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Abstract: Analog photonic computing comprises a promis-

ing candidate for accelerating the linear operations of

deep neural networks (DNNs), since it provides ultrahigh

bandwidth, low footprint and low power consumption

computing capabilities. However, the confined photonic

hardware size, along with the limited bit precision of

high-speed electro-optical components, impose stringent

requirements towards surpassing the performance lev-

els of current digital processors. Herein, we propose and

experimentally demonstrate a speed-optimized dynamic

precision neural network (NN) inference via tiled matrix

multiplication (TMM) on a low-radix silicon photonic pro-

cessor. We introduce a theoretical model that relates the

noise figure of a photonic neuron with the bit precision

requirements per neural layer. The inference evaluation

of an NN trained for the classification of the IRIS dataset

is, then, experimentally performed over a silicon coherent

photonic neuron that can support optical TMMup to 50 GHz,

allowing, simultaneously, for dynamic-precision calcula-

tions. Targeting on a high-accuracy and speed-optimized

classification performance, we experimentally applied the

model-extracted mixed-precision NN inference scheme via
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the respective alteration of the operational compute rates

per neural layer. This dynamic-precision NN inference

revealed a 55% decrease in the execution time of the linear

operations compared to a fixed-precision scheme, without

degrading its accuracy.

Keywords: analog computing; deep learning; dynamic pre-

cision inference; photonic computing; silicon photonics;
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1 Introduction

The exponential increase of compute-demanding applica-

tions, along with their need for time-of-flight and near-zero

energy consumption, has rekindled the analog computing

paradigm [1–4] as a way to overcome the digital energy

wall. Analog computing pares down the data movement

requirements by exploiting the memory cells both as stor-

age and computation elements. Additionally, analog com-

puting engines comprise highly promising approaches for

AI processing since they operate with much less power at

a higher speed compared to their digital counterparts [5].

The latter becomes even more pronounced when the com-

puting hardware exploits the prodigious primitives of light

i.e., ultrahigh bandwidth, low footprint and high energy

efficiency, with optical neural networks (ONNs) being at the

forefront of research and industrial activities within the

last decade [5–7] and promising to accelerate matrix mul-

tiplication operations, which form typically the most time-

and energy-consuming tasks within inference applications

of deep neural networks (DNNs) [8].

Yet, ONNs and analog computing engines in general,

come with the price of (i) confined size of hardware imple-

mentable computational models [9–18] and (ii) limited bit

precision [5, 19–21]. More specifically, as the complexity of
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the neural network (NN) models proliferates, so does their

size and in turn their total number of required multiply-

accumulate (MAC) operations. However, the spatial distribu-

tion of the NN parameters encoding devices cannot expand

relentlessly, imposing a hardware limitation in the number

of encodable parameters the ONN can host. To this end, the

latter need to follow the lead traced by today’s TPU and

GPU computational models [22, 23], where a limited amount

of hardware resources can execute DNNs with significantly

higher dimensions. In particular, based on the hardware

characteristics, i.e., size, parameters updating speed, and

the application requirements, i.e., sample-/batch-wise infer-

ence, these computational modes split the matrices into

smaller tiles and unroll the complete matrix multiplica-

tion operations in the time domain. The tiled matrix mul-

tiplication (TMM), performed by means of time division

multiplexing (TDM), entails the high-speed update of the

matrix element encoding devices, calling for ONNs with

high-bandwidth constituent building blocks. Towards this

direction, ONNs have to strike the balance between oper-

ational speed and scaling, with the majority of the inte-

grated photonic solutions leaning their efforts mainly on

the second. On top of the above, the digital-to-ONN comput-

ing transition includes the employment of digital-to-analog

(DAC) and analog-to-digital (ADC) converters along with the

parameters encoding, amplification and processing devices,

i.e., modulators, photodiodes (PDs), amplifiers etc., that,

inevitably, introduce degradation to the analog accuracy

during the inference, since each constituent introduces a

relevant noise source that impacts the electro-optic link’s

bit resolution properties. The limited bit precision effect

can be mitigated during the training process or alterna-

tively, via post-training inference techniques. The former

can be accomplished either by incorporating the hardware

impairments i.e., noise figures, bit quantization limitations

etc., into the training model [24–27], or via the employ-

ment of rigid rules in the training phase i.e., low-precision

training, binarization of the NN parameters etc. [28, 29]. Yet

even though these techniques lead to accuracy improve-

ments, they impose additional complexity and energy trade-

offs since the NN need to be retrained in order to be

tailored to the employed hardware constraints. On the other

hand, in pre-trained networks, analog optical processors

can step in effectively when operations can be executed

at low bit precision [5, 30]. However, the bit resolution

requirements of the NNs are, typically, more rigorous. To

this end, post-training techniques i.e., inference averaging,

dynamic precision inference etc. [19, 31–33] need to be

employed in order to compensate for the “noisy” analog

computations.

In this paper, we demonstrate a speed-optimized

dynamic precision NN inference via TMM on a silicon-

integrated neuromorphic processor. The 2-input SiPho neu-

ron supports high-rate update of the NNparameters (inputs,

weights) encoding, allowing for the effective application of

TDM. Towards the speed- and accuracy-inference optimiza-

tion of a hardware-aware trained NN for the classification

of the IRIS dataset, we distinguished and modeled the noise

figures of theONN link and the bit precision requirements of

each neural layer. After the model-aware correlation of the

required bit precision per layer with the ONN axon band-

width,we experimentally performed the dynamic-precision

NN inference revealing a 55% decrease in the execution

time of the linear operations compared to a fixed-precision

scheme, without significantly (<1%) degrading its accuracy.

Additionally, we validated and quantified the impact of the

dynamic-precision post-training inference into the NN accu-

racy, via the operation of the photonic hardware at differ-

ent compute rates in the two neural layers. Specifically, we

performed the inference of the constituent neural layers via

TMM, recording the accuracy of the NN, when the linear

operations of its two layers were performed at 2, 16, and 50

Gbaud. As a consequence of the high bit precision tolerance

of the 1st neural layer, the software accuracy of 96.6% was

obtainedduring its experimental inference at compute rates

up to 50 Gbaud. On the other hand, an accuracy degradation

was observed in the noise-sensitive output layer, with the

accuracy values of 93.1%, 86.4%, and 68.6% being calculated

when it was executed at 2, 16, and 50 Gbaud, respectively,

validating the dynamic precision significancewithin the NN

inference.

2 Photonic aware techniques

towards high speed and high

accuracy neural networks

inference

The exploitation of light primitives for the high-speed and

high-accuracy execution of the space- and time-demanding

matrix multiplication operations is, typically, accompanied

withmultiple requirements on the development of the ONN

hardware. In particular, the limitations that are imposed

by the analog nature of the data movement and processing

within an ONN and the finite number of parameters that

a practical silicon photonic chip can host, along with their

update rate, predominantly define these requirements. In

this regime, the speed- and accuracy-optimization of the

NN inference has to proceed along with hardware aware
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methodologies. In this section, we delve into the inference

of NNs whose dimensions exceed the ONN dimensions and

present the time division unrolling of its execution via

the employment of the TMM technique. Additionally, we

study and model the noise sources of an ONN link, corre-

lating the operational rate-dependent total noise figurewith

hardware’s analog precision. Thereafter, we identify the bit

precision requirements among the neural layers and pro-

pose a dynamic rate regulation method towards the speed-

optimization of the NN inference.

2.1 Optical tiled matrix multiplication

The processing speed and accuracy of the NN matrix mul-

tiplication linear operations is heavily dependent on the

structure, the size and the principles of the employed ONN

architecture. Figure 1(a) illustrates a coherent photonic

crossbar architecture as proposed in [34]. An n-elements

long NN input vector can be encoded via the modulating

devices included in the light blue rectangle that follows a

1 × n splitting stage. A crossbar mesh, highlighted within

the red rectangle, performs the n × m weight matrix (W)

elements encoding, via modulators for the amplitude and

phase shifters (PSs) for the sign imprinting. Hence, the lin-

ear operations between the input vector X and the weight

matrix W produce an m-elements long vector Y , shown in

the grey rectangle [34, 35]. The architecture of the photonic

crossbar of Figure 1(a), offers: (i) direct elements mapping,

that leads to easy programmability and optimal represen-

tation fidelity among the experimental and the targeted

values, as opposed to complex unitary-based architectures

[13, 14, 16, 36] where the fidelity is degraded due to their

differential path/node losses, (ii) high insertion loss sav-

ings, since each light beam travels only through #2 mod-

ulating and #1 phase shifting active devices, allowing this

way for high dimensions-scaling and the employment of

technologies that can provide high-speed elements imprint-

ing, combined with low energy consumption and/or low

footprint attributes. However, irrespective of the deployed

technologies, the dimension scaling of the ONN architecture

is power budget bounded into practical numbers (n, m),

that cannot follow typical NN dimensions (N > n, M > m)

[37, 38]. As such, wavelength and time divisionmultiplexing

techniques have to be enforced either for maximizing the

amount of parallel operations or for time unfolding of the

operations, respectively. The former has been widely used

in the domain of integrated neuromorphic photonics [9, 15,

17, 39] but has still limitations in the number of employable

wavelengths and, as such, in the amount of parallelization it

can provide. Therefore, TDM comprises the imperative solu-

tion for executing linear operations of an NN via ONN hard-

warewith limited dimensions. Figure 1(b)–(e) illustrates the

TMMsteps required by anONNof dimensions (n,m) in order

to calculate the linear operations of an NN of size (N , M).

More specifically, the n×m elements of theweightmatrixW

and the n elements of the vector X, highlighted with red and

light blue color in Figure 1(b), respectively, are imprinted

in the ONN’s respective devices at time slot #1. Figure 1(c)

and (d) describe the following TMM stages until the final

step that is illustrated in Figure 1(e). Evidently, in order for

the ONN to perform the TMM operations, the update rate of

the modulating devices for the X andW elements should be

synchronized and take place at the highest possible speed

in order to provide low-latency calculations and minimize

execution time. Therefore, this calls for the development of

Figure 1: Linear operator architecture and TMM: (a) n ×m crossbar architecture for vector (1 × n) matrix (n ×m) multiplication. (b)–(e) Tiled vector (1

× N) matrix (N × M) multiplication via a 1 × n vector and n ×mmatrix encoding hardware.
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an ONN architecture that can simultaneously support high-

bandwidth active constituents and high scaling credentials

[34, 40], since high ONN dimensions minimize the number

of tiles of the targeted matrices.

2.2 Noise-aware neural network inference
speed-optimization

Our recent demonstration of the loss-optimized photonic

crossbar architecture (Figure 1(a)) [34, 41] that is capable

of retaining high fidelity values even for high inser-

tion node losses has highlighted the feasibility of deploy-

ing high-bandwidth photonic components with up to 50

GMAC/s/axon rates in high-radix photonic neuromorphic

layouts. In this context, we proceed with the development

of an analytical framework that is capable of correlating the

available opto-electrical bandwidth of the underlying pho-

tonic components with the achieved bit resolution equiva-

lent performance of the ONN, towards: (i) identifying the

major physical mechanisms that define the relationship

between the achievable rate and the ONN bit precision,

(ii) revealing the latency-accuracy trade-offs of high speed

ONNs and (iii) concluding to a generic model of mixed-

precision NN inference, following the paradigm of elec-

tronic NN accelerators [29–32].

We begin our analysis by evaluating the fundamen-

tal relationships between the available bandwidth and the

achieved bit resolution of an ONN link. Figure 2(a) illus-

trates a detailed breakdown of the dominant noise sources

of a multi-axon neuron link that impact the algebraic prod-

uct of X andW via: the nRIN that corresponds to the aggre-

gated noise contributions of the laser source, the nMM that

is related to the matrix multiply electro-photonic link, the

shot noise nshot that corresponds to the random fluctua-

tion of the PD’s current owning to the discrete charge of

electrons traversing the PIN potential barrier, the ndark that

corresponds to the noise term associated with the finite

dark current of a photodetector, the nADC that is correlated

with the quantization noise imposed by the limited reso-

lution of the employed ADC components and, finally, the

nT that is defined as the dominant thermal noise source of

the electro-optic layout. Based on the central limit theorem

[42], we consider that the dot product calculated via the

ONN matrix multiply electro-photonic link follows a nor-

mal distribution, introducing a noise term with a standard

deviation 𝜎MM. Additionally, assuming that the shot noise

values float above nW levels, the quantization noise is uni-

formly distributed and the thermal noise is dominated by

the input-referred noise of the trans-impedance amplifier

(TIA), the aforementioned contributions can be modeled

Figure 2: PNN noise analysis: (a) Electro-optic ONN link noise sources

breakdown. (b) Noise equivalent quantization bits versus the bandwidth

per ONN’s axon for different values of ONN power budget and matrix

multiply noise standard deviation values.

as zero-mean additive Gaussian noise sources and their

standard deviations referenced to a photocurrent Iavg and

a noise bandwidth B can be calculated through:

𝜎RIN = Iavg

√
RIN × B,

𝜎shot =
√
2 × q × nPD ×

(
Iavg + Idark

)
× B,

𝜎ADC =
√
1∕12 ×Δ∕

(
2Ebits − 1

)

𝜎T = iref ×
√
B (1)

where RIN corresponds to the relative intensity noise den-

sity, q to the electron charge, nPD to the conversion effi-

ciency (responsivity) of the PD, Δ to the quantization

interval equal to Pmax − Pmin, Ebits to the effective number

of bits (ENOB) of the employed converter and iref to the TIA

input referred noise current density. Additionally, we corre-

late the Pmax − Pmin values with the modulators’ extinction

ratio (ER) through the equation PAvg = Pmax − Pmin × (ER +
1)∕2 × (ER − 1). Finally, considering the square law detec-

tion at the PD and assuming the dark noise’s contribution

to be negligible compared to the photodetector’s shot noise,
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we approximate the standard deviation of the total noise of

an ONN link calculated through:

𝜎TOTAL =
√
𝜎RIN

2 + 𝜎shot
2 + 𝜎ADC

2 + 𝜎T
2 + 𝜎MM

2 (2)

Following Eq. (2), we calculate the noise equivalent

quantization bits (NEQB) of the overall ONN link as:

NEQB = log2(Δ′∕(
√
12 × 𝜎TOTAL() + 1) (3)

adopting the convention that Gaussian noise sources

can be correlated to limited bit precision of NNs

[19]. In order to quantify the compute rate’s impact

on the ONN bit resolution capabilities based on the

developed framework, we considered typical values

for state-of-the-art high-bandwidth electro-photonic

components that include: RIN = −150 dB∕Hz, npd =
0.8 A/W, ER = 10 dB, iref = 1, 5E − 11 A∕

√
Hz and

EbitsADC = 8. Given that the received power at an ONN’s

output depends on the total insertion loss (IL) of the

architecture through ILarchitecture = PTx − PRx, Figure 2(b)

illustrates the relationship between the achievable NEQB

at an ONN axon bandwidth range of B ∈ [2, 50 GHz]. The

bandwidth-NEQB correlation was calculated for different

typical neuromorphic photonic layout ILs equal to 15 (red),

20 (green), 25 (blue) and 30 dB (black), referenced to a laser

emitted power of 16 dBm and considering the normalized

standard deviation of the noise of the matrix multiply

device equal to 𝜎MM = 10−2, shown in dashed lines, and

𝜎MM = 10−3, shown in solid lines. The analysis reveals both

the relationship between 𝜎MM and the achieved NEQB, as

well as the ONN architecture’s IL impact on the achievable

bit resolution performance. As expected, the NEQB values

follow a decreasing course as the bandwidth and the ONN

IL increase. Additionally, one can observe that the impact

of the 𝜎MM to the NEQB values becomes more intense at

lower IL values, while the importance of a loss-saving

ONN architecture becomes more evident when the matrix

multiplying device’s noise standard deviation remains

at low values. On the contrary, as the 𝜎MM increases,

the impact of the ONN’s IL decreases and the NEQB

curves are dominated by the remaining noise sources.

More specifically, the thermal noise becomes the limiting

noise factor when the total ONN’s IL ranges among high

values (>25 dB). As the IL decreases, the RIN originated

noise dominates the total noise figure and as such the

NEQB.

Towards effectively exploiting the NEQB-ONN band-

width relation for the latency-optimization of the linear

operations of the NN inference, we correlate the individ-

ual neural layers’ requirements in bit precision with the

overall NN accuracy. More specifically, we examine how

accurately the NN performs the inference when each neu-

ral layer’s linear operations are, individually, performed

with predefined quantization bits ranging within the [1, 8]

range. Thereafter, after the identification of the network’s

“demands”, we extract the minimum bit precision values

that can be tolerated by theNNwithout significantly degrad-

ing the final accuracy and select the compute rate of the

linear operations of each layer that, based on our previ-

ous analysis, can provide this NEQB. This dynamic-rate NN

inference leads to significant execution time savings, which

can, eventually, turn into respective energy gains. Towards

showcasing the proposed method, we evaluated the bit pre-

cision requirements of the individual layers of three pre-

constructed popular convolutional NNs, the Lenet5 [43], the

Alexnet8 [44] and the Resnet9 [45], that comprise 5, 8, and

9 layers, respectively. The dark grey bars of Figure 3(a)–(c)

illustrate the minimum bit precision requirements of each

neural layer under the condition that the maximum NN

accuracy degradation will not exceed 1%with respect to the

maximum achievable value defined by the training process,

for the examined NNs, respectively. When the NN accuracy

degrades by more than 1%, then we consider that the mini-

mum bits required equal to 8. It can be observed, that each

layer performs differently under the bit precision relax-

ation, with the first and last being the less tolerant layers

in all three networks, since information loss in one layer

cannot be later recovered in the subsequent ones, according

to Data Processing Inequality [27, 46]. In order to quantify

the achievable savings in execution time, we, also, extract

the number of MAC operations that need to be performed

per neural layer, shown in the red bars of Figure 3(a)–(c).

Consequently, we calculate and compare the NN inference

linear operations’ execution time when the compute rate is

fixed to the rate that does not lead to NN accuracy degrada-

tion by more than 1% and the dynamic-precision aware NN

inference. Figure 3(d)–(f) illustrate the computing times of

the neural layers of each of the examined NNs, when the

inference follows the fixed- (upper stacked bars) and the

dynamic- (lower stacked bars) precision inferencemethods.

The NEQB selection in the latter case was realized based

on the metrics that were considered for the calculation of

the black dashed line of Figure 2(b) that might approximate

high-scale ONN architectures characteristics. Indicatively,

the bit precision requirements analysis for the Alexnet8 NN

revealed that the execution of the 7.96 MMAC operations of

the 4th layer requires at least 3.1 bits of precision, that, based

on the developedmodel, correspond to aminimumcompute

rate of ∼23.8 GMAC/s, resulting to a total time of execution
of∼0.33 ms. Following the proposedmixed compute rateNN
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Figure 3: Bit resolution required for<1% NN accuracy degradation (grey bars) and number of MMACs (red bars) per layer of (a) the Lenet5, (b) the

Alexnet8 and (c) the Resnet9 NNs. Linear operations execution time in ms for fixed and dynamic bit precision inference at (d) the Lenet5, (e) the

Alexnet8, and (f) the Resnet9 NNs.

inference, the analysis revealed 61%, 76% and 85% decrease

in the aggregate execution times for the Lenet5, theAlexnet8

and the Resnet9 NNs, respectively. These latency-reduction

rates may lead to significant energy savings or, eventually,

compensate for the latency introduced via TMM techniques,

where the ONN’s achievable MAC operations per time slot

are inferior to the NN required ones. Finally, it is worth

noting that as the number of neural layers increase, the

importance of the dynamic-rate NN inference will presum-

ably become more pronounced.

3 Dynamic-precision NN inference:

experimental setup

In order to experimentally evaluate the TMM and the

dynamic precision in an NN inference, we established the

experimental setup shown in Figure 4(a). A light beam at

1560 nm was injected, via a grating coupler with an IL of

3 dB, into the Sipho chip depicted in Figure 4(b), where

an electro-absorption modulator (EAM)-based 2:1 single col-

umn crossbar processor was designed and fabricated. The

Figure 4: Experimental testbed: (a) Experimental setup established for

the inference of the NN for the IRIS dataset classification. (b) SiPho

processor employed for the NN inference.

optical signal was then split into two identical branches of

an MZI, via 3 dB Y-junction multimode interference (MMI)

coupler, where, in each branch, two cascaded EAMs, with
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an IL of 4.4 dBs each, were utilized for transferring to the

optical domain the NN input values, while the thermo-optic

(TO) PSs were used to statically bias the MZI in the desired

operating point. The digital NN inputswere converted in the

analog domain via ADCs, using four channels of an arbi-

trary waveform generator (AWG – Keysight M8194a) and,

after amplification, fed to the EAMs in order to be trans-

ferred in the optical domain. Specifically, the EAMs, anno-

tated as Xa, Xb in Figure 4(a), were utilized for modulating

the input-data of the deployed NN, while the NN weight

imprinting was achieved by the EAMs Wa, Wb. Finally, a

3 dB Y-junction MMI was employed for the coherent addi-

tion of the two sequences, and then the weighted sum was

injected a PD before being captured by to a real time scope

(RTO – Keysight DSOZ632a). A digital signal processing stack

was utilized both in the transmission and the reception

site, including quantization, filtering, resampling, and time

recovery. The overall IL of the photonic processor was cal-

culated at ∼15 dB, including the 6 dB losses of the grating

coupler based I/O interfaces.

In view of benchmarking our Sipho processor into a

real DNN application and evaluate the proposed TMM and

dynamic-precision inference schemes’ impact, we designed

and trained an NN for the classification of the IRIS dataset,

whose topology is illustrated in Figure 5(a), comprising a

4:10:3 fully-connected network. Although our architecture

has already validated its credentials to support both positive

and negative values of the NN input andweighting elements

using the deployed PSs to provide the sign information [35],

in this work, we enforced all NN parameters to be pos-

itive. This mainly stems from the use of TO PSs for the

sign imprinting that can’t follow the high data-rate speed

(GHz regime) of the input-data andweight imprinting EAMs,

as would be required during the TMM operation. This

can be certainly overcome either by replacing the TO PSs

with available electro–optic PS technology that can sup-

port high-speed operation or, in our case, by adopting non-

negative NN training models. However, using only positive

NN parameters in DL models, poses significant challenges

in the training process that have to be addressed in order

to yield high classification accuracies. This constraint, typ-

ically, generates outputs that the NN struggles to discrim-

inate when baseline training is employed. In order to

counteract this effect, we deployed a label smoothing train-

ing process [47], turning the output layer more robust to

noise and hence to produce more distinctive output classes.

In particular, training with label smoothing encourages the

activations of the output layer to be close to the template of

the correct class and equally distant to the template of the

incorrect classes, targeting to minimize the cross entropy,

that is defined as J
(
p, t

)
= −

N∑
c=1

t
c
log p

c
, where N is the

number of classes/output neurons, t
c
comprises the true tar-

gets and p
c
provides the likelihood assigned to the cth output

neuron. As it can be derived from the equation, the cross

entropy is minimized when the likelihood p
c
is set to its

maximum value. To this end, considering a uniform distri-

bution u
(
t
c

)
= 1∕N , we modified the true targets as: tmod

c
=

t
c(1− a)+ a∕N , wherea is used as ahyperparameter. There-
fore, employing the label smoothing, the predictions/true

targets that refers to the same class form a much tighter

cluster, meaning that it eliminates the similarities between

Figure 5: NN training: (a) 4:10:3 fully-connected NN for the classification of the IRIS dataset, (b) Normalized minimum distance from target label tc and

tmod
c

when the baseline and label smoothing training were employed, respectively. The latter increases the minimum distance of the output classes by

∼8 times compared with the baseline training. (c) Classification accuracy versus NEQB when the baseline and the label smoothing training are
employed.
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the output classes, thus increasing the minimum distance

among their values. Finally, due to the non-negativity of the

NN parameters, the NN classifier was confined to positive

decision boundaries. For this reason, we introduce a linear

transformation in the input space of the classifier by uti-

lizing an auxiliary linear layer before the actual network,

realizing in this way both positive and negative slope deci-

sion boundaries. After adopting the proposed DL training

techniques, the NN is optimized for 80 epochs using the

AdamW [48] optimizer with a learning rate of 0.01 and a

batch size of 32 samples. The classification accuracy that

was achieved via the software was 96.6%. Figure 5(b) illus-

trates the impact of the label smoothing training on the

output classes. The Y axis depicts the normalized minimum

distance from the true target t
c
and t

mod
c

, when baseline

and label smoothing training is deployed, respectively. As

it can be observed, using the label smoothing training, the

minimum distance among the values of the output classes is

increased almost 8 times compared with the baseline train-

ing, turning theNN classifiermore robust to noise. The latter

can also be verified in Figure 5(c), where the proposed train-

ing method yields the maximum classification accuracy

(96.6%) using ∼5 NEQB, while in order to achieve the same
performance in the baseline training the required NEQB

was ∼8.

4 Dynamic-precision NN inference:

experimental results

In this section we provide our experimental findings on

TMMand the adaptable line-rate as they have been obtained

during the photonic NN inference of the IRIS classification

dataset employing the Sipho processor shown in Figure 4(b).

Specifically, the Sipho chip was employed to execute the

linear operations of the NN, while the Sigmoid activation

function was applied in the software domain. However, in

an all-optical implementation the sigmoid activation func-

tion could potentially be experimentally deployed using

semiconductor optical amplifiers [49]. Within the scope

of benchmarking the dynamic precision NN inference, we

investigated the NEQB requirements for each neural layer.

Specifically, we quantized the NN input and weight parame-

ters of the examined layer in the range [1, 8], with the dashed

and solid black lines highlighting the precision require-

ments of the first and the second neural layer, respectively.

Targeting a maximum classification accuracy degradation

of up to 1%, i.e., 95.6%, we observed that the 1st layer, being

more noise-tolerant, requires low precision calculations of

at least 1.6 NEQB to meet the aforementioned condition, as

illustrated by the left green dashed line in Figure 6(a). On

the other hand, the noise-sensitive output layer requires

a NEQB of at least 4.6 to achieve the same performance.

Parametrizing the developed theoretical model described

in Section 2.2, with the electrical and optical equipment

employed in the experiment, we investigated the impact in

NEQB as the ONN axon bandwidth gradually increases, as

shown with the black curve of Figure 6(b), towards deter-

mining the respective compute rate of the constituent neu-

ral layers.More specifically, themodel parameters included:

a RIN = −145 dB∕Hz coming from the external laser source

utilized (CoBrite-DX Laser type G), a PD with a responsivity

Figure 6: Experimental – model performance comparison: (a) NN

inference accuracy when the first (dashed line) and the second (solid line)

layers are quantized with a NEQB in [1, 8]. Scatter points correspond to

the modeled (rectangles) and experimental (stars) respective values at

ONN axons’ bandwidth equal 2 (red), 16 (orange), and 50 (yellow) GHz

(b) NEQB versus ONN axon’s bandwidth derived via the software model

(solid line) and the experiment (star scatter points).
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Figure 7: Experimental results: (a)–(d) Confusion matrices derived from the NN inference (a) via software, (b)–(d) when the linear part of the first

layer is calculated via the SiPho chip at 50 Gbaud/axon and the second layer at (e) 2, (f) 16, and (g) 50 Gbaud/axon.

ofnpd = 0.12 A∕Wwith a bandwidth ofB = 50 GHz, an ER =
10 dB and ADCEbits = 8 and iref = 1, 5E − 11A∕

√
Hz from

the employed RTO. As observed, the RTO’s noise floor com-

prised the dominant source of the noise figure of the ONN

link. The NEQB-ONN bandwidth correlation in combination

with the NEQB-NN accuracy analysis comprised the key for

the effective selection of the inference compute rate per

layer, towards the post-training NN inference speed- and

accuracy-optimization. Targeting at a NEQB ⩾ 1.6 bit, as

extracted from the model, the ONN can operate at the max-

imum available bandwidth of 50 GHz for the computation

of the 1st layer. On the other hand, due to its increased

NEQB requirements and the model derived metrics, the

linear operations of the 2nd layer need to be performed

at 2 Gbaud in order for the classification accuracy to be

retained at high values. During the experimental dynamic-

rate NN inference, our Sipho processor yields indeed the

maximum classification accuracy of 96.6% when having its

1st layer operating at 50 Gbaud, suggesting that a NEQB >

1.6 was achieved even in the experimental domain. At the

same time, an accuracy degradation of 3.3% was observed

when the linear operations of the 2nd layer are experimen-

tally executed at 2 Gbaud. This deviation from the theo-

retically predicted value becomes even more pronounced

as the compute rate increases, with an 86.4% experimental

accuracy observed at 16 Gbaud instead of the theoretically

expected 89% and a 68.6% experimental accuracy instead

of 79% for the 50 Gbaud operational regime. These devia-

tions probably originate by the assumption for the exclu-

sive presence of non-deterministic noise sources in our

model, with all noise sources simulated as Additive White

Gaussian Noise (AWGN). Yet, as the compute rate increases

and approaches the available bandwidth of the deployed

Sipho processor, the contribution of the deterministic noise

sources is enhanced, as thismainly owes to the limited band-

width of the photonic and the electronic components. The

classification accuracy-NEQB-ONN bandwidth divergence

between the theoretical projections and the experimental

performance can also be clearly illustrated in Figure 6(a)

and (b), respectively, via the red, orange, and yellow star and

rectangle scatters that correspond to the 2, 16, and 50 GHz

values, respectively. The dynamic-rate NN inference has

also significant benefits in its overall execution time. Given

that 40 and 30 MAC operations need to be implemented

in the 1st and 2nd layer of the IRIS dataset, respectively,

we can conclude that the execution time is decreased by

∼55% when the dynamic-rate NN inference is employed

over the conventional fixed-rate NN inference, when the

latter is performed in the maximum compute rate that is

capable of achieving the same accuracy target values as the

dynamic-precision scheme, i.e., 2 Gbaud. Finally, Figure 7

provides a pictorial representation of the samples classifica-

tion via the confusion matrices derived from the execution

of the IRIS dataset. Initially, the total samples of this dataset

were 30, which comprises a rather poor statistical inter-

pretation towards benchmarking our photonic processor.

For this reason, we reused the original samples 15 times

during the inference process and we calculated the classifi-

cation accuracy considering 450 samples in total. Figure 7(a)

depicts the confusion matrix acquired from the software,

where only 15 out of 450 instances were incorrectly classi-

fied that corresponds to a classification accuracy of 96.6%.

Figure 7(b), (c) and (d) illustrate the experimentally derived

confusion matrices at 2, 16 and 50 Gbaud, respectively. As

expected, as the compute rate increases so does the false

instances, leading in this way to accuracy degradation, with

2 Gbaud yielding 93.1%, 16 Gbaud 86.4%, and 50 Gbaud

68.6%.

5 Conclusions

We demonstrated an analog silicon photonic engine and its

capabilities to perform TMM and dynamic precision infer-

ence among neural layers towards latency-optimized DL

accelerators. Initially, we proposed an optical TMMmethod

using TDM with the ultimate target being the execution of
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high dimension NNs via low-radix ONN hardware. Follow-

ing, a detailed theoretical model was developed, associating

the noise sources and the bandwidth of an end-to-end ONN

linkwith the noise equivalent bits. In the scope of speed- and

accuracy-optimizing the inference of NN linear operations,

we trained an NN for the classification of the IRIS dataset

and experimentally applied a dynamic-precision inference

via an integrated SiPho ONN using TMM. After breaking

down each neural layer’s bit precision impact on the over-

all classification accuracy, we extracted the NEQB require-

ments in order for the NN accuracy not to be degraded by

more than 1% and correlated with the ONN’s bandwidth

via the developed model. Thereafter, following a dynamic-

rate inference we experimentally computed the 1st neural

layer at 50 GHz without imposing any degradation at the

software acquired classification accuracy of 96.6%.With the

output layer being more sensitive to the noise the experi-

ment revealed a compute rate-dependent accuracy that was

calculated equal to 68.6%, 86.4% and 93.1% when its lin-

ear operations were computed at 50, 16 and 2 Gbaud/axon,

respectively, closelymatching themodeled-expected values.

Finally, we derive that the execution time benefits by the

employment of the dynamic-precision NN inference, for the

classification of the IRIS dataset, approximate to 55% com-

pared to a fixed-precision scheme, without introducing any

degradation to its accuracy.
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