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ANALOGUE OF DINI-RIEMANN THEOREM FOR
NON-ABSOLUTELY CONVERGENT INTEGRALS

GIUSEPPE RAO - FRANCESCO TULONE

An analogue of classical Dini-Riemann theorem related to non-absolutely
convergent series of real number is proved for the Lebesgue improper integral.

The classical Dini-Riemann theorem (see [3]) states that if a series of
real numbers is non-absolutely convergent, then it can be so rearranged,
that the new series converges to an arbitrary assigned sum. If one want to
obtain an analog of this theorem for the non-absolute convergent integral
it is natural to use a measure preserving mapping instead of permutation.
It is important to note that this analog is not true for some non-absolute
integrals. For example the Kolmogorov A-integral (see [1] and [2]) being
non-absolute is known to be invariant under measure preserving mapping.
So the problem arise for which non-absolute integrals this analogue is
true.

In this paper we prove the analogue of Dini-Riemann theorem for the
Lebesgue improper integral. We do it by presenting the direct construction
of measure preserving mapping that change the value of the integral.
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Theorem 0.1. Let a measurable function f : [0, 1] → R be Lebesgue
integrable on [0, η] for any η, 0 < η < 1 and let limη→1

∫ η
0 exist and

be finite, with

(1) (L)
∫ 1

0
| f |dµ = +∞

Then for any ξ ∈ R there exists a measure preserving mapping ψξ :
[0, 1] → [0, 1] such that f (ψξ (x)) is also L-integrable on [0, η] for any
η , 0 < η < 1 and limη→1

∫ η
0 f (ψξ)dµ = ξ

Proof. Define A+ = {x ∈ [0, 1] : f (x) ≥ 0} and A− = {x ∈ [0, 1] :
f (x) < 0}. It follows from (1) and from existence of improper integral
that

(2) (L)
∫

A+
f dµ = (L)

∫
A−
(− f )dµ = +∞.

Choose a series
∑

cn = ξ , with cn ∈ R such that
∑ |cn| = +∞. We split

the sequence {cn} in two subsequences {cnj } and {cmi } where cnj > 0
and cmi < 0. We construct by induction two increasing sequences {α j}
and {βi} convergent to 1.

We start with defining α1 = inf {α > 0 :
∫
(0,α)∩A+ f dµ = cn1}, then

if αj−1 is already defined we put αj = inf {α > αj−1 :
∫
(αj−1,α)∩A+ f dµ =

cnj }; similarly we define β1 = in f {β > 0 :
∫
(0,β)∩A− f dµ} = cm1 and

assuming that βi−1 are already defined we put βi = inf {β > βi−1 :∫
(βi−1,β)∩A− f dµ = cni }.

We introduce the following numbers: k−( j) = |{i : mi < nj}| and
k+(i) = |{ j : nj < mi}| where |M| denote the cardinality of the set M .

We note that by the previous notation we can get the position of the
element cnj in the sequence {cn}. In fact nj = j +k−( j) and in the same
way for the element cmi we have mi = i + k+(i).

Now let E+ (respectively E−) be the subset of all the points of A+
(or A−) which are of density 1 of A+ (respectively A−). To simplify the
notation we denote E+ ∩ (αj−1, αj) = E+

j and E− ∩ (βi−1, βi) = E−
i . On

the set E+ ∪ E− we define the following function ϕ in this way:

ϕ(x) =
{
µ(E+ ∩ (0, x))+ µ(E− ∩ (0, βk−( j))) if x ∈ E+

j ,

µ(E− ∩ (0, x))+ µ(E+ ∩ (0, αk+( j))) if x ∈ E−
i .

In other words if x ∈ E+
j then ϕ(x) = ∑ j−1

l=1 µ(E
+
j ) + ∑k−( j)

p=1 µ(E−
p )+
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µ(E+
j ∩ (αj−1, x)) and similarly if x ∈ E−

i , then ϕ(x) = ∑i−1
l=1 µ(E

−
i )+∑k+(i)

p=1 µ(E
+
p )+ µ(E−

i ∩ (βi−1, x)).

On each set E+
j (respectively E−

i ) the function ϕ is strictly increasing
because from the definition of density point it follows that if x 1, x2

are different points of E+
j ( or E−

i ) then µ((x1, x2) ∩ E+) > 0 (and
µ((x1, x2) ∩ E−) > 0.

Let t0 = 0,

tnj = lim
x→αj −0,x∈E+ ϕ(x) and tmi = lim

x→βi −0,x∈E− ϕ(x).

Note that tnj = ∑ j
l=1 µ(E

+
l )+ ∑k−( j)

p=1 µ(E−
p ) and tmi = ∑i

r=1 µ(E
−
r ) +∑k+(i)

s=1 µ(E+
s ). Therefore tnj +1 could be either tnj+1 or tm−( j)+1 but in both

cases, because of above notations, the value of tnj +1 is strictly greater
than tnj . The same is true if we compare tmi+1 with tmi .

So the sequence {tn} is strictly increasing with ϕ(E +
j ) ⊂ [tnj −1, tnj ]

and ϕ(E−
i ) ⊂ [tmi−1, tmi ]. So, the images of E+

j for different j as well as
E−

i are non-overlapping. Therefore ϕ , is one-to-one, as a mapping from
E+ ∪ E− onto the set ϕ(E+ ∪ E−).

Now we show that ϕ is measure preserving mapping. Because of
σ -additivity of the measure and because the sets E+

j , j = 1, 2, ...,, E−
i ,

i = 1, 2, ... and also their images are mutually disjoints, it is enough to
prove that ϕ is measure preserving mapping on each E+

j and each E−
i .

We prove it for the first set, the proof for the other one is the same.
We shall use the following known estimate (see [4], ch. VII, theorem

6.5):
If a measurable function F is differentiable on a measurable set A

then

(3) µ(F(A)) ≤
∫

A
|F ′(x)|dµ

We apply (3) for a function ϕ1 defined on x ∈ (αj−1, αj) by

ϕ1(x) =
∫ βk−( j)

0
χ

E− dµ+
∫ x

0
χ

E+ dµ.

We have by the above definition

(4) ϕ1(αj)− ϕ1(αj−1) = µ(E+
j ).
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We note that ϕ1(x) = ϕ(x) for x ∈ E+
j , i.e., ϕ = ϕ1|E+

j
. As ϕ ′

1(x) = 1

if x ∈ E+
j , we get for any set M ⊂ E+

j

(5) µ(ϕ(M)) = µ(ϕ1(M)) ≤
∫

M
χ

E+ dµ = µ(M).

In particular we have

(6) µ(ϕ(E+
j )) ≤ µ(E+

j ).

Let Sj = {x ∈ [αj+1, αj] : ϕ ′
1(x) = 0} and

Pj = {x ∈ [αj+1, αj] : 0 < ϕ ′
1(x) < 1 or ϕ ′

1(x) does not exists}.
The Lebesgue density theorem implies that

µ(Sj) = µ([αj+1, αj] \ E+
j ) and µ(Pj) = 0

Applying (3) to the function ϕ1 and the set Sj we get

(7) µ(ϕ1(Sj)) = 0.

The function ϕ1 being the indefinite Lebesgue integral is absolutely
continuous and so has Lusin (N)-property hence

(8) µ(ϕ1(Pj)) = 0.

Now combining the (6), (7) and (9) we obtain

(9) µ(ϕ1([αj+1, αj])) ≤ µ(ϕ1(E
+
j ))+ µ(ϕ1(Pj))+ µ(ϕ1(Sj)) =

= µ(ϕ(E+
j )) ≤ µ(E+

j )

The function ϕ1 is clearly monotonic and continuous on (α j−1, αj), so
µ(ϕ1(αj−1, αj)) = ϕ1(αj) − ϕ1(αj−1). Combining this with (4) and (9)
we get

µ(E+
j ) ≤ µ(ϕ(E+

j )) ≤ µ(E+
j ).

Therefore we finally obtain

(10) µ(ϕ(E+
j )) = µ(E+

j ).

To get the same equality for any M ⊂ E+ we rewrite (5) for E+
j \ M

obtaining µ(ϕ(E+
j \ M)) ≤ µ(E+

j \ M). Comparing this with (5) and (10)
we get

µ(ϕ(M)) = µ(ϕ(E+
j ))−µ(ϕ(E+

j \ M)) ≥ µ(E+
j )−µ(E+

j \ M) = µ(M).
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So we have proved that µ(ϕ(M)) = µ(M) for any M ⊂ E +
j and as we

have observed above, this implies that ϕ is measure preserving mapping
on E+ ∪ E−.

In this way we obtain that ϕ(E + ∪ E−) is a set of full measure on
[0, 1], so the inverse function ϕ−1 is defined almost everywhere on [0, 1].
Using notation for tn we also have µ(ϕ(E+

j )) = µ(E+
j ) = tnj − tnj −1 and

µ(ϕ(E−
i )) = µ(E−

i ) = tmi − tmi −1.
We show now that ϕ−1 can be take as ψξ we are looking for.
The function f (ϕ−1(y)) is defined almost everywhere on [0, 1]. As

the Lebesgue integral is invariant under measure preserving mapping we
get ∫ tnj

tnj −1

f (ϕ−1(y))dµ =
∫
ϕ(E+

j )

f (ϕ−1(y))dµ =
∫

E+
j

f dµ =

=
∫
(αj−1,αj )∪A+

f dµ = cnj

and ∫ tmi

tmi −1
f (ϕ−1(y))dµ =

∫
ϕ(E−

i )

f (ϕ−1(y))dµ =
∫

E−
i

f dµ =

=
∫
(βi−1,βi )∪A−

f dµ = cmi

Therefore we get
∫ tn

0 f (ϕ−1(y))dµ = ∑n
k=1 cn and so having in mind

that
∑+∞

n=1 cn = ξ we obtain

lim
n−→∞

∫ tn

0
f (ϕ−1(y))dµ = lim

n−→∞

+∞∑
n=1

cn = ξ.

Considering now any t , there exists n such that tn−1 < t < tn and
the interval (tn−1, tn) is the image of either E+

j or E−
i , up to a set of

measure zero. So the value of
∫ t

0 f (ϕ−1(y))dµ is between the values∫ tn−1
0 f (ϕ−1(y))dµ and

∫ tn
0 f (ϕ−1(y))dµ, and we conclude

lim
n−→∞

∫ t

0
f (ϕ−1(y))dµ = ξ

completing the proof. �
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