response comparison of the two basic approximations, 

maximally flat and minimax, shows the superiority of the 

minimax approximation and justifies its use in the rest of the 

paper. In section V, basic Foster and Cauer RC circuit 

models of FO one-port elements are presented and it is 

shown that for each value of constant phase at least eight 

different canonical one-ports can be realized. Based on the 

one-port circuits, simple realizations of basic two-port FO 

elements, e.g. integrators and differentiators are derived. In 

section VI the minimax approximation is compared to other 

approximations showing that in most cases it performs better 

than other known methods. In section VII a physical 

realization of FO one-port elements and measurement results 

are presented. A MATLAB program for the design of 

constant-phase elements, that was developed for this project 

is available on the internet and also from the authors (see 

[73]). Section VIII concludes this work.  

II.  FRACTIONAL-ORDER ELEMENTS (FOEs) 

A basic ideal FOE is defined by the system function in the 

complex frequency domain 

 ( )
i o

F s F s
=  , (1) 

where s is a complex frequency, Fo (Fo>0) and fractional 

order  (−1<<1) are real constants, and subscript i denotes 

"ideal". Substituting s=j in (1) the frequency response is 

obtained as Fi(j)=Foej/2, where 

 ( )
i o

F j F
 =   (2) 

is the gain response and 

 ( )arg ( ) ( ) const.
2

i i i
F j

    = =  = =  (3) 

is the phase response of function (1). Both ideal frequency 

responses are shown in Fig. 1 for =1/3, 1/2 and 2/3. Since 

the phase response is constant over the entire frequency 

range, an ideal FO element is often referred to as a constant 

phase element (CPE). 

 
(a) 

 
(b) 

FIGURE 1. (a) Magnitude and (b) phase frequency response of ideal 

FOEs for three different values of order 0<<1. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101160, IEEE Access

 

VOLUME XX, 2020 3 

For modeling purposes, two kinds of basic circuit elements 

need to be defined: a basic one-port or two-terminal element 

characterized by its FO impedance or admittance, and a basic 

two-port or four-terminal element characterized by its 

transfer function1, e.g., FO integrator or differentiator. A one-

port FO circuit element has an impedance Zi(s) or admittance 

Yi(s) which is identical to (1). The parameter  of FOE 

defines its character. If Fi(s) is an impedance, then values 

−1<<0 designate the FOE as a FO capacitance (FOC), and 

values 0<<1 as a FO inductance (FOI). If  attains the 

limiting values 1 or −1, Fi(s) is the impedance of a 

conventional inductance or capacitance, respectively, and 

=0 represents a pure resistance. A two-port FOE also has a 

transfer function identical to (1). The values −1<<0 

designate an FO integrator, and values 0<<1 an FO 

differentiator. For the two limits : −1 or 1, it is a regular 

integrator or differentiator, and if =0 it is an amplifier or an 

attenuator. 

An important property of the ideal FOE is the dependence 

between the amplitude (2) and phase (3) response. They are 

directly related to the parameter . In the Bode diagrams 

shown in Fig. 1, the amplitude response (with Fo=1) is a 

straight line with slope equal to 20[dB/decade] and the 

phase response is constant and equal to /2 at all 

frequencies. In order to retain the similar unique dependence 

in the realized model, the phase and amplitude response of a 

model system function, which is a rational function of 

complex variable s, must obey Bode’s integral relationship 

[55 pp. 312-314]. This condition limits the choice of possible 

rational functions either to positive real (PR) immittance 

functions of one-port FOE passive circuit models or to 

minimum phase (MP) transfer functions of a two-port FOE 

model. The common property of both function types is that 

all poles and zeros lie in the left half of the complex 

frequency s-plane. 
III. APPROXIMATION OF IDEAL FO SYSTEM FUNCTION  

The system function (1) of an ideal basic FO element is an 

irrational continuous function of a complex variable s, which 

cannot be realized by a finite circuit using conventional 

lumped elements. Therefore, a satisfactory approximation 

must be used. Our goal is to realize a lumped element 

electrical circuit as a good approximation of the ideal FOE 

within a given frequency range, and with minimal 

complexity. To do so, we need to produce an integer-order 

rational function, which is realizable as an electrical circuit 

with lumped elements and approximates Fi(s) in the given 

frequency range with a tolerable error. So far, a variety of 

approximation procedures has been presented in the literature 

[26]-[54]. Most of them use an expansion of the system 

function (1), or an associated function, into an infinite series, 

or an infinite product of simple factors, which, after 

 
1 The transfer function can be any one of four functions: voltage 

transfer function, current transfer function, transfer impedance or transfer 

admittance. 

truncation, leads to a rational function of the complex 

variable s. The rational function is usually expanded into a 

partial fraction, or a continued fraction suitable for the 

realization of a passive immittance FOE model. Some 

procedures are complex, and in some cases the result can be 

an unrealizable rational function, e.g. a network with 

negative element values. Furthermore, most of the 

procedures are oriented to =1/2 and do not give a general 

solution for any value of . 

In this paper we present a procedure for the realization of 

FOE models with any  within the limits −1<<1. We use 

the constant phase property of an ideal FOE in order to 

construct a rational system function with a nearly constant 

phase response in some prescribed frequency range for any 

phase between −90° and 90°. The maximum deviation of the 

phase function from the ideal value is controlled and can be 

specified in advance. Incidentally, some authors have dealt 

with the design of networks for the approximation of 45° 

constant phase for phase-splitting circuits in single sideband 

(SSB) transmission systems [56]-[60]. They were intended 

for the approximation of a 90° constant phase difference 

between the outputs of two all-pass networks. Basically, the 

approximation procedures can be applied to fractional-order 

modeling, as well. Here, we apply "maximally-flat" and 

"minimax" approximations to realize a rational function with 

a constant phase response of any value of i (−/2i/2), 

e.g. of 90°, where −1<<1. 

We begin our analysis with the following constant-phase 

system function F(s), or F(j), which we consider as an 

approximation of the ideal FOE system function (1), e.g. 

 ( ) ( )
i o

F s F s F s
 =  . (4) 

For convenience, the parameter Fo is denoted as the value, 

and  as the FO parameter of the modeled FOE. The value 

of Fo is identical to the module of Fi(j) at =1. 

Furthermore, the gain F(j) and the phase ()=arg(F(j)) 

of the function F(s) approximate the ideal function only in 

the limited frequency range within the defined upper and 

lower band-edge frequencies: H and L. Finally, since 

arg(F(j)) is an approximation of the ideal constant phase 

function arg(Fi(j)), the maximum allowed phase deviations 

need to be specified, as well. The network function F(s) must 

be a positive real or minimum phase rational function of the 

form 

 
( )

( )
( )

P s
F s

Q s
= , (5) 

where P(s) and Q(s) are Hurwitz polynomials2 [61][62] with 

the following additional limitations on the roots of P(s) and 

Q(s). Simple roots on the imaginary axis are not allowed 

 
2 Here we use the most common definition of Hurwitz polynomials as 

those having all of the roots in the left half of the complex s plane, 

including simple roots on the imaginary axis. Polynomials having no roots 

on the imaginary axis are characterized as strictly Hurwitz polynomials. 
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because their existence causes discontinuities of the phase 

response3. Only simple roots at the origin (s=0) and at 

infinity (s→j) are allowed. The positive real property of a 

rational function is more restrictive than the minimum phase 

property. Beside the above condition on numerator and 

denominator, the positive real property also includes the 

following necessary condition involving its real part. The 

real part of a positive real function F(s) along the j axis 

(e.g. Re[F(j)]) is non-negative for all . Therefore, if F(s) 

is a positive real function, it satisfies the minimum phase 

property as well. In the sequel we use a positive real function 

F(s) for the realization of both one-port circuit immittances 

and two-port circuit transfer functions. 

If F(s) has a constant phase, then the phase of its reciprocal 

1/F(s) is also constant with the same absolute value, but with 

opposite sign. So if the approximation for 0<<1 is known, 

then the approximation for negative  is also known. 

For the purpose of the phase calculations that follow, it is 

convenient to obtain the following alternative form of (5) 

 
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

P s Q s S s
F s

Q s Q s Q s Q s

−
= =

− −
. (6) 

The product Q(s)Q(−s) in the denominator of (6) is an even 

order polynomial, with no effect on the overall phase. 

Consequently, the polynomial S(s)=P(s)Q(−s) in the 

numerator of (6) has a phase function identical to the phase 

of the ratio P(s)/Q(s). Thus, instead of seeking for a rational 

function with constant phase response, the problem is 

reduced to finding a polynomial with the same phase 

property. 

The phase function () is a transcendental function and it is 

more desirable in phase calculations to deal with a related 

rational function, such as 

 
( )

( ) tan ( )
( )

O

E s j

S s
G

jS s


  
=

= = , (7) 

where SE() and SO() are the even and odd parts of S(s), 

respectively. In any frequency range in which the phase 

function () approximates a constant, G() also 

approximates a constant. Therefore, we need to find a 

rational function G() which is nearly constant in a given 

frequency range. For synthesis purposes it is also convenient 

to work with a function of s rather than of j, and after 

analytic continuation from the j-axis into the s-plane, we 

define the corresponding function 

 
( )

( ) ( )
( )

O

s j
E

S s
T s j G

S s 


=
= = . (8) 

 
3 If F(s) has simple poles or zeros on the imaginary axis a factor 

(s2+
2) corresponding to a conjugate pair of simple roots appears in its 

denominator or numerator. Consequently, the function F(j) will contain a 

factor (
2−2). The frequency  is the point where the phase function 

has a step discontinuity of  radians because F(j) changes the sign when 

 changes from < to >. 

G()


CL H

Gmax

Gmin

G0

0

0

 
FIGURE 2. Approximation of a constant tan() response. 

The function G() is an odd rational function of , which 

can also be expressed as G()=tan(P−Q), where P and Q 

are respectively the arguments of the polynomials P(s) in the 

numerator and Q(s) in the denominator of F(s) in (5) when 

s=j. Since G() must be nearly constant in the range 

LH, as shown in Fig. 2, it is expected that at real 

frequencies  it has no poles or zeros, because they would 

increase the deviations from a given constant value. The only 

exceptions are simple poles or zeros at =0 and =, 

meaning that the degree of the numerator and denominator 

differs by one. We assume first that G()=0 at the frequency 

=0. The alternative case, when G()= at =0, is 

equivalent to 1/G()=0 at =0. The function 1/G() also 

approximates a constant in the same frequency range and is 

considered separately. 

In general G() has the form 

 ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2

1 2

2 2 2 2 2 2

1 2

o o om

o

p p pr

G C
     

 
     

+  +  +
= 

+  +  +
, (9) 

with r−m=0 or 1, and Co, oi and pi, are real constants. The 

highest degree of  in (9) is the order of G() e.g. the 

approximation order, and will be denoted as n. It is odd for 

r−m=0 and even for r−m=1. As an odd rational function of , 

G() has an odd symmetry with respect to the origin. For our 

purpose we assume that G() is also geometrically 

symmetrical with respect to the point G(C), where 

HLC  =  is the center frequency of the approximation 

interval. We also assume that the frequency  is normalized 

to C, so that the center frequency is equal to 1. Furthermore 

we introduce the normalized function Go(), defined as 

 ( ) ( ) /
o

G G G =  (10) 

where G=tan(i) and i is a specified constant phase. 

Clearly, the function Go() approximates tan(i)=1 

corresponding to i=o=/4 or =1/2. Finally, in order to 

enable comparisons between different approximation 

procedures, we define the lower and higher band-edge 

frequencies as L
k =  and 1

H
k =  and the maximum 

deviations of Go() in that range as min 1G k=  and 

max 11G k= . The constants k and k1 are real, positive and 

less than 1. 

After Go() has been determined by an approximation 

procedure, a corresponding F(s) can be found by standard 

circuit-theory procedures [61]. Using (8) we first find T(s) 

and form S(s) as a sum of its numerator and denominator, 

e.g. 
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 ( ) ( ) ( ) ( ) ( )
E O

S s S s S s P s Q s= + =  − . (11) 

In order to find P(s) and Q(−s) in (11) we calculate the roots 

of S(s) by solving the equation 

 1 ( ) 0T s+ =  (12) 

and present S(s) in factored form. From (11) it is clear that all 

the roots that lie in the left-half plane belong to P(s), while 

those in the right-half plane belong to Q(−s). Finally, the 

desired system function is 

 

( )

( )
( )

( )
( )

zi

i

pj

j

s s
P s

F s H H
Q s s s

−
=  = 

−




, (13) 

where szi are the zeros, spi the poles of F(s) and H is an 

arbitrary positive constant. It is convenient to set the gain 

response equal to 1 at the center frequency 1, and the 

constant H should be calculated accordingly. The order N of 

the function F(s) depends on the approximation order n. It is 

equal to N=n/2 if n is even, and N=(n+1)/2 if n is odd. In the 

following section we give a brief description of maximally 

flat and minimax approximations of the tan() function. 

A. MAXIMALLY FLAT APPROXIMATION OF tan() 
FUNCTION  

A maximally flat approximation is an approximation of a 

function at one point. In our case we need to approximate a 

constant value Go()=1 at the normalized frequency =1. Its 

basic property is that as many derivatives as possible with 

respect to  of the error function 1−Go() at =1 must be 

zero. As we deal with an nth-order rational function or a 

polynomial, the first n−1 derivatives of that function must be 

zero at =1. The error function therefore has an nth-order 

zero at the frequency =1, and can be generally defined as 

1−Go()=K(1−)n/D(2), where D(2) is an arbitrary even-

order polynomial, and n is the approximation order. A simple 

calculation using the substitution =tanh(x) yields Go() as 

  ( ) tanh atanh( )
o

G n =   (14) 

and the function To(s) corresponding to (14) is 

To(s)=tan[natan(s)]. The graphical representations of Go() 

and the corresponding phase functions for n=1, , 10 for the 

approximation range of two decades, are shown in Fig. 3. 

The deviation of Go() from unity is zero at =1, and it 

increases as  increases or decreases. The relation between 

the limits of the approximation band 
1min kG =  and 

1max 1 kG =  and the frequency range limits kL =  and 

kH 1=  is given by (14) as 
1 tanh atanh( )k n k =   . 

Therefore, they can be satisfied by the approximation of 

order n, derived as the smallest integer value obeying 

 
1atanh( )

atanh( )

k
n

k
 . (15) 

If the frequency limits are fixed, then the maximum deviation 

from unity decreases as the approximation order n increases. 

Also if the maximum deviation is fixed, then the 

approximation band increases as n increases. Each of the 

normalized curves in Fig. 3 has its maximum deviation from 

unity at the band edges. 

The curves in Fig. 3 can also be used to find the appropriate 

approximation order when the maximum deviation, and the 

approximation frequency band, are given. 

To derive the roots of the polynomial S(s) in (11), we have to 

solve equation (12) for T(s)=G To(s). The values of s that 

satisfy (12) are 

 
1

tan ; 0,1,..., ( 1)
2

i

l
s l l n

n




  = − − + = −  
  

, (16) 

where i is a specified positive constant phase in radians. All 

roots are real and lie either on the positive or negative part of 

the real axis in the s-plane. The negative roots belong to the 

polynomial P(s); they are the zeros of the system function 

F(s). The mirror images of the right half-plane roots belong 

to Q(s); they are the poles of F(s). The system function F(s) 

has the form (13). Table 1 shows the poles, zeros, and system 

functions corresponding to the approximations shown in Fig. 

3. It can be seen that the poles and zeros are all real, and 

alternate on the negative real axis in the complex frequency 

s-plane. The maximum phase deviations are shown in the 

second column of Table 1. They decrease as the 

approximation order increases. 

 
(a) 

 
(b) 

FIGURE 3. Maximally flat approximation of (a) Go()=tan[()] and (b) 
corresponding constant phase response. 
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B.  MINIMAX APPROXIMATION OF tan() FUNCTION 

The minimax or Chebyshev approximation of Go() in a 

given frequency interval has the property that the maximum 

absolute value of the error function in the specified frequency 

interval is as small as possible. Consequently, the error 

function has equiripple behavior in the approximation range 

1k k  . Go() approximates Go=1 within the limits 

1 1( ) 1
o

k G k  . The behavior of Go() for an even 

(n=6) and odd (n=7) approximation order is shown in Fig. 4. 

The approximation procedure of a function with equiripple 

variation within a given approximation band involves the use 

of Jacobi elliptic functions. Considering the above properties, 

the dependence between the function Go() and the 

frequency  can be expressed in terms of two definite 

integrals, known as elliptic integrals of the first kind, namely 

( )( ) ( )( )
1

0
2 2 2 2 2 2

0 0
11 1 1 1

oG k k
dy dx

M

y k y x k x



= 
− − − −

  , (17) 

where x and y are the variables of integration and M0 is a 

constant multiplier [56][63][64]. 

The solution of (17) can be written in the form of two 
parametric equations 

 1 1sn( , )
o

G k Mu k=   (18) 

 sn( , )k u k =  , (19) 

 
(a) 

 
(b) 

FIGURE 4. Minimax approximation of a constant phase response in the 
log-log plot for (a) even, and (b) odd approximation order n. 

where the new constant multiplier M is M=M0(k/k1)1/2. The 

function sn in (18) and (19) is the elliptic sine, i.e. one of the 

three basic Jacobi elliptic functions.4 The constants k and k1 

are the modules of the above elliptic sn functions, and u is a 

parametric variable. The function sn(u, k) is doubly periodic 

with a real period 4K and an imaginary period 2K', where K 

and K' are the complete elliptic integrals of a modulus k and a 

complementary modulus 
2' 1k k= − . The function sn(Mu, 

k1) has a real period 4K1 and an imaginary period 2K1'. K1 

and K1' are the complete elliptic integrals of modules k1 and 

k1' respectively. The detailed properties of the Jacobi elliptic 

functions are described elsewhere [63]-[65]. The function 

To(s) follows from (18) and (19) by substituting =s/j and 

can be expressed as 

 1 1sc( , ')
o

T k Mu k=   (20) 

 sc( , ')s k u k=  , (21) 

where the function sc is the elliptic tangent defined as the 

ratio between sn and cn functions with the complementary 

modules. The constant multiplier M is related to the periods 

of two sn functions by the relationship M=K1/K=nK1'/K'. 

This equation enables the evaluation of the approximation 

order n from a given k and k1 as the smallest integer 

satisfying 

 
'

'

1

1

KK

KK
n




 . (22) 

The final step of the approximation design procedure is the 

derivation of the polynomial S(s) in (11) and its roots. The 

roots can be found by solving equation (12) for T(s), derived 

from (20) and (21). They are given by 

 
2 '

sc , ' ; 0,1,..., ( 1)
i

iK
s k v k i n

n


  = −  + = −  
  

, (23) 

where v is 

 ( )1 2

1 1

1

'
sn 1 1 , '

'

K
v G k k

nK
 

−= + , (24) 

where G=tan(i). 

The function sn−1 is the inverse of the sn function, e.g. the 

incomplete elliptic integral of the first kind. All roots are real. 

Negative roots are the poles and the mirror images of the 

positive roots are the zeros of F(s). The poles, the zeros, and 

the normalized system functions approximating i=45 
(G=1) within the two frequency decades, for n=1,..., 10 are 

given in Table 2. The corresponding functions Go() and 

() are shown in Fig. 5. 

 

 
4 The basic three elliptic functions are: elliptic sine sn(u, k), elliptic 

cosine cn(u, k) and delta amplitude elliptic function dn(u, k). 
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TABLE 1 

POLES AND ZEROS OF F(S) - MAXIMALLY FLAT APPROXIMATION – FIG. 3 

TABLE 2 

POLES AND ZEROS OF F(S) - MINIMAX APPROXIMATION FOR THE 

BANDWIDTH OF TWO DECADES – FIG. 5 

n ° Zeros Poles F(s) ° Zeros Poles F(s) 

3 28.7099° -2.6795e-01 

-3.7321e+00 

-1.0000e+00 2 0.353 1.414 0.353

1

s s

s

+ +
+

 

9.5921° -1.1731e-01 

-8.5246e+00 

-1.0000e+00 20.164 1.414 0.164

1

s s

s

+ +
+

 

4 24.1384° -1.9891e-01 

-1.4966e+00 

-5.0273e+00 

-6.6818e-01 
2

2

3.359 5.695 1

5.695 3.359

s s

s s

+ +
+ +

 

4.2417° -8.2097e-02 

-2.1375e+00 

-1.2181e+01 

-4.6785e-01 
2

2

5.699 12.65 1

12.65 5.699

s s

s s

+ +
+ +

 

5 20.1354° -1.5838e-01  

-1.0000e+00 

-6.3138e+00 

-1.9626e+00 

-5.0953e-01 

3 2

2

0.2701 2.018

2.018 0.2701

2.472 1

s s

s

s s

+
+ +

+ +
 

1.8642° -6.3566e-02  

-1.0000e+00 

-1.5732e+01 

-3.4073e+00 

-2.9349e-01 

3 2

2

0.166 2.78

2.78 0.166

3.7 1

s s

s

s s

+
+ +

+ +
 

6 16.6984° -1.3165e-01 

-7.6733e-01 

-2.4142e+00 

-7.5958e+00 

-1.3032e+00 

-4.1421e-01 

3 2

3 2

4.1 13.58 9.313 1

9.313 13.58 4.1

s s s

s s s

+ + +
+ + +

 

0.8183° -5.2031e-02 

-6.0340e-01 

-4.7069e+00 

-1.9219e+01 

-1.6573e+00 

-2.1245e-01 

3 2

3 2

6.77 36.3 21.1 1

21.1 36.3 6.77

s s s

s s s

+ + +
+ + +

 

7 13.7902° -1.1267e-01 

-6.2834e-01 

-1.5915e+00 

-8.8752e+00 

-2.8578e+00 

-1.0000e+00 

-3.4992e-01 

4 3

2

3 2

0.2273 2.548

4.991 2.548 0.2273

4.2078 4.2078 1

s s

s s

s s s

+

+ + +
+ + +

 

0.3591° -4.4116e-02 

-4.1920e-01 

-2.3855e+00 

-2.2668e+01 

-5.9988e+00 

-1.0000e+000 

-1.6670e-001 

4 3

2

3 2

0.137 3.49

8.99 3.49 0.137

7.165 7.165 1

s s

s s

s s s

+

+ + +
+ + +

 

8 11.3549° -9.8491e-02 

-5.3451e-01 

-1.2185e+00 

-3.2966e+00 

-1.0153e+01 

-1.8709e+00 

-8.2068e-01 

-3.0335e-01 

4 3

2

4 3 2

4.729 24.34

32.76 13.15 1

13.15 32.76

24.34 4.729

s s

s s

s s s

s

+

+ + +
+ +
+ +

 

0.1576° -3.8329e-02 

-3.1757e-01 

-1.4602e+00 

-7.2719e+00 

-2.6090e+01 

-3.1489e+00 

-6.8483e-01 

-1.3752e-01 

4 3

2

4 3 2

7.737 70.3

106.3 30.01 1

30.01 106.3

70.3 7.737

s s

s s

s s s

s

+

+ + +
+ +
+ +

 

9 9.3306° -8.7489e-02 

-4.6631e-01 

-1.0000e+00 

-2.1445e+00 

-1.1430e+01 

-3.7321e+00 

-1.4281e+00 

-7.0021e-01 

-2.6795e-01 

 

5 4 3

2

4 3

2

0.2 3.03 9.25

9.25 3.03 0.2

6.128

10.51 6.128 1

s s s

s s

s s

s s

+ +

+ + +
+

+ + +

 

0.0692° -3.3905e-02 

-2.5468e-01 

-1.0000e+00 

-3.9265e+00 

-2.9494e+01 

-8.5246e+00 

-1.9632e+00 

-5.0938e-01 

-1.1731e-01 

5 4 3

2

4 3

2

0.122 4.25 19.5

19.5 4.25 0.122

11.11

23.36 11.11 1

s s s

s s

s s

s s

+ +

+ + +
+

+ + +

 

10 7.6564° -7.8702e-02 

-4.1421e-01 

-8.5408e-01 

-1.6319e+00 

-4.1653e+00 

-1.2706e+01 

-2.4142e+00 

-1.1708e+00 

-6.1280e-01 

-2.4008e-01 

5 4 3

2

5 4 3

2

5.28 37.75 79.57

62.42 17.14 1

17.14 62.42

79.57 37.75 5.28

s s s

s s

s s s

s s

+ +

+ + +
+ +

+ + +

 

0.0303° -3.0408e-02 

-2.1245e-01 

-7.3878e-01 

-2.4930e+00 

-9.7587e+00 

-3.2886e+01 

-4.7069e+00 

-1.3536e+00 

-4.0112e-01 

-1.0247e-01 

5 4 3

2

5 4 3

2

8.612 113.9 314.7

225.3 39.45 1

39.45 225.3

314.7 113.9 8.612

s s s

s s

s s s

s s

+ +

+ + +
+ +

+ + +

 

  
(a)                                                                                                              (b) 

FIGURE 5. Minimax approximation within the bandwidth of two decades (a) Go()=tan[()] and (b) corresponding constant phase response. 

It is known from filter theory that the minimax 

approximation performs much better than the maximally flat 

approximation. As can be seen from the  column in Table 

1 and Table 2 the maximum phase deviation for the same 

order n is much smaller for the minimax approximation. This 

can also be illustrated by a simple example. 

Example 1: Suppose we need to realize an approximation 

function Go() for the constant phase =45 with the 

maximum deviation of 1° in the frequency range between 

L=0.1 rad/s and H=10 rad/s. Then 0.1k =  and 

( )1 tan 44 0.9657k =  = . From (15) the approximation 

order for the maximally flat approximation function is n=21, 

and from (22) for the minimax approximation we get n=6. 

Since the approximation order influences the complexity of 

the final circuit model, it is obvious that the minimax 

approximation is more efficient. Considering its obvious 

superiority, in the rest of the paper we use only the minimax 

approximation. 
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IV. APPROXIMATION WITH INVERSE FUNCTION G()−1 

In the preceding section we assumed that G()=0 at the 

frequency =0, and that the alternative case, for G()= at 

=0, is equivalent to 1/G()=0 at =0. The function 1/G() 

also approximates a constant in the same frequency range. 

However, if the approximated constant is not equal to 1 (e.g. 

i=45), then it does not approximate the same constant. Let 

us denote 1/G() as G'() and the corresponding system 

function as F'(s). Since G() is an approximation of tan(i), 

then G'() is obviously the approximation of 

cot(i)=tan(90−i). Therefore, the system function F'(s), 

corresponding to G'(), has a phase which is complementary 

to the phase of F(s) from (5), and is closely related to F(s). 

In this section we describe the procedure for deriving F'(s) 

from the already known F(s). The function G'() has a pole 

at the origin, meaning that the system function has a phase 

equal to /2 at =0. 

We start with 

 
( ) ( )1

'( )
( ) ( ) ( )

E E

O Os j s j

F s S s
jG j

G F s S s
 




= =

= = − = − . (25) 

The right-hand side of this equation indicates that the 

corresponding function T'(s) is equal to 

 
( ) ( )1

'( )
( ) ( ) ( )

E E

O O

F s S s
T s

T s F s S s
= − = − = − . (26) 

Note that the function T(s) in (8) is a ratio of the odd and 

even parts of F(s) with an odd numerator and an even 

denominator. The function T'(s) is also odd, but it has an 

even numerator and an odd denominator. This happens when 

the even and odd parts of the system function have a 

common factor which is cancelled by their division. 

Obviously, this common factor is an odd function of 

frequency. Since the system function is either positive real or 

minimum phase with a continuous phase in the entire 

frequency range, an odd denominator and even numerator of 

T'(s) can only occur if a simple factor s is cancelled from its 

numerator and denominator [61]. So, the function T'(s) in 

(26) can be written as 

 
( )

'( )
( )

E

O

s S s
T s

s S s


= −


. (27) 

The corresponding polynomial S'(s) is then 

 ( )'( ) ( ) ( ) '( ) '( )
E O

S s s S s S s P s Q s=  − =  − , (28) 

where P'(s) and Q'(s) are respectively the numerator and 

denominator polynomials of the new system function F'(s). 

The polynomial S'(s) can also be written as 

 '( ) ( ) ( ) ( )S s s S s s P s Q s=  − =  −  . (29) 

The polynomial P(s) belongs to the denominator of F'(s) and 

Q(s) to its numerator. The question is whether the factor s in 

(29), belongs to the numerator or the denominator of F'(s). 

The functions F(s) and F'(s) are both positive real and must 

satisfy all necessary conditions of positive real functions. 

One of the properties that must be obeyed is that the real part 

of F(j) along the j axis is nonnegative, e.g. Re[F(j)]0 

for all . As Re[F(j)]=F(j)cos(()), this also means 

that its phase is within the limits −/2/2 for all . In the 

procedure above the function F(s) has a positive phase (). 
The phase of its reciprocal Q(s)/P(s) in F'(s) is −(). If the 

factor s is a part of the numerator of F'(s) then it contributes 

to the phase response with the constant amount of /2 and the 

phase of F'(s) is '=/2−. If it is in the denominator then the 

contribution is −/2, and the phase of F'(s) is '=−/2−. 

Since this exceeds the lower phase limit, it violates the above 

PR property and F'(s) is no longer a PR function. Therefore, 

the only possibility is that 

 '( ) ( )P s s Q s=   (30) 

and 

 '( ) ( )Q s P s= . (31) 

The final form of F'(s) is 

 
( )

'( ) '
( ) ( )

Q s s
F s H s

P s F s
=  = . (32) 

H' is again a positive constant. F'(s) is the reciprocal of the 

system function F(s) multiplied by s. Its phase response is the 

complement to the phase of F(s), and we denote it as 

'()=/2−(). Obviously, to approximate the originally 

given constant phase angle i by G'(), we must calculate 

Gc'() for the complementary angle ic=/2−i [66][67]. 

This is not necessary only if i is equal to /4, e.g. identical 

to its complement ic. The point is that with this 

approximation procedure we obtain two different system 

functions for the same constant phase i and we can choose 

which one better serves our purpose. 

Example 2: The advantage of the minimax over the 

maximally flat approximation is shown in Fig. 6. The sixth 

order maximally flat and minimax approximations are 

applied for the realization of three different phase angles: 

−30, −45 and −60 in the two-decade wide frequency 

range. 

Both functions G() and G'()5 are implemented, and as a 

result four different approximation curves are displayed for 

each angle. The phase responses are normalized to the 

frequency C=1, and the edge frequencies are L=0.1 and 

H=10. It can be seen at a glance that the maximally flat 

approximation curves have much larger maximum phase 

variations than those of the minimax approximation. The 

maximally flat approximation has extreme variations at the 

edges of the approximation band, while the variations of the 

minimax approximation are distributed over the entire band. 

This, once again, confirms the superiority of the minimax  

 
5 The approximations based on G() are easily recognized as those with 

phase 0 at =0, while those with phase −90° at =0 are based on G’(). 
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(a) 

 
(b) 

FIGURE 6. (a) Maximally flat and (b) minimax approximation of −30, 
−45 and −60, constant phase response for the 6th order approximation  

approximation, and in the rest of the paper we use it for the 

realization of basic fractional-order elements. In classical 

circuit theory the minimax approximation is one of the basic 

approximation tools, particularly in electrical filter synthesis. 

As a mathematical tool it can be used wherever needed, as 

well as other approximation methods. However, in FO 

systems its application has never been worked out in a 

serious and comprehensive manner, and, as proposed in this 

paper, it is novel and may significantly improve the quality 

of FO circuit models. 

The minimax approximation also performs very well 

compared to other known methods. As an illustration, we 

compare most of the referenced approximations to the 

minimax approximation of constant phase =−45 in section 

VI. 
V. CIRCUIT MODELS OF FO ELEMENTS 

In this section we present synthesis procedures for the 

realization of basic one-port FOE models, as well as some 

simple passive realizations of two-port FOEs. Before we turn 

to the synthesis procedure of individual FOEs, let us examine 

the basic properties of the derived system functions. First, we 

can see that regardless of the approximation procedure used, 

the resulting system functions F(s) and F'(s) are rational 

functions of the complex frequency s with simple poles and 

zeros, which lie on the negative real axis in the complex s-

plane. It is also apparent that the poles and zeros alternate 

with each other and the critical frequency nearest to or at the 

origin is a zero. The difference between the numerator and 

denominator order is 1 or 0. Any function which satisfies 

these properties is realizable as a driving point admittance of 

an RC one-port, or as a driving point impedance of an RL 

one-port. 

The functions F(s) and F'(s) approximate a positive phase 

angle. For an approximation of a negative angle  we have to 

use the reciprocal functions 1/F(s) or 1/F'(s). They are also 

rational functions of the complex frequency s with simple 

poles and zeros alternating on the negative real axis. 

However, the critical frequency nearest to or at the origin is a 

pole, and the difference between the numerator and the 

denominator order is 0, or −1. Any function satisfying these 

properties is realizable as a driving point admittance of an RL 

one-port or a driving point impedance of an RC one-port. 

Since we are dealing here with RC circuits rather than with 

RL circuits, we shall concentrate our attention on the 

functions that are suitable for the realization of RC 

impedances, e.g., 1/F(s) and 1/F'(s). Note that the phase 

function of RC impedance is always negative, and using a 

passive RC one-port, only a FO capacitance can be modeled. 

A FO inductance can only be modeled by an RL passive 

circuit. However, if we use active circuits, then an FO 

inductance can be realized as a combination of a passive RC 

circuit and an appropriate active element, as shown for 

example in [25][35][37]. 

A.  REALIZATION OF BASIC ONE-PORT FOE MODELS 

There are four basic realization procedures for driving-point 

functions using RC networks: 1st and 2nd Foster and 1st and 

2nd Cauer network forms [61][62]. Foster forms are derived 

by the partial-fraction expansion (PFE) of a system function. 

The 1st Foster form follows from the PFE of a given RC 

impedance function, and the resulting circuit is a serial 

connection of parallel RC cells and possibly one resistor 

and/or one capacitor. The 2nd Foster form follows from the 

PFE of a corresponding RC admittance function, and the 

result is a parallel connection of serial RC cells and possibly 

one parallel resistor and/or one capacitor. Cauer networks are 

derived by the continued-fraction expansion (CFE) of a 

system function, e.g. the impedance function. The 1st Cauer 

network form corresponds to the CFE of a given RC 

impedance function about infinity and results in a ladder RC 

network with resistors in serial branches and capacitors in the 

parallel branches. For the 2nd Cauer network form the CFE is 

made about the origin and the resulting ladder circuit has 

capacitors in the serial branches and resistors in the parallel 

branches. The number of different realizations can be 

increased by combining the various structures in the same 

synthesis procedure. 

Example 3: As an illustration of the constant phase synthesis 

procedure, the angle =−30 is approximated in a two-

decade wide frequency range by a 6th-order function G() 

using the minimax approximation procedure. The resulting 

3rd-order system function is 
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3 2

3 2

0.2903 4.513 6.463 1
( )

6.463 4.513 0.2903

s s s
F s

s s s

+ + +
=

+ + +
. (33) 

This is a normalized function with the center frequency C=1 

and the value Fo=1. For some other central frequency and the 

value Fo the denormalization procedure must be applied 

either to F(s) or to the final RC circuit. Here we choose the 

final circuit. It is actually the process of frequency and 

impedance scaling, e.g. transforming of each Cn and Rn into 

C=Cn/(0R0) and R=RnR0, where R0 is the normalization 

resistance and 0=2f0 is the normalization frequency 

identical to the new central frequency. Cauer and Foster RC 

circuits are shown in Fig. 7. The normalized R and C values 

which follow from (33) are shown in Table 3. The 

denormalized element values for R0=10k, and f0=103Hz are 

shown in Fig. 7. R0 is identical to the new value Fo of the 

function (33). 
TABLE 3 

NORMALIZED ELEMENTS OF CAUER AND FOSTER RC ONE-PORTS WITH 

Z(s)=F(s) 

 i 1 2 3 4 

1. Ca Cn1i [F] 0.379 1.659 6.145  

 R n1i [] 0.2903 0.5847 0.928 1.641 

2. Ca C n2i [F] 2.636 0.6027 0.1627  

 R n2i [] 3.444 1.7102 1.0775 0.609 

1. Fo C n3i [F] 0.4913 2.246 6.43  

 R n3i [] 0.2903 0.3585 0.6232 2.172 

2. Fo C n4i [F] 0.155 0.445 2.036  

 R n4i [] 3.444 0.4603 1.1605 2.789 
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FIGURE 7. Realization of =−30 CPE by (a) Cauer and (b) Foster 

canonical one-ports using the 6th-order approximation function G(). 

The frequency response obtained by the Spice AC analysis is 

identical for all circuits in Fig. 7 and shown in Fig. 8. The 

gain at the central frequency f0 is 80 dB, which is exactly the 

value of R0 in dB. The phase response has an equiripple 

property in the approximation band, and the phase ripple is 

less than ±1°. 

Example 4: Application of G'() as the approximation 

function of the same angle =−30 results in a new group of 

four RC circuits. For this purpose we first find the 

approximation function Gc() for the complementary angle 

c=−60, and then take its reciprocal G'c(), which 

approximates the angle 'c=−/2−c=−30. Using the 

procedure presented above, we obtain the new 4th order 

system function F'c(s) from G'c(), i.e. the impedance Z'c(s) 

as 

 ( ) ( )
3 2

4 3 2

14.74 65.9 31.7 1
' '

31.7 65.9 14.74
c c

s s s
F s Z s

s s s s

+ + +
= =

+ + +
. (34) 

Application of the Cauer and Foster synthesis procedure to 

(34) gives the four RC circuits shown in Fig. 9. The 

normalized element values are given in the Table 4, where 

the index c stands for complementary. The circuits in Fig. 9 

are shown with the elements denormalized with respect to the 

same 0 and R0 as above. The AC analysis results are 

identical for all circuits in Fig. 9 and are shown in Fig. 10. 

TABLE 4 

NORMALIZED ELEMENTS OF CAUER AND FOSTER RC ONE-PORTS WITH 

Z’C(s)=F’C(s) 

 i 1 2 3 4 

1. Ca Cnc1i [F] 0.0678 0.868 3.145 10.66 

 R nc1i [] 0.54 0.728 1.286  

2. Ca C nc2i [F] 14.74 1.15 0.318 0.0938 

 R nc2i [] 1.847 1.374 0.775  

1. Fo C nc3i [F] 14.74 0.0736 1.137 4.178 

 R nc3i [] 0.459 0.448 0.939  

2. Fo C nc4i [F] 0.0678 0.239 0.879 13.56 

 R nc4i [] 1.064 2.232 2.175  

 

 

FIGURE 8. Frequency responses of Cauer and Foster canonical one-

ports using the 6th-order G() for approximation of =−30 CPE. 
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(b) 

FIGURE 9. Realization of =−30 CPE by (a) Cauer and (b) Foster 

canonical one-ports using the 6th-order approximation function G’() 

 

 

FIGURE 10. Frequency responses of Cauer and Foster canonical one-

ports using 6th-order G’c() for approximation of =−30 CPE. 

B. REALIZATION OF BASIC TWO-PORT FOE MODELS 

There are many different ways of realizing the two basic 

two-port FOE models, e.g. the FO integrator and the FO 

differentiator. In this section we present some voltage-mode 

and current-mode integrator and differentiator circuits 

realized as simple voltage or current dividers, derived from 

already known one-port models. The one-port circuits in Fig. 

7 and Fig. 9 can be used for the realization of basic passive 

RC FO integrators and FO differentiators. 

TABLE 5 

NORMALIZED ELEMENTS OF 2ND
 CAUER ONE-PORT CREATED FOR C=−60 

 i 1 2 3 4 

2.Ca C n2i [F] 3.444 1.7102 1.0775 0.609 

 R n2i [] 2.636 0.6027 0.1627  

The voltage-mode as well as the current-mode models can be 

realized simply by creating voltage or current dividers from 

the appropriate one-port models. To illustrate this, we present 

the following example. 

Example 5: The voltage-mode model for a FO differentiator 

and integrator can be realized as a voltage divider using any 

one-port model which has a single R or C serial element 

combined with the rest of the circuit. Using the one port 

models from Example 4, we can derive a differentiator and 

integrator having a constant phase of 30° and −30°, 

respectively. 

A differentiator can be realized using either the Cauer first 
form or the Foster first form shown in Fig. 7. Choosing the 
Cauer first-form one-port, whose normalized element values 
are given in the first two rows (1.Ca) in Table 3, a 
differentiator is derived as the voltage divider circuit shown 
in Fig. 11(a). The voltage divider transfer function is 

 11( )
( )

out

diff

in

V R
F s

V Z s
= = , (35) 

where Z(s) is the one-port impedance. Since it has a constant 

phase of −30°, the phase of Fdiff(s) is constant and equal to 

+30°. 

The realization of the integrator model requires a slightly 

different approach. It can be realized using the topology of 

the Cauer second form or the Foster first form from Fig. 9 to 

create the voltage divider in the same manner as for the 

differentiator. However, with the element values shown, the 

final integrator phase approximates the constant phase 

=−60. Therefore, in order to realize a FO integrator with 

=−30, we must use a suitable RC impedance with 

complementary constant phase equal to −60. Let us use the 

second Cauer canonical one-port created for c=−60. Its 

normalized element values are shown in Table 5. 

The derived integrator model has the form shown in Fig. 

11(b), with the element values taken from Table 5, and 

denormalized to the frequency f0 and the resistance R0. Its 

transfer function is 

 
21

1
( )

( )

out

int

in c

V
F s

V sC Z s
= = , (36) 

where Zc(s) is the FO impedance with the complementary 

phase −60°. The phase of Fint(s) is equal to the negative 

phase of the product in the denominator of (36), e.g. 

=−(90+c)=−30. 
It is also possible to derive the integrator from already known 

differentiator circuits in a much simpler way. The ideal 

integrator transfer function can be considered to be derived 

from the differentiator transfer function using the substitution 
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(b) 

FIGURE 11. Realization of voltage mode passive RC FO (a) differentiator 

(=30) and (b) integrator (=−30) 

s→1/s.6 The same can be applied to their circuit-model 

transfer functions. Moreover, using the RC-CR 

transformation we can derive the elements of the integrator 

circuit directly from the differentiator model [68]. The RC-

CR transformation is the procedure of creating a new RC 

circuit by replacing each capacitor Ci in a given circuit by a 

resistor equal to 1/Ci and each resistor Ri by a capacitor equal 

to 1/Ri. The procedure is applied to the circuits with 

normalized element values. If we deal with voltage or current 

transfer functions of two-port circuits Fa(s) and Fb(s), then 

they are related as Fa(s)=Fb(1/s). Since we already know that 

the normalized differentiator and integrator transfer functions 

are related as 

 ( ) (1/ )
int diff

F s F s=  (37) 

it is obvious that the RC-CR transformation applied to a 

differentiator circuit results in an integrator circuit. 

This can easily be verified by inspecting the element values 

of the differentiator two-port in the first two rows of Table 3 

and the elements of the integrator two-port in Table 5. The 

AC analysis for the two circuits in Fig. 11 is shown in Fig. 

12. Both circuits have a drawback which is common to all 

passive RC two-port circuit synthesis procedures, namely 

that the resulting value of Fo of the FOE model generally 

differs from the one given in advance. In the differentiator it 

is limited by the resistor voltage divider ratio remaining after 

removing the capacitors, and in the integrator by a 

capacitance voltage divider ratio remaining after removing 

the resistors. In each case Fo is decreased by the 

corresponding voltage divider. Thus, in order to obtain the 

exact value of Fo, an active device such as a voltage amplifier 

can be used to obtain the desired value of Fo. 

 
6 The frequency transformation s→1/s is common in filter design, as a 

procedure for transforming a low-pass to a high-pass filter. When applied 

to a positive real function F(s) it results in a function F(1/s) which is also 

positive real. This follows from the property of the composition of two PR 

functions, namely if two functions F1(s) and F2(s) are PR, then their 

composition F1(F2(s)) is also PR [61]. Therefore, this transformation 

changes neither the PR property nor the stability property of the function. 

TABLE 6 

NORMALIZED ELEMENTS OF 1ST
 CAUER ONE-PORT CREATED FOR C=−60 

 i 1 2 3 4 

1.Ca C n2i [F] 0.2903 0.585 0.928 1.641 

 R n2i [] 0.379 1.659 6.145  

 

 

FIGURE 12. Amplitude and phase response of passive RC FO 
differentiator and integrator from Fig. 11. 
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(b) 

FIGURE 13. Realization of current mode passive RC FO (a) integrator 

(=−30) and (b) differentiator (=30)  

The current-mode models of an FO differentiator and 

integrator can be realized with any one-port model which has 

a single R or C parallel element combined with the rest of the 

circuit. Again, we use the one-port models from Example 4 

to derive a differentiator and integrator with the constant 

phase 30° and −30°, respectively. 

The integrator can be realized using either the Cauer second 

form, or the Foster second form from Fig. 7. Choosing the 

Cauer second-form one-port, with the normalized element 

values in the third and fourth rows (2.Ca) in Table 4, an 

integrator is derived as a current divider circuit shown in Fig. 

13(a). The output current is the current through R21 and the 

element values are denormalized with respect to the same 

frequency and resistor as above. The transfer function of the 

current divider is 

 21

21

( )
( ) out R

int

in in

I I Z s
F s

I I R
= = = . (38) 
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The current-mode differentiator can be realized using the 

topology of the Cauer first form or the Foster second-form 

one-port from Fig. 9 to create the current divider circuit 

shown in Fig. 13(b). As before, in order to realize an FO 

differentiator with =30, a suitable RC impedance with 

complementary constant phase equal to −60 must be used. 

Let us use the first Cauer canonical one-port topology shown 

in Fig. 9, created for constant phase −60. The normalized 

element values of this one-port are shown in Table 6. The 

same element values can be obtained by applying the RC-CR 

transform to the normalized element values of the first Cauer 

one-port topology in Fig. 7. Taking the current through C11 as 

the output current, the transfer function is obtained as 

 11

11( ) ( )out C

diff c

in in

I I
F s sC Z s

I I
= = = . (39) 

The frequency response of both circuits is identical to the 

corresponding response of the voltage-mode circuits in Fig. 

12. The current-mode two-ports suffer from the same 

drawback as the voltage-mode circuits, namely that the value 

Fo of the FOE model is also smaller than the desired value. In 

the integrator it is limited by the resistor current divider ratio 

remaining after removing the capacitors, and in the 

differentiator by a capacitor current divider ratio remaining 

after removing the resistors. Here again it can be corrected 

using a corresponding current amplifier. 

 
VI. A COMPARISON OF THE MINIMAX APPROXIMATION 
TO OTHER APPROXIMATION METHODS 

In order to compare the different approximation methods, we 

define 6 design parameters needed in the design of non-ideal 

FOEs. They are: the fractional order  (or equivalently the 

approximate phase angle i), the value Fo in (1), the 

frequency limits of the constant-phase bandwidth (CPB) L 

and H (or equivalently the specified bandwidth BW=H/L 

and the central frequency c), the phase deviation  (or 

Gmax/Gmin) representing the specified maximum allowable 

phase variation within the CPB limits as shown in Fig. 2, and 

the function order N (or approximation order n)7. The 

approximation methods used for the comparison are 

presented in chronological order. The system approximation 

functions obtained by analytical methods are calculated using 

the procedures presented in the literature [34][43][45][46] 

[49]-[52]. The other ones, derived by numerical optimization 

methods, are calculated using the results presented in the 

references [38]-[40]. The approximation functions are 

normalized in order to make their magnitudes equal to unity 

at the unity frequency. 

A. APPROXIMATION METHODS USED FOR 
COMPARISON 

1) CARLSON-HALIJAK (1964) [41] 

 
7 Note that the parameter Fo has no influence on the system function 

phase response. It can be used for the normalization or denormalization of 

the function magnitude. 

The earliest iterative procedure was by Carlson and Halijak 

[41] who used the order  as an input parameter. In a regular 

Newton process, the Carlson Halijak method realizes an 

approximation of discrete constant values of phase i 

corresponding to =1/2, 1/3, etc. Each iteration results in a 

system function whose order depends on  and the number 

of iterations. For example, for i=−45 after two iterations, 

the 4th–order function obtained is 

 ( )
4 3 2

4 3 2

36 126 84 9

9 84 126 36 1
CH

s s s s
F s

s s s s

+ + + +
=

+ + + +
. (40a) 

The third iteration results in a 13th–order function. Another 

value of the fractional exponent, for example =−1/3 

(i=−30), results in a 1st, 2nd and 3rd iteration function of 1st, 

5th and 21st order N, respectively. The method is 

unpredictable regarding the phase variation and the 

bandwidth. Some system functions obtained by this 

procedure can be realized only by RLC circuits, and not by 

circuits with two kinds of elements. 

2) OLDHAM-ZOSKI (1983) [49]  

The method presented by Oldham and Zoski [49] has the 

fractional order  and two time constants tM and tm, 

corresponding to the frequency limits L and H 

respectively, as initial design parameters. The procedure uses 

a 1st Foster form RC-network resulting in the series 

connection of N parallel RC branches and one resistor 

referred to as a “domino-ladder network”. The resistor and 
capacitor values form a geometric progression depending on 

the value . Apart from the calculated RC cells, two 

additional RC cells are required to optimize the phase 

response ()8, thereby increasing the system function order 

by 2. In our example, we chose =1/2, tM=10, tm=0.1 (2 

frequency decades), R0C0=25.4, the progression ratio of 

resistors and capacitors g=G=2.573 and the total order N=6. 

The final network is a series connection of six parallel RC 

branches and one resistor. The normalized impedance 

function obtained from the network is given by 

6 5 4 3 2

6 5 4 3 2

( ) (40b)

0.74 12.6 385.7 1735.7 1163.3 115.7 1.57

89 1039.5 1798 467.1 17.97 0.090758

Old
Z s

s s s s s s

s s s s s s

=

+ + + + + +
+ + + + + +

 

3) CHAREF et al. (1992) [50] 

The method of Charef et al. [50] is used for the 

approximation of the magnitude function 20logFi(j) and 

uses the maximum deviation of the magnitude function as a 

starting parameter. A system function with a single 

fractional-order pole and the fractional order  (0<<1) is 

approximated by a rational function with logarithmically 

spaced real poles and zeros alternating on the negative real 

axis in the s-plane. The input data is: the order , the 

maximum magnitude deviation y in dB from −20dB/dec, 

the frequency limits L (defined as the relaxation time 

 
8 A similar process is used in some other referenced approximations. 
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constant) and H. In our example we use =1/2, y=2dB, L 

=1.57810−2 and H=1.578102, e.g. four frequency decades 

with a unity center frequency. The order of the obtained 

system function is N=5, and the normalized system function 

is 

4 3 2

5 4 3 2

( )

1.0364 19.33 49.17 19 1

0.1323 6.2 39.76 39.4 6.038 0.127

Cha
Z s

s s s s

s s s s s

=

+ + + +
+ + + + +

(40c) 

4) MATSUDA-FUJII (1993) [46][51] 

The approximation procedure of Matsuda and Fujii is 

performed by expanding the function Fi(s) with =1/2 into a 

continued fraction expansion (CPE) and fitting it into a set of 

n+1 logarithmically spaced points in the range (sL, sH), where 

n is the approximation order. The CPE is truncated after the 

nth term. The input parameters are the order  and the 

frequency band limits. We chose f(s)=s−1/2, sL=0.1, sH=10 (2 

frequency decades) and n=8. The result is a 4th-order system 

function given by 

4 3 2

4 3 2

0.0855 4.8765 20.838 12.9955 1
( )

12.9955 20.838 4.8765 0.0855
Ma

s s s s
Z s

s s s s

+ + + +
=

+ + + +
(40d) 

5) OUSTALOUP et al. (2000) [46][52] 

This method is based on the approximation of s by a product 

of N bilinear rational functions using the fractional order , 

and the frequency limits H and L as the initial parameters. 

The poles and zeros of the system function are 

logarithmically spaced, depending on  and the bandwidth. 

This procedure generates only odd-order approximations 

equal to N=2k+1 (k=1,2,…). If we choose =−1/2, k=2, 

L=10−2 and H=102 (4 decades) we get the impedance 

function 

5 4 3 2

5 4 3 2

74.97 768.5 1218 298.5 10
( )

10 298.5 1218 768.5 74.97 1
Oust

s s s s s
Z s

s s s s s

+ + + + +
=

+ + + + +
(40e) 

Note that the Oustaloup approximation is usually designed 

for a wider frequency band, e.g. L/10 and 10H, instead of 

L and H [46]. Therefore (40e) is efficient within a 

bandwidth of 2 decades. Xue et al. [53] presented a modified 

Oustaloup approximation method for FO systems to reduce 

fitting problems at high and low frequencies, and better 

results were obtained. However, it resulted in a higher order 

and is not considered for a comparison here. 

6) KRISHNA-REDDY (2008) [26][54] 

This procedure begins with the Continued Fractions 

Expansion (CFE) of the expression (1+x) [69 p. 101]. By 

inserting x=s−1 into it and truncating after a certain number 

of terms, the rational approximations for s obtained up to the 

5th order are shown in [26]. For =−1/2 in this work the 5th 

order impedance is 

 ( )
15533046216511

1116546233055
2345

2345

+++++
+++++

=
sssss

sssss
sFKR  (40f) 

Note that Matsuda [51], Oustaloup [52] and Krishna [54] 

do not require a specification of the value for the maximum 

phase deviation . 
7) VALSA-VLACH (2013) [43] 

Valsa and Vlach [43] proposed a method using  as the 

specification (together with the fractional order  and the 

frequency limits max and min). The procedure is based on 

the Foster second form RC network. R and C values are 

calculated as a geometric progressions depending on the 

value of  and , thereby improving the previous idea of 

Machado [42]. Each element value is calculated from the 

previous step using a recursive algorithm (RA). In our 

example we chose =−0.5, =1, max/min=102, R1=1, 

C1=23.8 and obtained min=1/(R1C1)=0.042. The normalized 

network impedance is equal to 

4 3 2

5 4 3 2

13.52 373.5 1103.9 381.6 14.11
( )

97.8 856.8 866.1 101 1.06
Valsa

s s s s
Z s

s s s s s

+ + + +
=

+ + + + +
(40g) 

8) EL-KHAZALI (2015) [45] 

The El-Khazali procedure extends the idea of the product of 

bilinear sections in the algorithm of Oustaloup to the product 

of biquadratic sections. Consequently, it provides only even-

order approximations. The design depends solely on the 

fractional order . Following the procedure in [45] for the 

approximation of the system function as a product of 

biquadratic functions for Fi(s) with =0.5, we realized the 

4th-order impedance function 

4 3 2

4 3 2

1.457 86.27 536.8 300.6 17.7
( )

17.7 300.6 536.8 86.27 1.457
ElKha

s s s s
Z s

s s s s

+ + + +
=

+ + + +
(40h) 

The following three methods use numerical optimization 

procedures for the approximation of the FOE system 

function. They are: Flower Pollination Algorithm (FPA) [38], 

Cuckoo Search Optimizer (CS) [39] and Genetic Algorithm 

(GA) [40]. 

9) ABDEL-ATY et al. (2018) [38] 

FPA and CS are based on the semi-analytical approach to the 

s approximation problem in [38]. The algorithm searches for 

the optimum coefficients (ki, i) in the sum of n first-order 

rational functions in the form fi(s)=ki/(s+1/i) i=1,2,…,n 

within the given frequency range (fL, fH), divided into n 

logarithmically equal sections in the selected number of 

points/decade. The cost function to be minimized is defined 

as the weighted sum of the absolute relative magnitude and 

phase errors. The final rational function is used for the 

realization of a Foster 2nd-form admittance, or as a transfer 

function using amplifiers to sum the output signals from 

individual RC cells. For comparison purposes, we use the 

example in [38] where the FPA is performed over 6 decades 

(fL=1Hz to fH=1MHz) having n=6 equal frequency intervals 

within (fL, fH) and 100 points/decade for =0.5. The resulting 

6th-order normalized impedance function is 
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6 5 4 3 2

6 5 4 3 2

( ) (40i)

0.019 20.17 1086 4033 1059 19.2 0.017

217.6 3056 3021 209.8 0.943

FPA
Z s

s s s s s s

s s s s s s

=

+ + + + + +
+ + + + +

 

10) YOUSRI et al. (2019) [39] 

The Cuckoo Search optimizer (CS) performs similarly to the 

FPA, but using a different algorithm, so that for =0.5 a 

different set of optimal coefficients (ki, i) is obtained. For 

comparison, we use the example in [39] where the CS 

optimization is performed through 6 decades (fL=1Hz to 

fH=1MHz) with a CS technique giving 6 pairs of (ki, i). The 

normalized 6th-order impedance approximation function of s 

is 

6 5 4 3 2

6 5 4 3 2

( ) (40j)

0.019 20.6 1114 4289 1188 22.8 0.022

218.3 3171 3293 239.6 1.165

CS
Z s

s s s s s s

s s s s s s

=

+ + + + + +
+ + + + +

 

11) KARTCI et al. (2019) [40] 

The Genetic Algorithm (GA) in [40] is used for the 

optimization of the phase and/or magnitude response of an 

RC or RL network in the given frequency range. We use 

the design of the Foster-II RC network performed over 4 

decades (fL=100Hz to fH=1MHz) with 12 elements (R0, C0 

to R5, C5), calculated for =−0.5. The final 5th-order 

normalized impedance function is 

    5 4 3 2

5 4 3 2

( )

0.043 10.6 181.3 300 49.4 0.75

58.13 309.1 161.9 8.24 0.0302

GA
Z s

s s s s s

s s s s s

=

+ + + + +
+ + + + +

 (40k) 

12) ADHIKARY et al. (2020) [34] 

The procedure by Adhikary et al. [34] is used for the design 

of the Foster structure with the specified phase band 

variation , fractional order , frequency band limits (fL, 

fH), and value Fo. As a result, the RC component values of 

the modified Foster I and II form are derived. This 

approximation process is similar to those by Oldham and 

Valsa. In our example we start with =0.5, =3, fL=1, 

fH=103 and Fo=1. The normalized impedance function 

calculated from the circuit element values is 

    5 4 3 2

5 4 3 2

0.045 18.42 931 3125 707.5 10.3

197.5 2512 2191 131 0.5

( )

04

Adhk

s s s s s

s s

Z

s s s

s

+ + + +
+ + +

=

+
++

 (40l) 

As can be seen, some methods have the final circuit with 

the element values as a result, while others have the system 

function F(s). The latter approach is advantageous because, 

in the next step, we can calculate the variety of RC 

networks from the calculated F(s). 

B.  A COMPARISON OF APPROXIMATION METHODS 

The minimax procedure uses all 6 basic input parameters , 

Fo, L, H, n, and  defined in the beginning of this 

section for the design of the non-ideal Fractional-Order 

Elements (FOEs). In this method the phase deviation , 

the frequency bandwidth BW and the approximation order n 

are mutually related, and only two of them need be given in 

advance, after which the third is calculated. In order to 

enable a meaningful comparison, the minimax 

approximation impedance functions that realize =−0.5, 

should have the same approximation order n and bandwidth 

BW as the functions given in (40). Since those functions 

have different orders and bandwidths, they are divided into 

five groups having the same order and bandwidth. They are 

compared to the minimax FO impedances with the order 

and bandwidth as close as possible to the other compared 

functions. The results are presented for each group 

separately in Fig. 14(a)-(e). The approximation impedances 

with BW=103 and n=10 are compared to the minimax 

function in Fig. 14(a). 

( )
5 4 3 2

5 4 3 2

0.076 6.4 57.3 87.9 24.2 1

24.2 87.9 57.3 6.4 0.076aMmx

s s s s s
Z s

s s s s s

+ + + + +
=

+ + + + +
 (41a) 

In Fig. 14(b) the approximation impedances with BW=103 

and n=8 are compared to the minimax function 

( )
4 3 2

4 3 2

0.0845 5.39 27.05 15.89 1

15.89 27.05 5.39 0.0845bMmx

s s s s
Z s

s s s s

+ + + +
=

+ + + +
 (41b) 

In Fig. 14(c) the approximation impedance with BW=4102 

and n=12 is compared to the minimax function 

6 5 4 3 2

6 5 4 3 2

( )

0.083 6.37 69.7 186 134 25.5 1

25.5 134 186 69.7 6.37 0.083

cMmx
Z s

s s s s s s

s s s s s s

=

+ + + + + +
+ + + + + +

 (41c) 

In Fig. 14(d) the approximation impedances with 

BW=6.26105 and n=11 are compared to the minimax 

function 

6 5 4 3 2

6 5 4 3 2

( ) (41d)

0.018 20.8 1181 4515 1181 20.8 0.018

231.7 3396 3396 231.7

dMmx
Z s

s s s s s s

s s s s s s

=

+ + + + + +
+ + + + +

 

In Fig. 14(e) the approximation impedance with 

BW=1.723104, and n=10, is compared to the minimax 

function 

5 4 3 2

5 4 3 2

( )

0.043 10.37 176.1 308.4 57.1 1

57.1 308.4 176.1 10.37 0.043

eMmx
Z s

s s s s s

s s s s s

=

+ + + + +
+ + + + +

 (41e) 

Apart from the graphical comparison, the maximum phase 

deviation of each curve within the bandwidth HL is 

calculated numerically using the following measure 

 max max arg( ( ))
L H

i
Z j

  
  

 
 = −  (42) 

The values of max obtained in degrees are shown in Fig. 

14 within the brackets. 

As can be seen, the minimax approximation has an 

equiripple property within the approximation band and  
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(a)  

(b)  

(c)  

generally the smaller deviation, even though it has a 

somewhat broader frequency band than some of the other 

approximations. It’s maximal deviation from 45° is less 

than 0.3° for a 5th-order system function (Fig. 14a) and less 

than 1° for a 4th-order function (Fig. 14b). The phase 

deviations of the minimax approximation are uniformly 

distributed along the approximation band, while most of the 

other approximations have small phase deviations in the 

neighborhood of the center frequency and increase at the 

edges of the approximation band. The numerical 

optimization procedures [38][39] and [40] have results that 

are much closer to the minimax approximation than the 

others. This is to be expected because they start with similar 

approximation criteria. 

(d)  

(e)  

FIGURE 14. Comparison of the minimax function phase (red solid line) 

to the referenced approximations of the constant phase i=−45. 

In all cases in Fig. 14 the max values in brackets confirm 

that, compared to the other methods, the minimax 

approximation performs better over the same bandwidth 

and with the same order. 

VII. A PRACTICAL REALIZATION OF FO CAPACITORS 
AND FO INDUCTORS 

In this section the results of the simulations and practical 

verification from above are presented for the design of real 

FO capacitors (FOCs) and FO inductors (FOIs). The 

minimax approximation procedure described in section III 

is applied to their realization, and the final circuits are 

compared to the FOC and FOI realizations obtained by the 

genetic algorithm (GA) in [40] while implemented with 

commercial components. The corresponding circuits are all 

designed for the same angle, approximation bandwidth, 

component number and topology. Since the commercial 

components are used to replace ideal components, it is 

expected that the characteristics of the realized circuits will 

be deteriorated. 

A.  FO CAPACITORS 

For the FOC design using the minimax approximation, the 

following initial parameters are chosen: =−2/3 (i=−60), 
BW=105 (100Hz-10MHz) and the approximation order 

n=11. It is compared to the realization given in section III A 

in [40]. For this purpose, we tried to create the same 

conditions and use the same tools for the analyses and 

measurements as in [40]. 
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TABLE 7 

COMPONENT VALUES OF FOC USING THE FOSTER 2ND-FORM RC NETWORK  

Compon

ent 

 

R [] 

 

C [F] 

 

=−2/3; C=3.96 [nF s−1/3] 

C0

1

R1

R0

2

R2

3

R3

4

R4

5

R5

 
Minimax ideal  Minimax 

commercial 

GA in [40] 

commercial 

R0 11.86 M 11.8 M 10 M 

R1 25.24 k 25.5 k 24 k 

R2 4.67 k 4.64 k 4.7 k 

R3 120.64 k 121 k 110 k 

R4 2.665 M 2.67 M 2.4 M 

R5 575.83 k 576 k 470 k 

C0 5.44 p 5.4 p 7 p 

C1 15.71 p 13p + 2.7p * 18 p 

C2 7.78 p 7.8 p 10 p 

C3 34.32 p 33p + 1.3p * 39 p 

C4 172.65 p 150p + 22p * 200 p 

C5 75.05 p 75 p 91 p 

 Operating frequency range 

100 Hz − 10 MHz 

Total resistance (M) / Total capacitance (pF) 

15.26/310.9 15.20/310.2 13.01/365 

Spread of resistance / capacitance  

Note: *Capacitors in parallel 

2540.65/31.72 2543.1/31.86 416.67/28.57 

Max. phase deviation () 
Note: **100Hz−5MHz 

1.4979 1.5692 2.1** 

Monte Carlo analysis: phase variation @ 30kHz 

( mean / min / max () ) 
−60.22 / −62.92 / 

−57.45 

−60.14 / −62.83 

/ −57.58 

−60.08 / −62.93 

/ −57.39 

Using (23) and (24) the impedance function is derived as 

5 4 3 2

6 5 4 3 2

( )

10.68 1629 20938 25460 2933 29.06

397 11332 30184 7649 177 0.2121

Mmx
Z s

s s s s s

s s s s s s

=

+ + + + +
+ + + + + +

(43) 

The resulting phase deviation is =1.4979. This 

impedance function is realized as a Foster 2nd form circuit 

using the PFE of its reciprocal e.g. the admittance function. 

The component values are denormalized to 0=1.987105 

[rad/s] and R0=86.6106 [] and shown in the first column 

of Table 7. The second column contains the nearest 

commercial component values for the minimax method, 

and in the third column the commercial components of the 

circuit realized by the GA procedure in [40] are given. The 

implemented resistors are taken from the Vishay E96 series 

1% 0603 components [70] and the capacitors from the 

Kemet E24 series 0603 components, or have other nominal 

values according to their data sheets [71]. Note that in the 

second column we use a parallel connection of two 

capacitors, which is a common design practice9. The phase 

response of a minimax and GA circuit with nominal 

 
9 When the difference between the calculated component value and the 

closest available commercial component value exceeds the tolerated error, 

 

(a)  

(b)  

(c)  
FIGURE 15. (a) Orcad PSpice AC Analysis using the commercial values 
in the Table 7 derived using GA and minimax algorithms to realize 

i=−60 phase RC network. (b) Monte Carlo (MC) Analysis of minimax 
RC network for 1500 runs (with 1% for resistors and 5% tolerances for 
capacitors) (c) Histogram of phase at center frequency 30kHz. 

commercial element values and tolerances is simulated 

using OrCAD PSpice; the result is shown in Fig. 15(a). As 

can be seen, the phase response of the minimax circuit has a 

maximum phase deviation =1.5692. The maximum 

phase deviation of the GA circuit is =2.1 in the 

reduced frequency range 100 Hz - 5 MHz and in the full 

frequency range 100 Hz - 10 MHz it exceeds the values 3 
[40]. The minimax circuit is further tested by the Monte 

Carlo simulation in OrCAD PSpice with the histogram 

(yield at 30kHz) for the commercial components in Table 7. 

To investigate the sensitivity of the FOC phase 

characteristic to the deviation of passive component values, 

we assume a Gaussian distribution with a zero mean value 

and the resistors and capacitors as uncorrelated random 

variables. 

 
a single component is usually replaced by a corresponding serial or 

parallel connection of two components. 
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(a)  

(b)  

FIGURE 16. (a) The physical SMD realization of FO Capacitor (RC 

network) RECTANGLE (36x10mm) to realize i=−60, and (b) phase 
measurement results on Agilent 4294A precision impedance analyzer 
with markers. 

After 1500 runs with 1% resistor tolerance and 5% for 

capacitors, the result is shown in Fig. 15(b) and the 

corresponding histogram in Fig. 15(c). The mean value 

with a standard deviation of 0.792629 is −60.1424, which 

is very close to the theoretical value −60. This shows that 

the realized FOC has a low sensitivity of its phase response 

to passive components. The Monte Carlo (MC) analysis 

also confirms that the minimax network achieves the 

desired phase with higher accuracy when compared to GA, 

as shown in Table 7. 

As a final check, the derived circuit was realized as an RC-

breadboard using commercial resistors [70], and capacitors 

[71], as shown in Fig. 16(a). The phase response is 

measured in the range 100Hz to 10MHz using the Agilent 

4294A precision impedance analyzer. The calibration of the 

test fixture Agilent 16047E measuring equipment was 

performed using open circuit, short circuit, and a 100 

resistor Agilent 04294-61001. The parasitic capacitances 

influence the circuit at high frequencies and are 

compensated for by reducing the value of the capacitor C0 

by 1.5pF. The measurement results shown in Fig. 16(b) 

confirm the higher accuracy of the minimax method: from 

100Hz to 10MHz the difference between the markers 0 and 

3 is 3.6314 or =1.8157 which is close to the PSpice 

simulation shown above. Thus, the minimax measurement 

result is more accurate than the =2.1 obtained by the 

GA in [40] in the reduced frequency range 100 Hz - 5 MHz, 

and =3.2 in the full frequency range 100 Hz - 10 MHz. 

B.  FO INDUCTORS 

The initial parameters for the design of the FOI impedance 

function using the minimax approximation are =1/2 

(i=45), BW=103 (10 kHz-10 MHz) and n=11. Using (23) 

and (24) from the design procedure in section III, the 

derived normalized impedance is 

TABLE 8 

PASSIVE ELEMENT VALUES FOR FOI USING THE FOSTER 2ND-FORM RL 

NETWORK  

Compon

ent 

 

R [] 

 

L [H] 

=1/2; L=834.62 [H s−1/2] 

L0

1

R1

R0

2

R2

3

R3

4

R4

5

R5

 
Minimax ideal  Minimax commercial GA in [40] 

commercial 

R0 16.18 16.2 15 

R1 1.141 1.13 1 

R2 9.389 9.31 10 

R3 0.41212 0.402 1 

R4  2.4552 2.43 1.2 

R5  5.181 5.23 3.9 

L0 8.143  8.2 (3.6) 6.8  

L1  2.6075  3.3 (1.5)12 (1.2) * 6.8  

L2  207.41 n 210n (2.06) 220 n 

L3  4.7252  4.7 (2.1) 6.8  

L4  1.2356  3.9 (1.6)1.8 (1.1) * 1.2  

L5  574.22 n 580n (0.46) 470 n 

 Operating frequency range 

10 kHz − 10 MHz 

Total resistance () / Total inductance (H) 

34.7583 / 

17.493 

34.702 / 

16.72 

32.1 / 

22.29 

Spread of resistance / inductance 

Note: *Inductors in parallel 

39.26/39.26 40.29/39.05 15/30.91 

Max. phase deviation () Note: **12 kHz−10MHz 

0.16473 0.4016 1.66** 

Monte Carlo analysis: phase variation @ 3 MHz 

( mean / min / max () ) 
45.0046 / 

43.27 / 

46.55 

45.1033 / 

43.3574 / 

46.4703 

45.2 / 

43.79 / 

56.71 

6 5 4 3 2

6 5 4 3 2

( )

13.75 393.2 1902 1902 393.2 13.75

94.47 1055 2303 1055 94.47 1

Mmx
Z s

s s s s s s

s s s s s s

=

+ + + + +
+ + + + + +

 (44) 

and the maximum phase deviation =0.1647345. It is 

also realized as a Foster 2nd-form network shown in Table 8 

with the elements denormalized to 0=1.987106 [rad/s] and 

R0=1.17646 [] listed in the first column. The 

corresponding commercial component values with resistors 

from Vishay [70] and 0603 E24 series inductors from 

Coilcraft [72], both with nominal values, are given in the 

column next to it. Some inductor values are realized as a 

parallel connection of two commercial inductors to achieve 

closer values to the calculated ones. In the last column the 

components of the same manufacturer of the GA circuit 

with the values from [40] are listed. The phase response of 

both the minimax and GA circuit is simulated with OrCAD 

PSpice and shown in Figure 17(a). As can be seen in Fig. 

17(a), and in Table 8 the phase response obtained by the 

minimax realization has smaller phase deviations 

=0.4016 than the GA algorithm with =1.66 in 

[40]. Using the same simulation parameters as for the RC 

network case, the Monte Carlo simulation results for the 

minimax RL network are listed in Table 8 confirming better 

accuracy than those of the RL network in [40].  
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(a)  

(b)  

(c)  

FIGURE 17. (a) Orcad PSpice AC Analysis using the commercial values 
in the Table 7 derived using GA and minimax algorithms to realize 

i=+45 phase RL network. (b) Rectangle physical SMD realizations of 
FO Inductor (RL network) and (c) phase measurement results on Agilent 
4294A precision impedance analyzer with markers. 

The realized breadboard with a Foster 2nd-form RL circuit 

is shown in Fig. 17(b), and the phase measurement result 

shown in Fig. 17(c). In the realization of RL networks care 

must be taken of the problems that arise as a consequence 

of the parasitic serial resistances of the inductors 

influencing the frequency response, mainly at low 

frequencies. Their maximum values given by the 

manufacturer in the data sheet [72] are shown in the 

brackets next to the inductance values. In this particular 

case the problem can be reduced by reducing the values of 

the serial resistance connected to the inductors by the value 

of the parasitic resistance. In our RL circuit design we 

reduced R3 to 0 and R1 to 0.402. In Fig. 17(c) the 

difference between the markers 0 and 1 is 8.3924, e.g. the 

maximum phase deviation within the frequency band of two 

decades (100kHz - 10MHz) is =4.1962. The GA 

measurement results in [40] show a maximum phase 

deviation of =5.82 over the two decades (400kHz - 

40MHz). The measurement results confirm that a physical 

minimax RL network is more accurate than a physical GA 

RL network. 
C. USING THE MINIMAX MODEL IN RECENT 
APPLICATIONS 

In recent publications [5], [12], [24] and [25], researchers 

designed FOC and FOI elements using physical RC or RL 

networks to perform measurements in laboratory setups. We 

have designed the same networks with the same 

specifications using the minimax approach and found that 

this results in more accurate networks with a lower number 

of components. In what follows we compare our minimax 

approach with that of these authors. 

In the two-controller design in [5], the authors use the 

rational function of Oustaloup and the Valsa RC network. 

Replacing them by the minimax approximation, the phase 

error =5 of the first design (Oustaloup) can be improved 

to 2.5 (with the same fractional order =+1/2, function 

order n=10 and BW=5 decades). For the second (Valsa RC), 

the phase error =1 and BW=3 decades (1.7mHz to 

1.7Hz) can be improved to an even lower phase error of 

0.56 for BW=4 decades (1mHz to 10Hz) (with the same 

fractional order =−0.7 and five Valsa branches, i.e. n=11). 

In [12] two seventh-order networks are described using the 

Valsa procedure for a complex Chebyshev FO low-pass filter 

with =0.7 (63) (with phase error =1) and 0.9 (81) 
(=0.4) for a FOC realization within 5 frequency 

decades. The high sensitivity of the filter performance for the 

accuracy of the fractional order  is critical. With our 

minimax approximation, and the same networks but with 

different component values, we improved the phase errors of 

=1 to 0.3 for order 0.7, and of =0.4 to 0.115 
for order 0.9, all within the same BW (100Hz to 10MHz).  

In [24] Fang and Wang designed a FO capacitor of order 

0.95 (85.5), using Oustaloup’s eighth-order network and 

obtained a maximum error =0.35 in the frequency range 

from 3Hz to 10kHz. With our minimax approximation, we 

obtained an eighth-order network with the same topology and 

the same bandwidth, but with a reduced error of 

=0.0044. 
In [25] Wei et al. designed an FO capacitor of order 0.9 (81) 
using Oustaloup's rational approximation method [52] in the 

range from 10Hz to 100kHz (4 decades) with a seventh-order 

physical network and produced a maximum error of =3. 
With our approach we designed a minimax approximation of 

the FO capacitor for 4 decades with the same error 

specifications and obtained a sixth-order network with an 

error of =0.133. A comparison of these different design 

approaches is summarized in Table 9. 
TABLE 9 

IMPROVEMENT OBTAINED WITH MINIMAX MODEL IN RECENT 

APPLICATIONS 

Example of FOE 

application 
  n BW 

[decades] 

Two FO controllers [5] 

(2020) 

Oustaloup: 5 
Minimax: 2.5 

+1/2 10 5 

Valsa: 1 
Minimax: 0.56 −0.7 11 

3 

4 

Complex Chebyshev FO 

filter [12] (2018) 

Valsa: 1 
Minimax: 0.3 −0.7 7 5 

Valsa: 0.4 
Minimax: 0.115 −0.9 7 5 

FOC in FO buck–boost 

converter [24] (2020) 
Oustaloup: 0.35 

Minimax: 0.0044 −0.95 8 4 

FOC in FO buck 

converter [25] (2019) 
Oustaloup: 0.3 

Minimax: 0.133 −0.9 6 4 
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D. A MATLAB PROGRAM FOR THE DESIGN OF 
MINIMAX APPROXIMATED CPEs  

A new MATLAB program has been developed for the 

minimax equiripple phase design of CPEs by physical 

networks (both passive and active). It is available in [73]. 

Compared to the only two other available programs [74] 

and [75], it results in more accurate approximations. The 

first, [74], provides only the Oustaloup transfer function 

(which is of only odd order). The second, [75], provides 

only the element values of passive Foster 1 and 2, and 

Cauer 1 and 2, networks, which are based on Oustaloup, 

Continued Fraction Expansion (CFE), and Valsa 

algorithms. Ours is the only program that calculates CPEs 

based on the minimax approximation. It provides the poles 

and zeros, transfer function, and complement transfer 

function, and also calculates the element values of the 

passive Foster 1 and 2, and Cauer 1 and 2, networks. It 

provides both RC and RL networks. All the examples in 

this paper are calculated using this program. With its 

improved performance compared to the other programs, it 

may help to fuel the wide-spread use of the minimax 

approximation in the design of physical, as well as 

computer simulation model of CPEs. Being simple and 

comprehensive, it does not need any additional MATLAB 

toolbox. 
VIII. CONCLUSIONS 

In this paper we presented a step-by-step procedure for the 

realization of basic one-port and two-port FO elements. The 

procedure involves the approximation of an ideal FO system 

function Fi(s)=Fos for all possible orders  within the limits 

−1<<1 by standard circuit theory methods. It is based on 

the “maximally flat” and “minimax” approximation of a 
constant phase response in the frequency domain. The result 

is an integer-order rational system function F(s) which 

approximates Fi(s) in the specified frequency range with a 

phase error which is within specified limits. Both the 

frequency band and the phase variations can be specified in 

advance, and realized at the cost of the system function order, 

e.g. the final circuit complexity. The “minimax” 
approximation is chosen for our realization because of its 

superior properties compared to “maximally flat” and other 
known approximation methods. The function F(s) can be 

realized as a one-port or two-port RC or RL circuit. For 

convenience, we use RC circuits that can realize a basic one-

port FOE with  in the range −1<<0 and a basic two-port 

FO model with  in the range −1<<1. Using two basic 

realization procedures, e.g. the Foster and the Cauer methods, 

eight different basic one-port RC circuits for each specific 

value of fractional-order  are described. The number of 

circuits can be increased by combining the two methods of 

circuit realization. Some of the presented basic one-ports are 

used for the realization of simple FO two-port circuits, such 

as for FO voltage-mode and current-mode differentiators and 

integrators. 

In order to verify the minimax approximation for FOE 

design, it is compared to the most frequently referenced 

approximations obtained by analytical procedures and 

numerical optimization methods. It is shown that the 

minimax approximation is generally superior to the ones 

obtained by analytical methods. The minimax approximation 

uses two of the three initial parameters for the design e.g., the 

frequency bandwidth, the phase deviation, and the 

approximation order. It calculates the third parameter, and 

the system function with a magnitude normalized to unity at 

the center of the normalized frequency bandwidth. All 

approximation parameters are clearly defined and controlled, 

which is not the case in many other approximations. We 

consider its application to fractional-order systems as a 

novelty because in spite of its excellent properties in many 

other applications, it was neglected in this field. So far this is 

the only approximation that takes all relevant approximation 

parameters into consideration and gives explicit and exact 

results for a FO system function. The results of numerical 

optimization methods are mainly close to a minimax 

approximation, but they are less accurate when the frequency 

range limits are considered. 

The design and simulation results are further verified by the 

practical realization of an FO capacitor and inductor. They 

are compared to similar realizations of a recently published 

method in which FOE components are calculated directly 

using Genetic Algorithm (GA) design. The analysis 

performed, and the measurement results obtained, confirm 

the advantages of the minimax approximation when the 

accuracy and controllability of all approximation parameters 

are considered.  

The application of the minimax approximation has 

outperformed the other published approximations used in 

recent practical applications. The new MATLAB program 

for the calculations of minimax CPEs is provided on-line and 

is therefore readily available for the widespread application 

of the minimax approach to FOE design. 
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