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Analog of selfduality in dimension nine

By Anna Fino at Turin and Paweł Nurowski at Warsaw

Abstract. We introduce a type of Riemannian geometry in nine dimensions, which can

be viewed as the counterpart of selfduality in four dimensions. This geometry is related to a

9-dimensional irreducible representation of SO.3/ � SO.3/ and it turns out to be defined by

a differential 4-form. Structures admitting a metric connection with totally antisymmetric tor-

sion and preserving the 4-form are studied in detail, producing locally homogeneous examples

which can be viewed as analogs of self-dual 4-manifolds in dimension nine.

1. Introduction

The special feature of four dimensions is that the rotation group SO.4/ is not simple but

it is locally isomorphic to SU.2/ � SU.2/, since so.4/ D su.2/L ˚ su.2/R.

Given an oriented 4-dimensional Riemannian manifold .M 4; g/, the Hodge-star-operator

� W ƒ2 ! ƒ2 satisfies �2 D id and the bundle of 2-forms ƒ2 splits as

(1.1) ƒ2 D ƒ2
C ˚ƒ2

�;

where ƒ2
C is the space of self-dual forms and ƒ2

� is the space of anti-self-dual forms.

The Riemann curvature tensor defines a self-adjoint transformation R W ƒ2 ! ƒ2 which

can be written, with respect to the decomposition (1.1), as the block matrix

R D
 

A B

B� C

!

;

where B 2 Hom.ƒ2
�; ƒ

2
C/ and A 2 Endƒ2

C, C 2 Endƒ2
� are self-adjoint.

This decomposition of R gives the complete description of the Riemannian curvature

tensor into irreducible components obtained in [21]:

�

trA;B;A � 1
3

trA;C � 1
3

trC
�

;
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where trA D trC is the Ricci scalar, B is the traceless Ricci tensor, and the last two compo-

nents WC D A � 1
3

trA and W� D C � 1
3

trC , together give the conformally invariant Weyl

tensor W D WC C W�. We recall from [4] that g is Einstein if and only if B D 0 and g is

self-dual if and only if W� D 0.

In terms of the Lie algebra valued 1-form
LC

� of the Levi-Civita connection and of its

curvature 2-form
LC

� we have the decompositions

LC

� D
C

� C
�

� and
LC

� D
C

�C
�

�;

where
C

� and
C

� are su.2/L-valued, and
�

� and
�

� are su.2/R-valued.

Then the condition for the Riemannian metric g to be Einstein and self-dual is equivalent

to
�

� D 0.

A natural problem is to study a geometry in higher dimensions, which can be viewed as

the counterpart of selfduality in four dimensions. The Lie group SO.n/ for n � 5 is simple and

there is no splitting of so.n/, so an idea is to try with a Lie group of the formH �H in SO.n/.

In this paper we will consider the case of SO.3/ � SO.3/ � SO.9/. To this aim we need

an irreducible 9-dimensional representation of SO.3/� SO.3/, which turns out to be related to

a 9-dimensional irreducible representation � of the Lie group SL.2;R/�SL.2;R/. Perhaps for

the first time the representation � was used by G. Peano [20] in his extension of the classical

invariant theory to the action of the Cartesian product SL.2;R/ � SL.2;R/ on the Cartesian

product R
2 � R

2. Similarly to the classical invariant theory [19, Chapter 10, p. 242], Peano in

[20] defines irreducible representations of SL.2;R/�SL.2;R/ group, by considering its action

on homogeneous polynomials in four variables .�1; �2;  1;  2/ D . E�; E / 2 R
2 � R

2.

Given a defining action of SL.2;R/ on R
2, .h; E�/ ! h E�, the irreducible action of

SL.2;R/ � SL.2;R/ on R
mC1 � R

�C1 is defined as follows.

Let al�, l D 0; : : : ; m, � D 0; : : : ; �, be coordinates in R
mC1 � R

�C1. They define a

homogeneous polynomial

(1.2) w. E�; E / D
m
X

lD0

�
X

�D0

al�

 

m

l

! 

�

�

!

�m�l
1 �l

2 
���
1  �

2 :

Now given .hL; hR/ 2 SL.2;R/ � SL.2;R/, we define a
.hL;hR/

l�
2 R

mC1 � R
�C1 via

m
X

lD0

�
X

�D0

a
.hL;hR/

l�

 

m

l

! 

�

�

!

�m�l
1 �l

2 
���
1  �

2 D w.hL
E�; hR

E /:

It follows that the map

SL.2;R/ � SL.2;R/ � R
.mC1/.�C1/ 3 .hL; hR; al�/ ! .a

.hL;hR/

l�
/ 2 R

.mC1/.�C1/

is an action of SL.2;R/�SL.2;R/ on R
.mC1/.�C1/, and therefore it defines an .mC1/.�C1/-

dimensional representation � of this group by �.hL; hR/al� D a
.hL;hR/

l�
.

For each value of .m;�/ this representation is irreducible. In the paper we are interested

in the case .m;�/ D .2; 2/. In such case the polynomial w reads

w. E�; E / D a00�
2
1 

2
1 C 2a10�1�2 

2
1 C a20�

2
2 

2
1 C 2a01�

2
1 1 2(1.3)

C 4a11�1�2 1 2 C 2a21�
2
2 1 2 C a02�

2
1 

2
2

C 2a12�1�2 
2
2 C a22�

2
2 

2
2 :
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The 9-dimensional space R
9 consisting of vectors

Ex D .x0; x1; x2; x3; x4; x5; x6; x7; x8/ D .a00; a10; a20; a01; a11; a21; a02; a12; a22/;

is equipped with the irreducible representation � of SL.2;R/ � SL.2;R/. This representation

induces the action of SL.2;R/�SL.2;R/ on homogeneous polynomials in variables xi . Peano

showed that the lowest order invariant polynomials under this action are

g D
X

i;j

gijxixj D 2
�

x0x8 C x2x6 � 2x1x7 � 2x3x5 C 2x2
4

�

;(1.4)

‡ D
X

i;j;k

‡ijkxixjxk(1.5)

D 24
�

x0x4x8 � x0x5x7 � x1x3x8 C x1x5x6 C x2x3x7 � x2x4x6

�

:

They equip R
9 with a metric gij of signature .4; 5/ and a totally symmetric third rank

tensor ‡ijk , which turns out to be traceless, gij‡ijk D 0.

The common stabilizer of the two tensors g and‡ , defined above, is SL.2;R/�SL.2;R/

in the 9-dimensional irreducible representation � of Peano.

This is very similar to the situation in R
5, where we have a pair of tensors .gij ; ‡ijk/

which reduces the GL.5;R/ group to the irreducible SO.3/ in dimension five [2,5,8]. The only

difference with the 5-dimensional case considered in [5] is that there the metric gij is of purely

Riemannian signature1); see also [13, 17, 18].

The Riemannian version of tensors associated with Peano biquadrics may be obtained by

making the following formal substitutions in (1.4)–(1.5):

x0 D y1 C iy2; x8 D y1 � iy2; x2 D y3 C iy4;

x6 D y3 � iy4; x1 D 1p
2
.y5 C iy6/; x7 D � 1p

2
.y5 � iy6/;

x3 D 1p
2
.y7 C iy8/; x5 D � 1p

2
.y7 � iy8/; x4 D 1p

2
y9:

In these formulae, the coefficients y�, � D 1; : : : ; 9, are real, and i is the imaginary unit. With

these substitutions (1.4)–(1.5) become:

g D
X

i;j

gijyiyj D 2
�

y2
1 C y2

2 C y2
3 C y2

4 C y2
5 C y2

6 C y2
7 C y2

8 C y2
9

�

;(1.6)

‡ D
X

i;j;k

‡ijkyiyjyk(1.7)

D 12
�

�2y1y5y7 � 2y3y5y7 � 2y2y6y7 � 2y4y6y7 � 2y2y5y8 C 2y4y5y8

C 2y1y6y8 � 2y3y6y8 C
p
2y2

1y9 C
p
2y2

2y9 �
p
2y2

3y9 �
p
2y2

4y9

�

:

This equips R
9 parametrized by y�, � D 1; 2; : : : ; 9, with a pair of totally symmetric tensors

.gij ; ‡ijk/, in which gij is now a Riemannian metric.

1) This indicates that the geometry associated with tensors g and ‡ as above can be related to the geometry

of a certain type of systems of differential equations of finite type [12,14]. Actually, the biquadrics (1.3) are related

to the general solution of the finite type system zxxx D 0 and zyyy D 0 of PDEs on the plane for the unknown

z D z.x; y/. We expect that the geometry associated with g and‡ is the geometry of generalizations of this system

[9].
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In Section 2 we obtain a better realization of .R9; g; ‡/ by using the identification of R
9

with a space M3�3.R/ of 3 � 3 matrices with real coefficients. This enables us to show that

SO.3/ � SO.3/ is a stabilizer of a certain 4-form !. In Section 3 irreducible representations

of SO.3/ � SO.3/ are studied in detail. Following the approach presented in [5], in Section 4

we introduce the irreducible SO.3/ � SO.3/ geometry in dimension nine as the geometry of

9-dimensional manifolds M 9 equipped either with a pair of totally symmetric tensors .g; ‡/

as in (1.6)–(1.7) or with the differential 4-form !. In Section 5 we determine the conditions for

‡ which will guarantee that .M 9; g; ‡; !/ admits a unique metric connection � , with values

in the symmetry algebra .so.3/L ˚ so.3/R/ of .g; ‡/ and with totally antisymmetric torsion

[1,3,6,10,16]. This .so.3/L ˚so.3/R/-connection � , also called the characteristic connection,

naturally splits into

� D
C

� C
�

�; with
C

� 2 so.3/L ˝ R
9 and

�

� 2 so.3/R ˝ R
9.

Because so.3/L commutes with so.3/R, this split defines two independent so.3/-valued con-

nections
C

� and
�

� . So an irreducible SO.3/� SO.3/ geometry .M 9; g; ‡; !/ equipped with an

.so.3/L ˚ so.3/R/ connection � can be Einstein in several meanings, by considering not only

the Levi-Civita connection but also the connections � ,
C

� and
�

� . In the last section we study

irreducible SO.3/ � SO.3/ geometries .M 9; g; ‡; !/ admitting a characteristic connection �

with ‘special’ torsion T . In particular, we provide locally homogeneous (non-Riemannian sym-

metric) examples for which T ¤ 0,
C

� has vanishing curvature and
�

� is Einstein and not flat.

These examples can be viewed as analogs of self-dual structures in dimension four. It would

be very interesting to find examples of such structures which are not locally homogeneous. It

is an open question whether such examples are possible.

Acknowledgement. We would like to thank Robert Bryant, Antonio Di Scala, Boris

Doubrov, Mike Eastwood, Katja Sagerschnig and Simon Salamon for useful comments and

suggestions.

2. Invariant SO.3/ � SO.3/ tensors

We identify the 9-dimensional real vector space R
9 with a space M3�3.R/ of 3 � 3

matrices with real coefficients, via the map � W R
9 ! M3�3.R/, defined by

(2.1) R
9 3 A D ai

ei 7! �.A/ D

0

B

@

a1 a2 a3

a4 a5 a6

a7 a8 a9

1

C

A
2 M3�3.R/:

This map is obviously invertible, so we also have the inverse ��1 W M3�3.R/ ! R
9.

The unique irreducible 9-dimensional representation � of the group G D SO.3/� SO.3/

in R
9 is then defined as follows.

Let h D .hL; hR/ be the most general element of G, i.e., let hL and hR be two arbitrary

elements of SO.3/ in the standard representation of 3� 3 real matrices. Then, for every vector

A from R
9, we have

(2.2) �.h/A D ��1
�

hL�.A/h
�1
R

�

:
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In the rest of the article we adopt the convention that the symbol G is reserved to denote

the group SO.3/ � SO.3/ in the irreducible 9-dimensional representation defined above, and

that g denotes its Lie algebra, g D so.3/ � so.3/.

Consider now � D .�1; �2; : : : ; �9/ with components � i being covectors in R
9. This

means that � is a vector-valued 1-form, � 2 R
9 ˝ .R9/�. We identify it with the matrix-valued

1-form �.�/ 2 M3�3..R
9/�/.

The group G acts on forms � via � 7! � 0 D �.h/� . Its action is then extended to all

tensors T of the form

T D Ti1i2:::ir
� i1 ˝ � i2 ˝ � � � ˝ � ir

via T 7! T 0 D Ti1i2:::ir
� 0i1 ˝ � 0i2 ˝ � � � ˝ � 0ir .

We say that the tensor T is G-invariant iff T 0 D T .

An example of a G-invariant tensor is obtained by considering the determinant

det.�.A// D 1
6
‡ijka

iajak

and its corresponding symmetric tensor

(2.3) ‡ WD 1
6
‡ijk�

i ˇ �j ˇ �k :

This is obviously G-invariant by the properties of the determinant, and by the fact that

det.h/ D 1, for every element of SO.3/.

Thus we have at least one G-invariant tensor ‡ .

To create others we note the G-invariance of the expressions

(2.4) Tr.�.�/ˇ �.�/T /; Tr.�.�/ ^ �.�/T /; Tr.�.�/˝ �.�/T /:

Here, the product sign under the trace is considered as the usual row-by-columns product of

3�3matrices, but with the product between the matrix elements in each sum being the respec-

tive tensor products ˇ, ^ and ˝. The G-invariance of these three expressions is an immediate

consequence of the defining property of the elements of SO.3/, namely hT h D hhT D id.

Having observed this, we now see that any function F , multilinear in expressions (2.4), also

defines a G-invariant tensor.

This enables us to define a new SO.3/ � SO.3/-invariant tensor:

(2.5) g D Tr.�.�/ˇ �.�/T / D gij �
i�j :

This tensor is symmetric, rank
�

0
2

�

and non-degenerate. It defines a Riemannian metric g on

R
9.

Another set of G-invariant tensors is given by the 2k-forms

(2.6) Tr
�

�.�/ ^ �.�/T ^ �.�/ ^ �.�/T ^ : : : ^ �.�/ ^ �.�/T
�

:

One would expect that these identically vanish, but surprisingly, we have the following propo-

sition.

Proposition 2.1. The 4-form

(2.7) ! D 1
4

Tr
�

�.�/ ^ �.�/T ^ �.�/ ^ �.�/T
�

D 1
4Š
!ijkl�

i ^ �j ^ �k ^ � l

does not vanish, ! ¤ 0. In the remaining cases, when k D 1; 3; 4, the forms (2.6) are identi-

cally equal to zero.
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We have the following formulae for the three G-invariant objects defined above:

‡ D ��3�5�7 C �2�6�7 C �3�4�8 � �1�6�8 � �2�4�9 C �1�5�9;(2.8)

g D .�1/2 C .�2/2 C .�3/2 C .�4/2 C .�5/2 C .�6/2 C .�7/2(2.9)

C .�8/2 C .�9/2;

! D �1 ^ �2 ^ �4 ^ �5 C �1 ^ �2 ^ �7 ^ �8 C �1 ^ �3 ^ �4 ^ �6(2.10)

C �1 ^ �3 ^ �7 ^ �9 C �2 ^ �3 ^ �5 ^ �6 C �2 ^ �3 ^ �8 ^ �9

C �4 ^ �5 ^ �7 ^ �8 C �4 ^ �6 ^ �7 ^ �9 C �5 ^ �6 ^ �8 ^ �9:

Here, to simplify the notation, we abbreviated expressions like �3 ˇ �5 ˇ �7 or �1 ˇ �1 to

�3�5�7 and .�1/2, respectively.

Proposition 2.2. (1) The simultaneous stabilizer in GL.9;R/ of the tensors g and

‡ defined respectively in (2.3) and (2.5) is G D SO.3/ � SO.3/ in the irreducible

9-dimensional representation �.

(2) The stabilizer in GL.9;R/ of the 4-form ! defined in (2.7) is also G D SO.3/ � SO.3/

in the irreducible 9-dimensional representation �.

Proof. We know from the considerations preceding the proposition that the stabilizers

contain G. To show that they are actually equal to G we do as follows:

A stabilizer G0 of g and ‡ consists of those elements h in GL.9; R/ for which

(2.11) g.hX; hY / D g.X; Y / and ‡.hX; hY; hZ/ D ‡.X; Y;Z/:

We find the Lie algebra of G0. Taking h in the form h D exp.sX/ and taking d
ds jsD0

of the

equations (2.11), we see that the matrices X D .X i
j / representing the elements of the Lie

algebra g0 of G0 must satisfy

(2.12) gljX
l
i C gilX

l
j D 0

and

(2.13) ‡ljkX
l
i C ‡ilkX

l
j C ‡ijlX

l
k D 0:

The first of the above equations tells that the matrices X must be antisymmetric, i.e., it reduces

81 components of a matrix X to 36. The second equation gives another 30 independent con-

ditions restricting the number of free components of X to 6. Explicitly the matrix X solving

(2.12)–(2.13) is of the form

(2.14) X D X1e1 CX2e2 CX3e3 CX10

e10 CX20

e20 CX30

e30 ;

where

e1 D

0

B

B

B

@

0 0 0 �1 0 0 0 0 0
0 0 0 0 �1 0 0 0 0
0 0 0 0 0 �1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

C

C

C

A

; e10 D

0

B

B

B

@

0 �1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 �1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

1

C

C

C

A

;(2.15)
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e2 D

0

B

B

B

@

0 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

1

C

C

C

A

; e20 D

0

B

B

B

@

0 0 �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

1

C

C

C

A

;(2.16)

e3 D

0

B

B

B

@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 �1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

1

C

C

C

A

; e30 D

0

B

B

B

@

0 0 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 �1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 1 0

1

C

C

C

A

:(2.17)

It is easy to check that the matrices e satisfy the following commutation relations: Œe1; e2� D e3,

Œe3; e1� D e2, Œe2; e3� D e1, Œe10 ; e20 � D e30 , Œe30 ; e10 � D e20 , Œe20 ; e30 � D e10 , with all the other

commutators being zero modulo the antisymmetry. Thus the system .eA; eA0/, A D 1; 2; 3,

spans the Lie algebra so.3/˚ so.3/, confirming that the Lie algebra g0 of the stabilizer G0 of

tensors (2.3) and (2.5) is g0 D so.3/˚ so.3/. In an analogous way we find the Lie algebra g00

of the stabilizer G00 of !. This stabilizer consists of those elements h in GL.9;R/ for which

(2.18) !.hX; hY; hZ/ D !.X; Y;Z/:

Taking h in the form h D exp.sX/ and taking d
ds jsD0

of the equations (2.18), we see that the

matrices X D .X i
j / representing the elements of the Lie algebra g00 of G00 must satisfy

(2.19) !ljkmX
l
i C !ilkmX

l
j C !ijlmX

l
k C !ijklX

l
m D 0:

A short algebra shows that this imposes 75 independent conditions on the 81 components of

X , and that the most general solution to this equation is given by (2.14) with the generators

.eA; eA0/ as in (2.15)–(2.17). Thus g0 D g00 D so.3/˚ so.3/ WD g.

As a consequence G0 D G00 D SO.3/ � SO.3/, since so.3/ ˚ so.3/ is a maximal Lie

subalgebra of so.9/.

Remark 2.3. Note that the form ! alone is enough to reduce GL.9;R/ to G. One does

not need the metric g for this reduction! On the other hand, the tensor ‡ alone is not enough to

reduce the GL.9;R/ to G. The equation (2.13) imposes only 65 independent conditions on the

matrixX . Thus it reduces gl.9;R/ to a Lie algebra of dimension 16. Since 16 is the dimension

of sl.3;R/ ˚ sl.3;R/, and ‡ is clearly SL.3;R/ � SL.3;R/-invariant, the stabilizer of the

tensor ‡ alone is SL.3;R/ � SL.3;R/. To reduce it further to so.3/ ˚ so.3/ one needs to

preserve g. If in addition to ‡ we preserve g we get, via the equation (2.12), the remaining 10

conditions.

Remark 2.4. For the geometric relevance of the form ! see Remark 4.5 suggested by

Robert Bryant [7], see also [15] for the details.

Remark 2.5. We remark that in addition to the 4-form ! we have also the 5-form �!
(Hodge-dual of !) which is G-invariant. One can say that given only ! in R

9 we do not

have any metric structure on it. But ! defines the reduction of the Lie algebra of GL.9;R/ to
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g D so.3/� so.3/. In particular it defines the explicit representation of g given by (2.14) with

the explicit form of the generators .eA; eA0/ given by (2.15)–(2.17). Thus, given ! we have

explicitly X as in (2.14).

Now we define the metric gij as a
�

0
2

�

-tensor such that (2.12) holds. It is a matter of

checking that given X as in (2.14) with .eA; eA0/ as in (2.15)–(2.17) the only metric gij sat-

isfying (2.12) (miraculously!) is gij D const �ıij . Thus the 4-form ! defines the metric g

up to a scale, and this in turn defines the unique (up to a scale) 5-form �!, being its standard

Hodge-star with respect to the metric g.

Another way of defining the 5-form �!, which provides the explicit relation between

.g; ‡/ and !, is given by Proposition 2.6 below. To formulate it we consider a coframe � i

and the corresponding components ‡ijk of the tensor ‡ as in (2.3). Using them we define a

.9 � 9/-matrix-valued 1-form ‡.�/ D .‡.�/ij / with matrix elements ‡.�/ij D gil‡ljk�
k .

Here .gij / is the matrix inverse of .gij /, i.e., gikgkj D gjkg
ki D ıi

j . Having the matrix

‡.�/, we consider traces of the skew symmetric powers of it,

Tr.‡.�/^k/ D Tr
�

‡.�/ ^ ‡.�/ ^ : : : ^ ‡.�/
�

;

where again the expressions like ‡.�/ ^ ‡.�/ denote the usual row-by-columns multiplica-

tion of 9 � 9 matrices, with the multiplication between the matrix elements being the wedge

product ^.

Proposition 2.6. If k ¤ 5 and k 2 ¹1; 2; : : : ; 9º, then Tr.‡.�/^k/ D 0.

If k D 5, then the 5-form Tr.‡.�/^5/ does not vanish,

Tr.‡.�/^5/ D Tr
�

‡.�/ ^ ‡.�/ ^ ‡.�/ ^ ‡.�/ ^ ‡.�/
�

¤ 0:

Up to a scale this form is equal to the G-invariant 5-form �!. In turn, the relation between the

form ! and tensors .g; ‡/ is given by

! D � Tr
�

‡.�/ ^ ‡.�/ ^ ‡.�/ ^ ‡.�/ ^ ‡.�/
�

:

We proved this proposition by a brute force, using (2.8)–(2.10), and calculating the ex-

pression of Tr.‡.�/^k/ for each value of k D 1; 2; : : : ; 9. It would be interesting to get a ‘pure

thought’ proof of it.

Remark 2.7. The situation with G-invariant totally antisymmetric p-forms is clear:

there are only (up to a scale) one 0- and one 9-form (a constant and its Hodge dual), and there

are only (up to a scale) one 4- and one 5-form (the 4-form ! and its Hodge dual). All the other

G-invariant p-forms are equal to zero.

Remark 2.8. The situation with G-invariant totally symmetric p-forms is more com-

plex because of the infinite dimension of
L1

kD0

Jk
R

9: up to a scale there is only one totally

symmetric G-invariant 0-form; totally symmetric G-invariant 1-forms are all equal to zero;

there is only one totally symmetric G-invariant 2-form (the metric g), and only one totally

symmetric G-invariant 3-form (the tensor ‡ ). Continuing this one gets that, in particular,



Fino and Nurowski, Analog of selfduality in dimension nine 75

there is only a 2-real-parameter family of totally symmetric G-invariant 4-forms: the family is

spanned by g.ijgkl/ and by a tensor „ijkl D „.ijkl/, which in our coframe � is expressed by

„ D 1
24
„ijkl�

i�j �k� l

D 2.�1/4 C 4.�1/2.�2/2 C 2.�2/4 C 4.�1/2.�3/2 C 4.�2/2.�3/2 C 2.�3/4

C 4.�1/2.�4/2 � 7.�2/2.�4/2 � 7.�3/2.�4/2 C 2.�4/4 C 22�1�2�4�5

� 7.�1/2.�5/2 C 4.�2/2.�5/2 � 7.�3/2.�5/2 C 4.�4/2.�5/2 C 2.�5/4

C 22�1�3�4�6 C 22�2�3�5�6 � 7.�1/2.�6/2 � 7.�2/2.�6/2 C 4.�3/2.�6/2

C 4.�4/2.�6/2 C 4.�5/2.�6/2 C 2.�6/4 C 4.�1/2.�7/2 � 7.�2/2.�7/2

� 7.�3/2.�7/2 C 4.�4/2.�7/2 � 7.�5/2.�7/2 � 7.�6/2.�7/2 C 2.�7/4

C 22�1�2�7�8 C 22�4�5�7�8 � 7.�1/2.�8/2 C 4.�2/2.�8/2

� 7.�3/2.�8/2 � 7.�4/2.�8/2 C 4.�5/2.�8/2 � 7.�6/2.�8/2 C 4.�7/2.�8/2

C 2.�8/4 C 22�1�3�7�9 C 22�4�6�7�9 C 22�2�3�8�9 C 22�5�6�8�9

� 7.�1/2.�9/2 � 7.�2/2.�9/2 C 4.�3/2.�9/2 � 7.�4/2.�9/2 � 7.�5/2.�9/2

C 4.�6/2.�9/2 C 4.�7/2.�9/2 C 4.�8/2.�9/2 C 2.�9/4:

The G-invariant tensor „ijkl defined above may be characterized as the unique (up to a scale)

G-invariant totally symmetric
�

0
4

�

tensor which has vanishing trace, gij„ijkl D 0.

3. Irreducible representations of SO.3/ � SO.3/

As it is well known all finite dimensional real irreducible representations of SO.3/ have

dimensions dk D 2k C 1, k D 0; 1; 2; 3; : : : , and are enumerated by the weight vectors Œ2k�.

The representations with the weight vectors Œm� D Œ2k� and Œ�� D Œ2l� are equivalent2) iff

k D l . We denote the vector spaces of these representations by VŒ2k�. Consequently, all

pairwise inequivalent finite dimensional real irreducible representations of SO.3/ � SO.3/ are

given by tensor products

VŒ2k� ˝ VŒ2l� WD VŒ2k;2l�; with k; l D 0; 1; 2; 3; : : : ;

and have the respective dimensions dŒ2k;2l� D .2k C 1/.2l C 1/.

In particular, for each number dŒ2k;2l�, with k ¤ l , there are two non-equivalent ir-

reducible representations of SO.3/ � SO.3/ with the respective carrier spaces VŒ2k;2l� and

VŒ2l;2k�.

In the following we will need decompositions of various tensor products of spacesVŒ2k;2l�

into irreducible components with respect to the action of SO.3/�SO.3/. These are summarized

in the next proposition.

2) Note that m and � here are related to the order of the Peano polynomials in (1.2).
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Proposition 3.1.

2̂

VŒ2;2� D VŒ0;2� ˚ VŒ2;0� ˚ VŒ2;4� ˚ VŒ4;2�;

3̂

VŒ2;2� D VŒ0;2� ˚ VŒ2;0� ˚ VŒ0;6� ˚ VŒ6;0� ˚ VŒ2;4� ˚ VŒ4;2� ˚ VŒ2;2� ˚ VŒ4;4�;

4̂

VŒ2;2� D VŒ0;0� ˚ VŒ0;4� ˚ VŒ4;0� ˚ 2VŒ2;2� ˚ VŒ2;4� ˚ VŒ4;2� ˚ VŒ2;6� ˚ VŒ6;2� ˚ VŒ4;4�;

2
K

VŒ2;2� D VŒ0;0� ˚ VŒ0;4� ˚ VŒ4;0� ˚ VŒ2;2� ˚ VŒ4;4�;

3
K

VŒ2;2� D VŒ0;0� ˚ 2VŒ2;2� ˚ VŒ2;4� ˚ VŒ4;2� ˚ VŒ2;6� ˚ VŒ6;2� ˚ VŒ4;4� ˚ VŒ6;6�;

4
K

VŒ2;2� D 2VŒ0;0� ˚ 2VŒ0;4� ˚ 2VŒ4;0� ˚ 2VŒ2;2� ˚ VŒ2;4� ˚ VŒ4;2� ˚ VŒ0;8� ˚ VŒ8;0�

˚ VŒ2;6� ˚ VŒ6;2� ˚ 3VŒ4;4� ˚ VŒ4;6� ˚ VŒ6;4� ˚ VŒ4;8� ˚ VŒ8;4� ˚ VŒ6;6� ˚ VŒ8;8�:

In addition we have the following identifications:

‘left’ so.3/ D VŒ0;2�; ‘right’ so.3/ D VŒ2;0�;

R
9 D VŒ2;2�; so.9/ D

2̂

R
9 D

2̂

VŒ2;2�:

In the following we will conveniently denote the so.3/ Lie algebra corresponding to VŒ0;2� by

so.3/L and the so.3/ Lie algebra corresponding to VŒ2;0� by so.3/R, i.e.,

VŒ0;2� D so.3/L and VŒ2;0� D so.3/R:

Using these identifications and the decompositions from Proposition 3.1, we obtain:

Proposition 3.2.

so.9/˝ R
9 D 2VŒ0;2� ˚ 2VŒ2;0� ˚ VŒ0;4� ˚ VŒ4;0� ˚ VŒ0;6� ˚ VŒ6;0�

˚ 3VŒ2;4� ˚ 3VŒ4;2� ˚ VŒ2;6� ˚ VŒ6;2� ˚ 4VŒ2;2� ˚ 2VŒ4;4�

˚ VŒ4;6� ˚ VŒ6;4�;

so.3/L ˝ R
9 D VŒ2;0� ˚ VŒ2;2� ˚ VŒ2;4�;

so.3/R ˝ R
9 D VŒ0;2� ˚ VŒ2;2� ˚ VŒ4;2�;

�

so.3/L ˚ so.3/R
�

˝ R
9 D VŒ0;2� ˚ VŒ2;0� ˚ 2VŒ2;2� ˚ VŒ2;4� ˚ VŒ4;2�;

so.3/L ˝
2̂

R
9 D VŒ0;0� ˚ VŒ0;2� ˚ VŒ2;6� ˚ VŒ0;4� ˚ VŒ4;0� ˚ VŒ2;4� ˚ VŒ4;2�

˚ 2VŒ2;2� ˚ VŒ4;4�;

so.3/R ˝
2̂

R
9 D VŒ0;0� ˚ VŒ2;0� ˚ VŒ6;2� ˚ VŒ0;4� ˚ VŒ4;0� ˚ VŒ2;4� ˚ VŒ4;2�

˚ 2VŒ2;2� ˚ VŒ4;4�;
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�

so.3/L ˚ so.3/R
�

˝
2̂

R
9 D 2VŒ0;0� ˚ VŒ0;2� ˚ VŒ2;0� ˚ 2VŒ0;4� ˚ 2VŒ4;0�

˚ 2VŒ2;4� ˚ 2VŒ4;2� ˚ VŒ2;6� ˚ VŒ6;2� ˚ 4VŒ2;2� ˚ 2VŒ4;4�:

The proofs of the above propositions can be obtained by the standard representation the-

ory methods using weights. Instead of presenting them we identify various useful components

of the decompositions mentioned in the propositions as eigenspaces of certain SO.3/ � SO.3/

invariant operators.

For example the four irreducible components in the decomposition of
V2

R
9 in Proposi-

tion 3.1 can be distinguished by means of the action of the endomorphism of
N2

R
9 defined by

the structural 4-form !. Indeed the 4-form ! D 1
24
!ijkl�

i ^ �j ^ �k ^ � l , as in (2.8)–(2.10),

defines a linear map ! W N2
R

9 ! N2
R

9 given by

2
O

R
9 3 tij

!7�! !.t/kl D !ij
kl tij 2

2
O

R
9:

Here and in the following, we raise the indices by means of the inverse gij of the metric

g D gij �
i�j given by (2.10). In particular

!ij
kl D gipgjq!pqkl :

The eigenspaces of this endomorphism give the desired decomposition of
V2

R
9. We

have the following proposition.

Proposition 3.3. The 45-dimensional vector space
J2

R
9 is an SO.3/ � SO.3/

invariant subspace in
N2

R
9 which corresponds to the eigenvalue 0 of the operator

! W N2
R

9 ! N2
R

9. The decomposition
V2

R
9 D VŒ2;0� ˚ VŒ0;2� ˚ VŒ2;4� ˚ VŒ4;2� is

given by

VŒ0;2� D
°

2
O

R
9 3 Fij W !.F /ij D �4Fij

±

D so.3/L;

VŒ2;0� D
°

2
O

R
9 3 Fij W !.F /ij D 4Fij

±

D so.3/R;

VŒ2;4� D
°

2
O

R
9 3 Fij W !.F /ij D 2Fij

±

;

VŒ4;2� D
°

2
O

R
9 3 Fij W !.F /ij D �2Fij

±

:

The respective dimensions are

dimVŒ2;0� D dimVŒ0;2� D 3; dimVŒ4;2� D dimVŒ2;4� D 15:

Remark 3.4. Convenient bases for the 2-forms spanning VŒ0;2� and VŒ2;0� are

�A
0 D 1

2
eAij �

i ^ �j ; and �A0

0 D 1
2
eA0ij �

i ^ �j :
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Here eAij and eA0ij are the matrix elements of the bases .eA/ and .eA0/ of so.3/L and so.3/R
as given in (2.15)–(2.17). Explicitly:

(3.1)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��1
0 D �1 ^ �4 C �2 ^ �5 C �3 ^ �6;

��10

0 D �1 ^ �2 C �4 ^ �5 C �7 ^ �8;

��2
0 D �1 ^ �7 C �2 ^ �8 C �3 ^ �9;

��20

0 D �1 ^ �3 C �4 ^ �6 C �7 ^ �9;

��3
0 D �4 ^ �7 C �5 ^ �8 C �6 ^ �9;

��30

0 D �2 ^ �3 C �5 ^ �6 C �8 ^ �9:

Thus we have SpanR.�
1
0 ; �

2
0 ; �

3
0/ D so.3/L and SpanR.�

10

0 ; �
20

0 ; �
30

0 / D so.3/R.

A convenient basis for the space VŒ2;4� is given by

(3.2)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1
0 D �1 ^ �4 � �3 ^ �6; �2

0 D �1 ^ �5 C �2 ^ �4;

�3
0 D �1 ^ �6 C �3 ^ �4; �4

0 D �1 ^ �7 � �3 ^ �9;

�5
0 D �1 ^ �8 C �2 ^ �7; �6

0 D �1 ^ �9 C �3 ^ �7;

�7
0 D �2 ^ �5 � �3 ^ �6; �8

0 D �2 ^ �6 C �3 ^ �5;

�9
0 D �2 ^ �8 � �3 ^ �9; �10

0 D �2 ^ �9 C �3 ^ �8;

�11
0 D �4 ^ �7 � �6 ^ �9; �12

0 D �4 ^ �8 C �5 ^ �7;

�13
0 D �4 ^ �9 C �6 ^ �7; �14

0 D �5 ^ �8 � �6 ^ �9;

�15
0 D �5 ^ �9 C �6 ^ �8:

Similarly, a basis for VŒ4;2� is

(3.3)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�10

0 D �1 ^ �2 � �7 ^ �8; �20

0 D �1 ^ �3 � �7 ^ �9;

�30

0 D �2 ^ �3 � �8 ^ �9; �40

0 D �1 ^ �5 � �2 ^ �4;

�50

0 D �1 ^ �6 � �3 ^ �4; �60

0 D �2 ^ �6 � �3 ^ �5;

�70

0 D �1 ^ �8 � �2 ^ �7; �80

0 D �1 ^ �9 � �3 ^ �7;

�90

0 D �2 ^ �9 � �3 ^ �8; �100

0 D �4 ^ �5 � �7 ^ �8;

�110

0 D �4 ^ �6 � �7 ^ �9; �120

0 D �5 ^ �6 � �8 ^ �9;

�130

0 D �4 ^ �8 � �5 ^ �7; �140

0 D �4 ^ �9 � �6 ^ �7;

�150

0 D �5 ^ �9 � �6 ^ �8:

A partial decomposition of
J2

R
9 can be obtained by means of the Casimir operator

C ij
kl for the tensorial representation ˝2� of the irreducible representation of so.3/L ˚so.3/R

defined in (2.15)–(2.17). To get an explicit formula for the operator C ij
kl we introduce a

collective index � D 1; 2; 3; 4; 5; 6, so that the six vectors .e�/ D .eA; eA0/ are the basis of

the Lie algebra so.3/L ˚ so.3/R. Using this basis one easily calculates the Killing form k for

so.3/L ˚ so.3/R. We have

k.e�; "�/ D k�� D �2ı�� :
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The inverse of the Killing form has components k�� D �1
2
ı�� . Then, modulo the terms

proportional to the identity, the Casimir operator C ij
kl reads

C ij
kl D k��.e�

i
ke�

j
l C e�

i
ke�

j
l/:

Here e�
i
k denotes the matrix element from the i th raw and kth column of the Lie algebra

matrix e� given by (2.15)–(2.17). This defines an endomorphism

C W
2
O

R
9 !

2
O

R
9

given by
2
O

R
9 3 tij

C7�! C.t/kl D C ij
kl tij 2

2
O

R
9:

We have the following proposition.

Proposition 3.5. The Casimir operator C decomposes
N2

R
9 so that

2
O

R
9 D VŒ0;0� ˚ VŒ2;2� ˚ VŒ4;4� ˚W6 ˚W10 ˚W30;

where

VŒ0;0� D
°

2
O

R
9 3 Fij W C.F /ij D �4Fij

±

;

VŒ2;2� D
°

2
O

R
9 3 Fij W C.F /ij D �2Fij

±

;

VŒ4;4� D
°

2
O

R
9 3 Fij W C.F /ij D 2Fij

±

;

W6 D
°

2
O

R
9 3 Fij W C.F /ij D �3Fij

±

D VŒ2;0� ˚ VŒ0;2�;

W30 D
°

2
O

R
9 3 Fij W C.F /ij D 0

±

D VŒ2;4� ˚ VŒ4;2�;

W10 D
°

2
O

R
9 3 Fij W C.F /ij D �Fij

±

:

We further have

2̂

R
9 D W6 ˚W30 and

2
K

R
9 D VŒ0;0� ˚ VŒ2;2� ˚ VŒ4;4� ˚W10:

The dimensions of the carrier spaces W6, W10 and W30 are 6; 10; 30, respectively. The spaces

VŒ0;0�, VŒ2;2� and VŒ4;4� have the respective dimensions 1; 9; 25.

The symmetric representationW10 further decomposes into 5-dimensional SO.3/�SO.3/

irreducible and non-equivalent bits: W10 D VŒ4;0� ˚ VŒ0;4�.
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One can use the Casimir operator C to decompose the higher rank tensors as well. In

particular, the third rank tensors, tijk 2 N3
R

9, can be decomposed using the operator

QC ijk
pqr D C ij

pqı
k
r C C ik

prı
j
q C C jk

qrı
i
p:

This defines an endomorphism QC W N3
R

9 ! N3
R

9 given by

3
O

R
9 3 tijk

QC7�! QC.t/lmn D QC ijk
lmntijk 2

3
O

R
9:

Applying it to
V3

R
9 we get:

Proposition 3.6. The eigendecomposition of
V3

R
9 by the operator QC is given by

3̂

R
9 D Z6 ˚Z9 ˚Z30 ˚Z39;

where

Z6 D
°

3̂

R
9 3 Hijk W QC.H/ijk D �5Hijk

±

D VŒ2;0� ˚ VŒ0;2�;

Z9 D
°

3̂

R
9 3 Hijk W QC.H/ijk D �4Hijk

±

D VŒ2;2�;

Z30 D
°

3̂

R
9 3 Hijk W QC.H/ijk D �2Hijk

±

D VŒ2;4� ˚ VŒ4;2�;

Z39 D
°

3̂

R
9 3 Hijk W QC.H/ijk D 0

±

D VŒ4;4� ˚ VŒ0;6� ˚ VŒ6;0�:

A more refined decomposition of
V3

R
9 is obtained by using the structural 4-form !. It

produces an endomorphism Q! W V3
R

9 ! V3
R

9 given by

3̂

R
9 3 tijk

Q!7�! Q!.t/ijk D 3!lm
Œij tk�lm 2

3̂

R
9:

Proposition 3.7. The eigendecomposition of
V3

R
9 by the operator Q! is given by

3̂

R
9 D VŒ6;0� ˚ VŒ0;6� ˚Z18 ˚Z180 ˚Z34;

where

VŒ0;6� D
°

3̂

R
9 3 Hijk W Q!.H/ijk D �6Hijk

±

;

VŒ6;0� D
°

3̂

R
9 3 Hijk W Q!.H/ijk D 6Hijk

±

;

Z18 D
°

3̂

R
9 3 Hijk W Q!.H/ijk D 4Hijk

±

D VŒ2;4� ˚ VŒ0;2�;
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Z180 D
°

3̂

R
9 3 Hijk W Q!.H/ijk D �4Hijk

±

D VŒ4;2� ˚ VŒ2;0�;

Z34 D
°

3̂

R
9 3 Hijk W Q!.H/ijk D 0

±

D VŒ2;2� ˚ VŒ4;4�:

Using Propositions 3.6 and 3.7, we identify all the irreducible components of the

SO.3/ � SO.3/ decomposition of
V3

R
9, e.g., VŒ2;0� D Z6 \Z180 , VŒ4;4� D Z39 \Z34.

4. Irreducible SO.3/ � SO.3/ geometry in dimension nine

We are now prepared to define the basic object of our studies in this article.

Definition 4.1. The irreducible SO.3/�SO.3/ geometry in dimension nine .M 9; g, ‡/

is a 9-dimensional manifold M 9, equipped with totally symmetric tensor fields .g; ‡/ of the

respective ranks
�

0
2

�

and
�

0
3

�

, which at each point x 2 M 9, reduce the structure group GL.9;R/

of the tangent space TxM to the irreducible submodule .SO.3/�SO.3// � SO.9/ � GL.9;R/.

Alternatively, the irreducible SO.3/ � SO.3/ geometry in dimension nine is a 9-dimen-

sional manifold M 9, equipped with a differential 4-form ! which, at each point x 2 M 9,

reduces the structure group GL.9;R/ of the tangent space TxM to the irreducible submodule

.SO.3/ � SO.3// � SO.9/ � GL.9;R/.

Definition 4.2. Let .M 9; g; ‡/ be an irreducible SO.3/�SO.3/ geometry in dimension

nine. A diffeomorphism � W M 9 ! M 9 such that ��g D g and ��‡ D ‡ is called a

symmetry of .M 9; g; ‡/. An infinitesimal symmetry of .M 9; g; ‡/ is a vector field X on M 9

such that LXg D 0 and LX‡ D 0.

Symmetries of .M 9; g; ‡/ form a Lie group of symmetries, and infinitesimal symmetries

form a Lie algebra of symmetries.

4.1. so.3/L˚so.3/R connection. We want to analyze the properties of the irreducible

SO.3/�SO.3/ geometries in dimension nine by means of an so.3/L ˚so.3/R-valued connec-

tion. Since so.3/L ˚ so.3/R seats naturally in so.9/, such connection is automatically metric.

It also preserves ‡ and !.

For the purpose of this paper it is convenient to think about a connection as a Lie-algebra-

valued 1-form � on M 9. Thus, the 1-form � of the connection we are going to define for

geometries .M 9; g; ‡; !/ has values in g D so.3/L ˚ so.3/R � so.9/, i.e., in the Lie algebra

defined by (2.14)–(2.17).

For further use we need the following notion:

Definition 4.3. Given an irreducible SO.3/�SO.3/ geometry .M 9; g; ‡; !/, a coframe

� D .�1; �2; �3; �4; �5; �6; �7; �8; �9/ on M 9 is called adapted to it iff the structural tensors

g;‡ and ! assume the form (2.8)–(2.10) in it.
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Since the manifold .M 9; g; ‡; !/ is equipped with a Riemannian metric g it carries the

Levi-Civita connection
LC

� of g. This can be split into

(4.1)
LC

� D � C ‘the rest’:

The only requirement that � has values in g is to weak to make the above split unique. In order

to achieve the uniqueness one has to impose some (e.g., algebraic) restrictions on ‘the rest’.

The strongest of such restrictions is that ‘the rest’ � 0. In Section 5 we will provide another

much weaker condition that makes the split (4.1) unique. Here we do some preparatory steps

to this.

Given the geometry .M 9; g; ‡; !/ we use a coframe � adapted to it and write down the

structure equations as

(4.2) d� i C � i
j ^ �j D T i ; d� i

j C � i
k ^ �k

j D Ki
j :

Here the matrices � D .� i
j / have values in the Lie algebra g D so.3/L ˚ so.3/R � so.9/

and therefore can be written as

(4.3) � i
j D 
AeA

i
j C 
A0

eA0
i
j ;

where .
A; 
A0

/ are 1-forms onM 9, and the matrices eA D .eA
i
j / and eA0 D .eA0

i
j / are given

by (2.15)–(2.17).

The vector-valued 2-forms T i D 1
2
T i

jk�
j ^ �k represent the ‘torsion’ of connection � .

The ‘a priori’ so.9/-valued 2-forms Ki
j D 1

2
Ki

jkl�
k ^ � l are actually g-valued. Hence they

can also be written as

Ki
j D �AeA

i
j C �A0

eA0
i
j ;

where

�A D 1
2
�A

ij �
i ^ �j and �A0 D 1

2
�A0

ij �
i ^ �j

are 2-forms on M 9. They describe the ‘curvature’ of the connection � .

We want that the first of the structure equations (4.2), which defines the torsion T of

the so.3/L ˚ so.3/R connection � , be nothing else but a reinterpretation of the ‘zero’-torsion

equation

(4.4) d� i C
LC

�
i
j ^ �j D 0

for the Levi-Civita connection
LC

� . For this we need that

LC

� ijk D �ijk C 1
2
.Tijk � Tj ik � Tkij /;

or, what is the same,

(4.5)
LC

�
i
j D � i

j C 1
2
T i

j � 1
2
.Tj

i
k C Tk

i
j /�

k :

Indeed, inserting (4.5) into (4.4), because of the symmetry of the last two terms in indices ¹jkº,

we get precisely the first of the structure equations (4.2).
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The structure equations (4.2) when written explicitly in terms of .� i ; 
A; 
A0

/ read
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

d�1 D 
1 ^ �4 C 
2 ^ �7 C 
10 ^ �2 C 
20 ^ �3 C T 1;

d�2 D 
1 ^ �5 C 
2 ^ �8 � 
10 ^ �1 C 
30 ^ �3 C T 2;

d�3 D 
1 ^ �6 C 
2 ^ �9 � 
20 ^ �1 � 
30 ^ �2 C T 3;

d�4 D �
1 ^ �1 C 
3 ^ �7 C 
10 ^ �5 C 
20 ^ �6 C T 4;

d�5 D �
1 ^ �2 C 
3 ^ �8 � 
10 ^ �4 C 
30 ^ �6 C T 5;

d�6 D �
1 ^ �3 C 
3 ^ �9 � 
20 ^ �4 � 
30 ^ �5 C T 6;

d�7 D �
2 ^ �1 � 
3 ^ �4 C 
10 ^ �8 C 
20 ^ �9 C T 7;

d�8 D �
2 ^ �2 � 
3 ^ �5 � 
10 ^ �7 C 
30 ^ �9 C T 8;

d�9 D �
2 ^ �3 � 
3 ^ �6 � 
20 ^ �7 � 
30 ^ �8 C T 9;

(4.6)

8

ˆ

ˆ

<

ˆ

ˆ

:

d
1 D �
2 ^ 
3 C �1; d
10 D �
20 ^ 
30 C �10

;

d
2 D �
3 ^ 
1 C �2; d
20 D �
30 ^ 
10 C �20

;

d
3 D �
1 ^ 
2 C �3; d
30 D �
10 ^ 
20 C �30

:

(4.7)

The equations (4.6)–(4.7), together with their integrability conditions implied by d2 � 0, en-

code all the geometric information about the most general irreducible SO.3/�SO.3/ geometry

in dimension nine.

4.2. so.6/ Cartan connection. The standard point of view on the structure equations

(4.2) is that the equations are written just on M 9. This point of view was assumed when we

have introduced (4.6)–(4.7) above.

The less standard point of view is in the spirit of E. Cartan: One considers equations

(4.6)–(4.7) as written on the principal fiber bundle

SO.3/ � SO.3/ ! P ! M 9;

with the structure group G. This is the Cartan bundle for the geometry .M 9; g; ‡; !/. In this

point of view the .9C 3C 3/ D 15 one-forms .� i ; 
A; 
A0

/ are considered to live on P , rather

than on M 9. They are linearly independent at each point of P defining a preferred coframe

there.

The system may be ultimately interpreted as a system for the curvature of an so.6/-

valued Cartan connection on P . This connection is defined in terms of the preferred coframe

.� i ; 
A; 
A0

/ on P as follows. We define a 6 � 6 real antisymmetric matrix

�Cartan D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 �
1 �
2 j �1 �2 �3


1 0 �
3 j �4 �5 �6


2 
3 0 j �7 �8 �9

� � � � � � �
��1 ��4 ��7 j 0 �
10 �
20

��2 ��5 ��8 j 
10

0 �
30

��3 ��6 ��9 j 
20


30

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

of 1-forms, and a 9 � 9 matrix of 2-forms K0 given by K0 D �A
0 eA C �A0

0 eA0 .
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The forms .�A
0 ; �

A0

0 / are the respective basis of so.3/R and so.3/L as defined in Remark

3.4. The matrix �Cartan of 1-forms on P , being antisymmetric, has values in the Lie algebra

so.6/, �Cartan 2 so.6/˝V1
.P /. It defines an so.6/-valued Cartan connection on P . Due to

the equations (4.6)–(4.7) its curvature,

QR D d�Cartan C �Cartan ^ �Cartan;

has the form

QR D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 �R1 �R2 j T 1 T 2 T 3

R1 0 �R3 j T 4 T 5 T 6

R2 R3 0 j T 7 T 8 T 9

� � � � � � �
�T 1 �T 4 �T 7 j 0 �R10 �R20

�T 2 �T 5 �T 8 j R10

0 �R30

�T 3 �T 6 �T 9 j R20

R30

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where

RA D �A � �A
0 ; RA0 D �A0 � �A0

0 ; A;A0 D 1; 2; 3:

Thus the curvature of the so.6/-Cartan connection keeps track of both the curvature K and the

torsion T of the so.3/L ˚ so.3/R connection � . In particular the connection �Cartan is flat

iff T � 0;R � 0, i.e., iff the connection � has vanishing torsion, T � 0, and has constant

positive curvature, K D K0.

4.3. No torsion. It is very easy to find all 9-dimensional irreducible SO.3/ � SO.3/

geometries with vanishing torsion. It follows that the system (4.2), or equivalently (4.6)–(4.7),

with T i � 0, i D 1; 2; : : : ; 9, is so rigid on P that it admits only a 1-parameter family of

solutions. More specifically, the first Bianchi identities, d.d� i / � 0, i D 1; 2; : : : ; 9, applied

to the equations (4.6), with T i � 0, very quickly show that the curvatures �A and �A0

must

be of the form �A D s�A
0 and �A0 D s�A0

0 , where s is a real function on P . Then, the second

Bianchi identities, d.d
A/ � 0 � d.d
A0

/, applied to (4.7) with the �’s as above, show that

ds � 0, i.e., that the function s is constant on P . This proves the following proposition, which

also follows from Berger’s classification.

Proposition 4.4. All irreducible SO.3/� SO.3/ geometries .M 9; g; ‡; !/ with vanish-

ing torsion are locally isometric to one of the symmetric spaces

M 9 D G=.SO.3/ � SO.3//;

where G D SO.6/;SO.3; 3/, or .SO.3/ � SO.3// Ì� R
9.

The Riemannian metric g, the tensor ‡ , and the 4-form ! defining the SO.3/ � SO.3/

structure are defined in terms of the left invariant 1-forms .�1; �2; : : : ; �9/, which on P D G

satisfy equations (4.6)–(4.7) and T i � 0. These forms, via (2.8)–(2.10), define objects g;‡

and ! on P , which descend to a well defined Riemannian metric g, the symmetric tensor ‡

and the 4-form ! on M 9 D G=.SO.3/ � SO.3//. The Levi-Civita connection of the metric g

has Einstein Ricci tensor on M 9,
LC

Ric.g/ D 4sg;
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and has holonomy reduced to SO.3/ � SO.3/. The metric g is flat if and only if s D 0.

Otherwise it is not conformally flat. The Cartan so.6/ connection for these structures has

constant curvature,

QR D .s � 1/

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 ��1
0 ��2

0 j 0 0 0

�1
0 0 ��3

0 j 0 0 0

�2
0 �3

0 0 j 0 0 0

� � � � � � �
0 0 0 j 0 ��10

0 ��20

0

0 0 0 j �10

0 0 ��30

0

0 0 0 j �20

0 �30

0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and is flat if and only if s D 1. The symmetry group of these structures is G D SO.6/ for s > 0,

SO.3; 3/ for s < 0 and .SO.3/ � SO.3// Ì� R
9 for s D 0.

Remark 4.5. The space SO.6/=.SO.3/ � SO.3// appearing in this proposition is just

the Grassmannian Gr.3; 6/ of oriented 3-planes in 6-space and the 4-form ! coincides (up to

a multiple) with the first Pontryagin class of the canonical 3-plane bundle over Gr.3; 6/ (see

[7, 15]) and the 5-form �! is its dual. Indeed, ! is induced by the first Pontryagin class of the

canonical 3-plane bundle over the Grassmannian Gr.3; 7/. In his Ph.D. thesis C. Michael [15]

showed that �! calibrates the special Lagrangian Grassmannian SU.3/=SO.3/ � Gr.3; 6/ and

its congruent submanifolds (and nothing else). Moreover, he classified also the 8-dimensional

submanifolds of Gr.3; 7/ that are calibrated by the dual of the first Pontryagin class of the

canonical 3-plane bundle [11].

4.4. Spin connections. Denote by C9 the real Clifford algebra of the positive definite

quadratic form. C9 is generated by the vectors of R
9 and the relation

v � w C w � v D 2hv;wi; v; w 2 R
9;

holds. The spin representation of the group Spin.9/ is a faithful real representation in the

16-dimensional space �9 of real spinors and it is the unique irreducible representation of the

group Spin.9/ in dimension 16. With respect to this representation the orthonormal vectors

.e1; : : : ; e9/ may be represented by the matrices

e1 D
15
X

kD0

M16�k;kC1; e2 D i

15
X

kD0

.�1/kM16�k;kC1;

e3 D
7
X

kD0

.M15�2k;2kC1 �M16�2k;2kC2/;

e4 D i

7
X

kD0

.�1/k.M15�2k;2kC1 CM16�2k;2kC2/;

e5 D
3
X

kD0

.M13�4k;4kC1 CM14�4k;4kC2 �M15�4k;4kC3 �M16�4k;4kC4/;
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e6 D i

3
X

kD0

.�1/k.M13�4k;4kC1 CM14�4k;4kC2 CM15�4k;4kC3 CM16�4k;4kC4/;

e7 D
3
X

kD0

.M9Ck;kC1 �M13Ck;kC5 CM1Ck;kC9 �M5Ck;kC13/;

e8 D i

7
X

kD0

.M9Ck;kC1 �M1Ck;kC9/; e9 D
7
X

kD0

.MkC1;kC1 �MkC9;kC9/;

where by Mi;j we denote the 16 � 16-matrix having value 1 at its entry .i; j / and value 0 in

all the remaining entries. In particular we have

e
2
i D 1; ei � ej C ej � ei D 0; for all i; j D 1; 2; : : : ; 9:

The double covering homomorphism Spin.9/ ! SO.9/ induces the isomorphism of

Lie algebras spin.9/ ! so.9/. By means of this isomorphism the basis of the Lie algebra

spin.3/L ˚ spin.3/L corresponding to the basis .e1; e2; e3; e
0
1; e

0
2; e

0
3/ of so.3/L ˚ so.3/R is

E1 D �1
2
.e1 � e4 C e2 � e5 C e3 � e6/; E

0
1 D �1

2
.e1 � e2 C e4 � e5 C e6 � e8/;

E2 D �1
2
.e1 � e7 C e2 � e8 C e3 � e9/; E

0
2 D �1

2
.e1 � e3 C e4 � e6 C e7 � e3/;

E3 D �1
2
.e4 � e7 C e5 � e8 C e6 � e9/; E

0
3 D �1

2
.e2 � e3 C e5 � e6 C e8 � e9/:

Thus, in this spinorial 16-dimensional representation, we have

spin.3/L ˚ spin.3/L D Span.E1;E2;E3/˚ Span.E0
1;E

0
2;E

0
3/

� spin.9/ D Span
�

1
2
eiej ; i < j D 1; 2; : : : ; 9

�

:

Now given an so.3/L ˚ so.3/R-valued connection � D 
AeA C 
A0

eA0 as in (4.3), we define

a spin connection

�spin D 
A
EA C 
A0

EA0 2 .spin.3/L ˚ spin.3/R/˝ R
9:

4.5. so.3/L and so.3/R connections. Since every .so.3/L ˚ so.3/R/-connection � ,

as defined in Section 4.1, has values in the direct sum of Lie algebras so.3/L and so.3/R, it

naturally splits into

� D
C

� C
�

�; with
C

� 2 so.3/L ˝ R
9 and

�

� 2 so.3/R ˝ R
9:

Because so.3/L commutes with so.3/R, this split defines two independent so.3/-valued

connections
C

� and
�

� . The two independent curvatures of these connections

C

�
i
j D d

C

�
i
j C

C

�
i
k ^

C

�
k
j D 1

2

C

R
i
jkl�

k ^ � l

and
�

�
i
j D d

�

�
i
j C

�

�
i
k ^

�

�
k
j D 1

2

�

R
i
jkl�

k ^ � l
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are equal to the respective so.3/L and so.3/R parts of the curvature of �:

�i
j D d� i

j C � i
k ^ �k

j D
C

�
i
j C

�

�
i
j :

Moreover, since, via the identifications so.3/L D so.3/L ˚ 0 and so.3/R D 0˚ so.3/R, both

so.3/L and so.3/R are naturally included in so.9/, we can define not only the Ricci tensor of

�: Rij D Rk
ikj , but also the corresponding Ricci tensors of

C

� and
�

�:

C

Rij D
C

R
k
ikj ;

�

Rij D
�

R
k
ikj :

Thus an irreducible SO.3/�SO.3/ geometry .M 9; g; ‡; !/ equipped with a .so.3/L˚so.3/R/

connection � can be Einstein in several meanings:

(1) with respect to the Levi-Civita connection
LC

� , i.e.,
LC

Ricij D �gij I
(2) with respect to the .so.3/L ˚ so.3/R/ connection � , i.e., Rij D �gij I

(3) with respect to the so.3/L connection
C

� , i.e.,
C

Rij D �gij I
(4) with respect to the so.3/R connection

�

� , i.e.,
�

Rij D �gij .

Of course the functions � appearing in the four above formulae do not need to be the

same.

Calculating the Ricci curvature Rij for the ‘no-torsion’ examples from Section 4.3, ob-

viously yields
LC

Ricij D Rij D 4sgij ;

since the connections
LC

� and � coincide. But it follows that in these examples also the connec-

tions
C

� and
�

� are Einstein. Actually we have

C

Rij D
�

Rij D 2sgij

for all the examples in Section 4.3.

Similar considerations as for connections � ,
C

� and
�

� , can be performed for the spin

connection �spin. Here we have

�spin D
C

�spin C
�

�spin;

with
C

� 2 spin.3/L ˝ R
9 and

�

�spin 2 spin.3/R ˝ R
9. Since spin.3/L commutes with

spin.3/R we again have two independent connections
C

�spin and
�

�spin. Since they yield

essentially the same information as
C

� and
�

� we will not comment about them any further.

5. Nearly integrable SO.3/ � SO.3/ geometries

In the previous section we discussed general SO.3/ � SO.3/ geometries in dimension

nine, and general so.3/L ˚ so.3/R connections � , which were obtained from the Levi-Civita

connection
LC

� via the split (4.5). The problem with such connections is that in general they are

not unique. In this section we will restrict ourselves to a subclass of irreducible SO.3/� SO.3/

geometries in dimension nine for which the connection � appearing in the formula (4.5) will

be uniquely defined. This class is distinguished by the following definition.
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Definition 5.1. An irreducible SO.3/� SO.3/ geometry .M 9; g; ‡; !/ is called nearly

integrable iff its structural tensor ‡ is a Killing tensor with respect to the Levi-Civita connec-

tion, i.e., iff

(5.1)
LC

rX‡.X;X;X/ D 0; for all X 2 TM:

We first write the condition (5.1) in a coframe � adapted to .M 9; g; ‡; !/. In such a

coframe we define the Levi-Civita connection coefficients
LC

�j
ki to be given by

LC

rXi
�j D �

LC

�
j
ki�

k;

where Xi are the vector fields Xi dual on M 9 to the 1-forms � i ,

Xi �j �j D ıj
i :

The coefficients
LC

�j
ki are related to the Levi-Civita connection 1-form

LC

� D .
LC

� i
j / via

LC

�
i
j D

LC

�
i
jk�

k :

In this setting the condition (5.1) reads

(5.2)
LC

�
m

.ji‡kl/m � 0:

This motivates an introduction of the map ‡ 0 W V2
R

9 ˝ R
9 7! J4

R
9 such that

‡ 0.
LC

�/ijkl D 12
LC

�
p
.ji‡kl/p(5.3)

D
LC

�
p
ji‡pkl C

LC

�
p
ki‡jpl C

LC

�
p
li‡jkp

C
LC

�
p
ij‡pkl C

LC

�
p
kj‡ipl C

LC

�
p
lj‡ikp

C
LC

�
p
ik‡pjl C

LC

�
p
jk‡ipl C

LC

�
p
lk‡ijp

C
LC

�
p
il‡pjk C

LC

�
p
jl‡ipk C

LC

�
p
kl‡ijp:

Comparing this with (5.2) we have the following proposition.

Proposition 5.2. An irreducible SO.3/� SO.3/ geometry .M 9; g; ‡; !/ is nearly inte-

grable if and only if its Levi-Civita connection
LC

� is in ker‡ 0.

It is worth noting that each of the last four rows of (5.3) resembles the left-hand side of

the equality

Xp
j‡pkl CXp

k‡jpl CXp
l‡jkp D 0

satisfied by every matrix X 2 g D so.3/L ˚ so.3/R. Thus, g ˝ R
9 � ker‡ 0. Now let us con-

sider tensors T i
jk , such that Tijk D gilT

l
jk is totally antisymmetric, Tijk D TŒijk� 2 V3

R
9.

Via g we identify the space of the considered tensors T i
jk with

V3
R

9.

Because of the antisymmetry in the last pair of indices, and due to the first equality in

(5.3), every such T i
jk also belongs to ker‡ 0. Since .so.3/L ˚ so.3/R/ ˝ R

9 � ker‡ 0 and
V3

R
9 � ker‡ 0, this proves the following lemma.
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Lemma 5.3.
��

.so.3/L ˚ so.3/R/˝ R
9
�

CV3
R

9
�

� ker‡ 0.

It is now crucial to calculate the dimension of ker‡ 0. We did it using the symbolic

algebra calculation softwares Mathematica and, independently, Maple, by solving equations

(5.2) for the most general
LC

�
i
jk 2 so.9/˝ R

9:

It follows that the equations impose the number 186 of independent conditions on the
9�8

2
� 9 D 324 free coefficients

LC

� i
jk . Thus we have

Lemma 5.4. dim ker‡ 0 D 324 � 186 D 138.

Again with the help of the Mathematica/Maple softwares we calculated the intersection

of .so.3/L ˚ so.3/R/˝ R
9 with

V3
R

9. In this way we obtained

Lemma 5.5.
�

.so.3/L ˚ so.3/R/˝ R
9
�

\V3
R

9 D ¹0º.

Comparing the dimension of .so.3/L ˚ so.3/R/˝ R
9, which is 54, with the dimension

of
V3

R
9, which is 84, and dim ker‡ 0 D 138 and using the above lemmas, we get

Proposition 5.6. ker‡ 0 D
�

.so.3/L ˚ so.3/R/˝ R
9
�

˚V3
R

9.

This leads to the following theorem.

Theorem 5.7. Every nearly integrable irreducible geometry .M 9; g; ‡; !/ defines an

so.3/L ˚ so.3/R-valued connection, whose torsion is totally antisymmetric. This connection

is unique and defined in an adapted coframe � via the formula

(5.4)
LC

�
i
jk D � i

jk C 1
2
T i

jk;

where
LC

� i
jk are the Levi-Civita connection coefficients in the coframe � , � D .� i

j /D .� i
jk�

k/

is a 1-form on M 9 with values in g D so.3/L ˚ so.3/R, and Tijk D gilT
l
jk is totally

antisymmetric, i.e., Tijk D TŒijk�.

Conversely, every irreducible so.3/L ˚ so.3/R geometry in dimension nine admitting a

unique so.3/L ˚ so.3/R connection with totally skew symmetric torsion is nearly integrable.

Proof. See Propositions 5.6 and 5.2.

Definition 5.8. The unique so.3/L˚so.3/R-valued connection � of a nearly integrable

SO.3/ � SO.3/ geometry .M 9; g; ‡; !/ as described in Theorem 5.7 is called characteristic

connection for the geometry .M 9; g; ‡; !/.

We close this section with a proposition, which relates the torsion of the characteristic

connection of a nearly integrable structure .M 9; g; ‡; !/, and the exterior derivatives d! and

d � !.
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Proposition 5.9. The derivatives d! and d � ! of the structural 4-forms ! and �! of a

nearly integrable geometry .M 9; g; ‡; !/ decompose as

(5.5) d! 2 VŒ2;2� ˚ VŒ2;4� ˚ VŒ4;2� ˚ VŒ4;4�

and

(5.6) d � ! 2 VŒ0;2� ˚ VŒ2;0� ˚ VŒ0;6� ˚ VŒ6;0� ˚ VŒ2;4� ˚ VŒ4;2�:

In particular, the torsion T 2 V3
R

9 of the characteristic connection is related to these de-

compositions via

d! � 0 ”
�

T 2 VŒ0;2� ˚ VŒ2;0� ˚ VŒ0;6� ˚ VŒ6;0� �
3̂

R
9
�

and

d � ! � 0 ”
�

T 2 VŒ2;2� ˚ VŒ4;4� �
3̂

R
9
�

:

Proof. It follows from the first structure equations (4.6) that the derivatives d! and d�!
are totally expressible in terms of the torsion components Tijk of the characteristic connection.

It is also clear that the relations between d! and d � ! and the torsion is algebraic, and linear

in the components of T . Thus each of d! and d � ! must be contained in an 84-dimensional

SO.3/ � SO.3/-invariant submodule of the respective modules

5̂

R
9 '

4̂

VŒ2;2� and

6̂

R
9 '

3̂

VŒ2;2�:

Now a quick calculation using Maple/Mathematica shows that the equation d! � 0

imposes 64 conditions on the 84 components of the torsion. Similarly, one can check that

the equation d � ! � 0 imposes 50 conditions on the torsion. Thus d! has 64 independent

components, and d � ! has 50 independent components.

Comparison of these numbers with the SO.3/ � SO.3/ decompositions of
V4

VŒ2;2� and
V3

VŒ2;2� given in Proposition 3.1 quickly yields the conclusion that d! and d � ! must be in

the submodules of
V5

R
9 and

V6
R

9 indicated in the proposition. To get the decompositions

(5.5)–(5.6) explicitly, dualize the forms d! and d � !, i.e., calculate �d! and �d � !, and use

the respective operators defined in Section 3.

Note that it follows from this proposition that if the torsion T of the characteristic connec-

tion has a component in VŒ2;4�, or in VŒ4;2�, then the forms d! and d�! are both non-vanishing.

6. Examples of nearly integrable SO.3/ � SO.3/ geometries

We begin this section by considering the most general situation of a nearly integrable

irreducible geometry .M 9; g; ‡; !/. Thus, its characteristic connection has a general torsion

in
V3

R
9.
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The group SO.3/� SO.3/ acts on the torsion space
V3

R
9 in the following way. One of

the SO.3/ groups in SO.3/ � SO.3/ is just exp.so.3/L/. The other is exp.so.3/R/. Thus we

have

SO.3/ � SO.3/ D SO.3/L � SO.3/R

with

SO.3/L D exp.so.3/L/; SO.3/R D exp.so.3/R/:

The 9 � 9 matrices h 2 SO.3/L and h0 2 SO.3/R act on the torsion coefficients Tijk via

Tijk

h7! .hT /ijk D hp
ih

q
jh

r
kTpqr ;(6.1)

Tijk

h0

7! .h0T /ijk D h0p
ih

0q
jh

0r
kTpqr :(6.2)

There is an obvious invariant of both of these actions. It is the square of the torsion:

(6.3) kT k2 D TijkTpqrg
ipgjqgkr :

Thus the 84-dimensional space
V3

R
9 is foliated by the SO.3/ � SO.3/-invariant 83-dimen-

sional spheres

ST D
°

Tijk 2
3̂

R
9 W TijkTpqrg

ipgjqgkr D r2
±

;

parametrized by the real parameter r > 0. The group SO.3/ � SO.3/ preserves these spheres.

But, for the dimensional reasons, its action is not transitive on them. Note that if one restricts

the torsion, forcing it to lie in an SO.3/ � SO.3/-invariant submodule of
V3

R
9, then the

restrictions of the spheres ST to this submodule will be still invariant with respect to both

actions, but the quadrics obtained by this restriction will have smaller dimension than 83.

For example when the torsion Tijk is in the invariant module so.3/L � V3
R

9, the

spheres ST restrict to 2-dimensional spheres. In such case the 3-dimensional torsion space

so.3/L ' R
3 is foliated by 2-dimensional spheres with radius r and center at the origin – the

zero torsion. The orbit space of the action of the groups SO.3/L and SO.3/R on these spheres

will be discussed in the next subsection.

6.1. Torsion in VŒ0;2� D so.3/L. The aim of this section is to find all nearly integrable

irreducible geometries .M 9; g; ‡; !/, whose characteristic connection � has totally skew sym-

metric torsion T in the irreducible representation so.3/L. Thus

T 2 so.3/L �
3̂

R
9

in this subsection.

The assumption that T 2 so.3/L � V3
R

9 is equivalent to the requirement that, in a

coframe � i adapted to .M 9; g; ‡; !/, we have

T i D 1
2
gijTjkl�

k ^ � l ; Tijk D TŒijk�; QC.T /ijk D �5Tijk; Q!.T /ijk D 4Tijk :

The last two conditions mean that, in accordance with the results of Section 3, the torsion is in

the intersection Z6 \Z18. These algebraic conditions for Tijk can be easily solved. The result

is summarized in the following proposition.
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Proposition 6.1. In an adapted coframe .� i / the so.3/L torsion of the characteristic

connection of a nearly integrable geometry .M 9; g; ‡; !/ reads

(6.4)
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<

ˆ
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:

T 1 D �3t3�2 ^ �3 C t2�
2 ^ �6 � t1�2 ^ �9 � t2�3 ^ �5 C t1�

3 ^ �8

� t3�5 ^ �6 � t3�8 ^ �9;

T 2 D 3t3�
1 ^ �3 � t2�1 ^ �6 C t1�

1 ^ �9 C t2�
3 ^ �4 � t1�3 ^ �7

C t3�
4 ^ �6 C t3�

7 ^ �9;

T 3 D �3t3�1 ^ �2 C t2�
1 ^ �5 � t1�1 ^ �8 � t2�2 ^ �4 C t1�

2 ^ �7

� t3�4 ^ �5 � t3�7 ^ �8;

T 4 D t2�
2 ^ �3 � t3�2 ^ �6 C t3�

3 ^ �5 C 3t2�
5 ^ �6 � t1�5 ^ �9

C t1�
6 ^ �8 C t2�

8 ^ �9;

T 5 D �t2�1 ^ �3 C t3�
1 ^ �6 � t3�3 ^ �4 � 3t2�4 ^ �6 C t1�

4 ^ �9

� t1�6 ^ �7 � t2�7 ^ �9;

T 6 D t2�
1 ^ �2 � t3�1 ^ �5 C t3�

2 ^ �4 C 3t2�
4 ^ �5 � t1�4 ^ �8

C t1�
5 ^ �7 C t2�

7 ^ �8;

T 7 D �t1�2 ^ �3 � t3�2 ^ �9 C t3�
3 ^ �8 � t1�5 ^ �6 C t2�

5 ^ �9

� t2�6 ^ �8 � 3t1�8 ^ �9;

T 8 D t1�
1 ^ �3 C t3�

1 ^ �9 � t3�3 ^ �7 C t1�
4 ^ �6 � t2�4 ^ �9

C t2�
6 ^ �7 C 3t1�

7 ^ �9;

T 9 D �t1�1 ^ �2 � t3�1 ^ �8 C t3�
2 ^ �7 � t1�4 ^ �5 C t2�

4 ^ �8

� t2�5 ^ �7 � 3t1�7 ^ �8:

Here .t1; t2; t3/ are the three independent components of the torsion T .

Remark 6.2. Rewriting the equations in (6.4) in terms of the basis of 2-forms

.�A
0 ; �

A0

0 ; �
�
0 ; �

�0

0 /, as in Remark 3.4, one can see that only the primed 2-forms appear above.

Explicitly:

(6.5)
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ˆ
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:

T 1 D �t1�90

0 C t2�
60

0 C 1
3
t3.5�

30

0 � 4�30

0 C 2�120

0 /;

T 2 D t1�
80

0 � t2�50

0 C 1
3
t3.�5�20

0 C 4�20

0 � 2�110

0 /;

T 3 D �t1�70

0 C t2�
40

0 C 1
3
t3.5�

10

0 � 4�10

0 C 2�100

0 /;

T 4 D �t1�150

0 C 1
3
t2.�5�30

0 � 2�30

0 C 4�120

0 / � t3�60

0 ;

T 5 D t1�
140

0 C 1
3
t2.5�

20

0 C 2�20

0 � 4�110

0 /C t3�
50

0 ;

T 6 D �t1�130

0 C 1
3
t2.�5�10

0 � 2�10

0 C 4�100

0 / � t3�40

0 ;

T 7 D 1
3
t1.5�

30

0 C 2�30

0 C 2�120

0 /C t2�
150

0 � t3�90

0 ;

T 8 D �1
3
t1.5�

20

0 C 2�20

0 C 2�110

0 / � t2�140

0 C t3�
80

0 ;

T 9 D 1
3
t1.5�

10

0 C 2�10

0 C 2�100

0 /C t2�
130

0 � t3�70

0 :
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Once the torsion in so.3/L ' R
3 is totally determined and parametrized as above by a

‘vector’ t D .t1; t2; t3/, we can check what are the orbits of the action of the groups SO.3/L
and SO.3/R on the torsion space so.3/L ' R

3. A direct calculation yields that the action of

SO.3/R on VŒ0;2� D so.3/L, as defined in (6.1)–(6.2), is trivial and that the group SO.3/L acts

transitively on each of the 2-spheres ST � so.3/L. The orbit space of the action of SO.3/L on

so.3/ ' R
3 is RC [ ¹0º and is parametrized by the radius r of these spheres. Thus the orbit

structure of this action is represented by so.3/L D S
2 � RC [ ¹0º.

Now we analyze the differential consequences of the structure equations (4.6)–(4.7) with

torsion T i as in (6.4). We consider the equations (4.6)–(4.7) on the bundle

SO.3/ � SO.3/ ! P ! M:

Thus the 15 forms .� i ; 
A; 
A0

/ appearing in these equations are considered to be linearly inde-

pendent. Also the unknown torsions .t1; t2; t3/, as well as the curvatures Ki
jkl are considered

to be functions on P .

A piece of terminology is useful here: whenever we make an analysis of a system of

equations like the one given by (4.6)–(4.7), (6.4), we will say that we analyze an exterior

differential system (EDS).

Although we have proven above that we can always gauge the 3-dimensional torsion

.t1; t2; t3/ of our EDS in such a way that t2 � t3 � 0, we will not use this gauge yet. This is

because the use of this gauge would imply the restriction of the EDS from 15-dimensional bun-

dle P to its 13-dimensional section P 13. Since the analysis of the system is more convenient

on P , rather than on P 13 (because only from there the system nicely generalizes to torsions

more general than those in so.3/L), we will make the gauge t2 � t3 � 0 only after extracting

the information from the first Bianchi identities of our EDS on P .

The first Bianchi identities are obtained by applying the exterior derivative on both sides

of equations (4.6). Their consequences are summarized in the following proposition.

Proposition 6.3. The first Bianchi identities imply that

(6.6) dt1 D t2

3 � t3
2; dt2 D t3


1 � t1
3; dt3 D t1

2 � t2
1;

and that the curvatures .�A; �A0

/, as defined in (4.7), read

(6.7)
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:

�1 D k�1
0 C t1t2�

2
0 C t1t3�

3
0 ;

�2 D t1t2�
1
0 C .k � t21 C t22 /�

2
0 C t2t3�

3
0 ;

�3 D t1t3�
1
0 C t2t3�

2
0 C .k � t21 C t23 /�

3
0 ;

�10 D .k C t21 C 2t22 C 2t23 /�
10

0 ;

�20 D .k C t21 C 2t22 C 2t23 /�
20

0 ;

�30 D .k C t21 C 2t22 C 2t23 /�
30

0 :

Here k is an unknown function on P , and the forms .�A
0 ; �

A0

0 / are defined in (3.1).

Thus, the first Bianchi identities show that the curvature of the characteristic connection

is totally determined by the torsion .t1; t2; t3/ and an unknown function k.
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Proof. To apply the first Bianchi identities, one needs the derivatives of the torsions ti .

So we assume the most general form for these:

(6.8) dt� D t�j �
j C t�A


A C t�A0
A0

; � D 1; 2; 3:

Here t�j ; t�A; t�A0 are .3 � 9 C 3 � 3 C 3 � 3/ D 45 functions on P , which we hope to

determine by means of the first Bianchi identities d2� i � 0, i D 1; 2; : : : ; 9. Note that if

one applies the exterior differential to the equations (4.6), the d of the right-hand sides must

be zero, d.right-hand side/ � 0. Inserting our definitions (6.8) in these identities, we obtain

nine identities each of which is a 3-form on P . Decomposing these nine 3-forms into the

basis of 3-forms on P , which consists of the primitive forms � i ^ �j ^ �k , � i ^ �j ^ 
A=A0

,

� i ^ 
A=A0 ^ 
B=B 0

, and 
A=A0 ^ 
B=B 0 ^ 
C=C 0

, one gets relations on the unknown functions

t�j ; t�A; t�A0 and the curvatures Ki
jkl .

Analyzing these relations step by step we get the following:

First, we consider terms at the basis forms � i ^ �j ^ 
A=A0

. This gives 18 conditions

determining all the functions t�A and t�A0 in terms of .t1; t2; t3/. After solving these 18 con-

ditions we get

dt1 D t2

3 � t3
2 C t1j �

j ;

dt2 D t3

1 � t1
3 C t2j �

j ;

dt3 D t1

2 � t2
1 C t3j �

j :

Second, the terms at the basis forms � i ^�j ^�k , when equated to zero, can be split into

two types of equations. The first type is obtained by eliminating the curvatures Ki
jkl from the

full set. This yields a system of linear equations for the unknowns t�j , whose only solution

is t�j D 0. After these conditions are imposed, the second type of equations involves the

curvatures Ki
jkl only in a linear fashion. It has a unique solution for the curvatures, which is

explicitly given by (6.7).

Third, after imposing the conditions described above, all the other terms in d2� i are

automatically zero.

This proves the proposition, and also shows that the conditions (6.6)–(6.7) on the curva-

ture and the derivatives of the torsion are equivalent to the first Bianchi identities of the system

in consideration.

Now we are in a position to impose the gauge

(6.9) t2 � t3 � 0:

Since the action of SO.3/L is transitive, every nearly integrable SO.3/ � SO.3/ geometry

with torsion in so.3/L admits an adapted frame in which the conditions (6.9) hold. But the

assumption of the gauge (6.9) reduces the degrees of freedom by 2, from 15 to 13. This means

that we reduce the equation of our EDS (4.6)–(4.7), (6.4) from dimension 15 to dimension

13. Also the differential consequences (6.6)–(6.7) of this EDS must be reduced to dimension

13. This in particular means that the fifteen 1-forms .� i ; 
A; 
A0

/ can no longer be linearly

independent. This obvious observation finds its confirmation in the integrability conditions

(6.6)–(6.7).
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Indeed, assuming t2 � t3 � 0, and comparing it with the last two integrability conditions

in (6.6) yields

t1

3 � 0 and t1


2 � 0:

These, when confronted with the assumption that the torsion T i is not vanishing in a neighbor-

hood, imply that

(6.10) 
2 � 0 and 
3 � 0:

Thus the EDS (4.6)–(4.7), (6.4) naturally reduces to 13 dimensions, and has now thirteen

1-forms .� i ; 
1; 
A0

/ linearly independent at each point of the 13-dimensional manifold, which

we previously called P 13.

The relations (6.10) have further consequences, for if we compare them with the second

and the third equation in (4.7), we see that �2 � 0 and �3 � 0.

If we now compare these with (6.10), and the second and the third integrability condition

in (6.7), we get .k � t21 /�2
0 � 0 and .k � t21 /�3

0 � 0.

These hold iff k � t21 , which we have to accept from now on. Note that this totally

determines the function k, which was a mysterious unknown in Proposition 6.3.

Finally, if we insert t2 � t3 � 0 in the first of the integrability conditions (6.6), we get

also that dt1 � 0, i.e., that the function t1 must be constant on the 13-dimensional reduced

manifold P 13 on which our EDS lives.

These considerations, when compared with the rest of the integrability conditions (6.7),

prove the following proposition.

Proposition 6.4. Every nearly integrable SO.3/�SO.3/ geometry .M 9; g; ‡; !/with a

non-vanishing torsion T of the characteristic connection lying in so.3/L D VŒ0;2�, T 2 so.3/L,

can be described in terms of thirteen linearly independent 1-forms .� i; 
1; 
A0

/, i D 1; 2; : : : ; 9,

A0 D 1; 2; 3, satisfying

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

d�1 D 
1 ^ �4 C 
10 ^ �2 C 
20 ^ �3 C t .��2 ^ �9 C �3 ^ �8/;

d�2 D 
1 ^ �5 � 
10 ^ �1 C 
30 ^ �3 C t .�1 ^ �9 � �3 ^ �7/;

d�3 D 
1 ^ �6 � 
20 ^ �1 � 
30 ^ �2 C t .��1 ^ �8 C �2 ^ �7/;

d�4 D �
1 ^ �1 C 
10 ^ �5 C 
20 ^ �6 C t .��5 ^ �9 C �6 ^ �8/;

d�5 D �
1 ^ �2 � 
10 ^ �4 C 
30 ^ �6 C t .�4 ^ �9 � �6 ^ �7/;

d�6 D �
1 ^ �3 � 
20 ^ �4 � 
30 ^ �5 C t .��4 ^ �8 C �5 ^ �7/;

d�7 D 
10 ^ �8 C 
20 ^ �9 � t .�2 ^ �3 C �5 ^ �6 C 3�8 ^ �9/;

d�8 D �
10 ^ �7 C 
30 ^ �9 C t .�1 ^ �3 C �4 ^ �6 C 3�7 ^ �9/;

d�9 D �
20 ^ �7 � 
30 ^ �8 � t .�1 ^ �2 C �4 ^ �5 C 3�7 ^ �8/;

(6.11)
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ˆ

:

d
1 D t2.�1 ^ �4 C �2 ^ �5 C �3 ^ �6/;

d
10 D �
20 ^ 
30 C 2t2.�1 ^ �2 C �4 ^ �5 C �7 ^ �8/;

d
20 D �
30 ^ 
10 C 2t2.�1 ^ �3 C �4 ^ �6 C �7 ^ �9/;

d
30 D �
10 ^ 
20 C 2t2.�2 ^ �3 C �5 ^ �6 C �8 ^ �9/:

(6.12)

Here dt � 0, i.e., the function t is constant.
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Note that the system (6.11)–(6.12) involves only constant coefficients on the right-hand

sides. Thus the manifold P 13 is a Lie group P 13 D G
13, with the forms .� i ; 
1; 
A0

/ con-

stituting a basis of its left invariant forms. A calculation of the Killing form for G
13, by using

the structure constants red off from (6.11)–(6.12), shows that this group is semisimple, un-

less the torsion t � 0. The group G
13 is a transitive group of symmetries of the underlying

nearly integrable geometry .M 9; g; ‡; !/. The 9-dimensional manifoldM 9 is a homogeneous

space M 9 D G
13=H , where H is a certain 4-dimensional subgroup of G

13. The structural

tensors g, ‡ and ! of the corresponding SO.3/ � SO.3/ structure are obtained, via formulae

(2.8)–(2.10), from the 1-forms .� i / solving (6.11)–(6.12). The system (6.11)–(6.12) guarantees

that although tensors g;‡; ! defined in this way live on G
13, they actually descend to tensors

g;‡; ! on the manifold M 9 D G
13=H , defining a homogeneous nearly integrable geometry

.M 9; g; ‡; !/ with 13-dimensional group of symmetries G
13 there.

For t D 0 the Lie group G
13 is just a semidirect product .SO.3/ � SO.2// Ë R

9. For

t ¤ 0, by considering the new basis of 1-forms

Q� i D t� i ; i D 1; : : : ; 6;

Q
1 D 
 01 C t�9; Q
2 D 
 02 � t�8; Q
3 D 
 03 C t�7;

Q�7 D 
 03 C 2t�7; Q�8 D 
 02 � 2t�8; Q�9 D 
 01 C 2t�9;

one sees that for any t ¤ 0 the Lie group G
13 is the product SO.3/ � K10 with structure

equations

d Q�1 D 
1 ^ Q�4 C Q
1 ^ Q�2 C Q
2 ^ Q�3;

d Q�2 D 
1 ^ Q�5 � Q
1 ^ Q�1 C Q
3 ^ Q�3;

d Q�3 D 
1 ^ Q�6 � Q
2 ^ Q�1 C Q
2 ^ Q�2;

d Q�4 D �
1 ^ Q�1 C Q
1 ^ Q�5 C Q
2 ^ Q�6;

d Q�5 D �
1 ^ Q�2 � Q
1 ^ Q�4 C Q
3 ^ Q�6;

d Q�6 D �
1 ^ Q�3 � Q
2 ^ Q�4 � Q
3 ^ Q�5;

d
1 D Q�1 ^ Q�4 C Q�2 ^ Q�5 C Q�3 ^ Q�6;

d Q
1 D � Q
2 ^ Q
3 C Q�1 ^ Q�2 C Q�4 ^ Q�5;

d Q
2 D � Q
3 ^ Q
1 C Q�1 ^ Q�3 C Q�4 ^ Q�6;

d Q
3 D � Q
1 ^ Q
2 C Q�2 ^ Q�3 C Q�5 ^ Q�6;

d Q�7 D Q�8 ^ Q�9;

d Q�8 D Q�9 ^ Q�7;

d Q�9 D Q�7 ^ Q�8:

To say what K10 is, we calculate the Killing forms. In the basis

� Q�1; Q�2; Q�3; Q�4; Q�5; Q�6; 
1; Q
1; Q
2; Q
3; Q�7; Q�8; Q�9
�

the Killing form of G
13 reads

Kil13 D diag.6; 6; 6; 6; 6; 6;�6;�6;�6;�6;�2;�2;�2/:
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The Lie algebra of K10 is spanned by . Q�1; Q�2; Q�3; Q�4; Q�5; Q�6; 
1; Q
1; Q
2; Q
3/. Its Killing form

in this basis is

Kil10 D diag.6; 6; 6; 6; 6; 6;�6;�6;�6;�6/;
showing that K10 is semisimple, and as such, having dimension 10, it must be locally isomor-

phic to a non-compact real form of SO.5;C/. Comparison of Killing forms for SO.1; 4/ and

SO.2; 3/ shows that K10 is locally SO.2; 3/.

In both cases (t D 0 and t ¤ 0) the Lie algebra of the group H D SO.3/ � SO.2/ is

given by the annihilator of the 1-forms � i , i D 1; 2; : : : ; 9.

After calculating the curvatures of the various connections associated with this geometry

we get the following theorem.

Theorem 6.5. Any nearly integrable irreducible SO.3/�SO.3/ geometry .M 9; g; ‡; !/

with torsion of the characteristic connection � in VŒ0;2� D so.3/L is locally a homogeneous

space G
13=H . It has a transitive symmetry group G

13 of dimension 13. For t D 0 the Lie

group G
13 is a semidirect product .SO.3/ � SO.2// Ë R

9 and for t ¤ 0 it is a direct product

SO.3/ � SO.2; 3/.

The metric g is conformally non-flat and not locally symmetric. The Ricci tensors of the

Levi-Civita connection
LC

� , of the characteristic connection � , and of the so.3/L part
C

� of the

characteristic connection have all two distinct eigenvalues.

The so.3/R part
�

� of the characteristic connection is Einstein.

Explicitly, in the adapted coframe .� i / in which the structure equations read as in (6.11)

and in which the structural tensors g;‡; ! are given by (2.8)–(2.10), we have the following:

� The Cartan connection �Cartan has the curvature given by

QR D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 .1C t2/�1
0 �2

0 j T 1 T 2 T 3

�.1C t2/�1
0 0 �3

0 j T 4 T 5 T 6

��2
0 ��3

0 0 j T 7 T 8 T 9

� � � � � � �
�T 1 �T 4 �T 7 j 0 .1C 2t2/�10

0 .1C 2t2/�20

0

�T 2 �T 5 �T 8 j �.1C 2t2/�10

0 0 .1C 2t2/�30

0

�T 3 �T 6 �T 9 j �.1C 2t2/�20

0 �.1C 2t2/�30

0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where the torsions T i are given by (6.5) with t1 D t D const and t2 D t3 D 0.

� The Levi-Civita connection Ricci tensor reads

LC

Ric D diag
�

�4t2;�4t2;�4t2;�4t2;�4t2;�4t2; 3
2
t2; 3

2
t2; 3

2
t2
�

and has the Ricci scalar equal to �39
2
t2.

� The so.3/L part
C

� of the characteristic connection has the curvature

C

� D �t2�1
0e1;
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where the matrix e1 D .e1
i
j / is given by (2.15). It has the Ricci tensor

C

Rij given by

C

Rij D diag
�

�t2;�t2;�t2;�t2;�t2;�t2; 0; 0; 0
�

;

with the Ricci scalar equal to �6t2.

� The so.3/R part
�

� of the characteristic connection has the curvature

�

� D �2t2�A0

0 eA0 ;

where the matrices eA0 D .eA0
i
j / are given by (2.15)–(2.17). Its Ricci tensor is Einstein,

�

Rij D �4t2gij ;

and has Ricci scalar equal to �36t2.

� The characteristic connection � D
C

� C
�

� has curvature

� D
C

�C
�

� D �t2�1
0e1 � 2t2�A0

0 eA0

and the Ricci tensor

Rij D diag
�

�5t2;�5t2;�5t2;�5t2;�5t2;�5t2;�4t2;�4t2;�4t2
�

:

6.2. Torsion in VŒ0;6�. In this section, we will find examples of nearly integrable ge-

ometries .M 9; g; ‡; !/ in dimension nine, whose characteristic connection � has totally skew

symmetric torsion T in the irreducible representation VŒ0;6�. Thus T 2 VŒ0;6� � V3
R

9 in this

subsection.

The assumption that T 2 VŒ0;6� � V3
R

9 is equivalent to the requirement that, in a

coframe � i adapted to .M 9; g; ‡; !/, we have

T i D 1
2
gijTjkl�

k ^ � l ; Tijk D TŒijk�; and Q!.T /ijk D �6Tijk :

Solving these algebraic conditions for Tijk we get the following proposition.

Proposition 6.6. In an adapted coframe .� i / the VŒ0;6� torsion of a characteristic con-

nection of a nearly integrable geometry .M 9; g; ‡; !/ reads

(6.13)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

T 1 D u1.��30

0 C �120

0 / � u2�
150

0 � u3�
30

0 � u4�
60

0 � u5�
90

0 � u6�
60

0 � u7�
90

0 ;

T 2 D u1.�
20

0 � �110

0 /C u2�
140

0 C u3�
20

0 C u4�
50

0 C u5�
80

0 C u6�
50

0 C u7�
80

0 ;

T 3 D u1.��10

0 C �100

0 / � u2�
130

0 � u3�
10

0 � u4�
40

0 � u5�
70

0 � u6�
40

0 � u7�
70

0 ;

T 4 D u1�
60

0 � u2�
90

0 C u4.��30

0 C �120

0 /C u5�
150

0 � u6�
30

0 ;

T 5 D �u1�
50

0 C u2�
80

0 C u4.�
20

0 � �110

0 / � u5�
140

0 C u6�
20

0 ;

T 6 D u1�
40

0 � u2�
70

0 C u4.��10

0 C �100

0 /C u5�
130

0 � u6�
10

0 ;

T 7 D �u2�
60

0 C u3�
90

0 C u5.��30

0 C �120

0 /C u6�
150

0 � u7�
30

0 ;

T 8 D u2�
50

0 � u3�
80

0 C u5.�
20

0 � �110

0 / � u6�
140

0 C u7�
20

0 ;

T 9 D �u2�
40

0 C u3�
70

0 C u5.��10

0 C �100

0 /C u6�
130

0 � u7�
10

0 ;

where .u1; u2; u3; u4; u5; u6; u7/ are the seven independent components of the torsion T , and

.�
�0

0 /, �
0 D 1; 2; : : : ; 15, is a basis of 2-forms in VŒ4;2� as defined in (3.3).
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Proposition 6.7. The action of SO.3/R on VŒ0;6�, as defined in (6.1)–(6.2), is trivial,

i.e., .h0T /ijk D Tijk for all h0 2 SO.3/R and for all Tijk 2 VŒ0;6�.

The ‘left’ SO.3/ acts non-trivially on VŒ0;6�. It has a 4-parameter family of generic or-

bits in this 7-dimensional space. As in the VŒ0;2� case, instead of restricting ourselves to the

representatives of these orbits, we will analyze the EDS (4.6)–(4.7) for the torsion in VŒ0;6�,

with general torsions .u1; u2; u3; u4; u5; u6; u7/ as in (6.13). Thus the EDS (4.6)–(4.7), (6.13)

we consider, lives on the Cartan bundle SO.3/L � SO.3/R ! P ! M , where the 15 forms

.� i ; 
A; 
A0

/ are linearly independent at each point.

Now the VŒ0;6� analog of Proposition 6.3 is as follows.

Proposition 6.8. The first Bianchi identities d2� i � 0, for the EDS (4.6)–(4.7), (6.13)

imply that

(6.14)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

du1 D .3u4 C 2u6/

1 C u5


2 � 2u2

3;

du2 D �.2u5 C u7/

1 � .u4 C 2u6/


2 C .u1 � u3/

3;

du3 D u6

1 C .2u5 C 3u7/


2 C 2u2

3;

du4 D �3u1

1 C 3u5


3;

du5 D 2u2

1 � u1


2 C .2u6 � u4/

3;

du6 D �u3

1 C 2u2


2 C .u7 � 2u5/

3;

du7 D �3u3

2 � 3u6


3;

and that the curvatures .�A; �A0

/, as defined in (4.7), are

(6.15)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1 D k1�
1
0 C k2�

2
0 C k3�

3
0 ;

�2 D k2�
1
0 C k4�

2
0 C k5�

3
0 ;

�3 D k3�
1
0 C k5�

2
0 C k6�

3
0 ;

�10 D k7�
10

0 ;

�20 D k7�
20

0 ;

�30 D k7�
30

0 ;

where

(6.16)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

k2 D 2.u1 C u3/u2 � .2u4 C 3u6/u5 � .u4 C 2u6/u7;

k3 D 2u2u4 C .2u1 � u3/u5 C u1u7;

k4 D k1 C 2u2
1 � 2u2

3 C 2u2
4 C 2u4u6 � 2u5u7 � 2u2

7;

k5 D �u3u4 C .u1 � 2u3/u6 � 2u2u7;

k6 D k1 C 2u2
1 C 2u1u3 C 2u2

4 C 4u4u6 C 2u5u7;

k7 D k1 C 2u2
1 C u2

2 C u1u3 C 2u2
4 C u2

5 C 3u4u6 C u2
6 C u5u7:

Here k1 is an unknown function and .�A
0 ; �

A0

0 / are given by (3.1).
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Proof. The proof here is very similar to the proof of Proposition 6.3. So we first assume

the most general form for the derivatives of the torsions u�:

(6.17) du� D u�j �
j C u�A


A C u�A0
A0

; � D 1; 2; : : : ; 7:

Here u�j ; u�A; u�A0 are .7 � 9 C 7 � 3 C 7 � 3/ D 105 functions on P , which we will

determine by means of the first Bianchi identities d2� i � 0, i D 1; 2; : : : ; 9. Inserting our

definitions (6.17) in these identities, we obtain nine identities each of which is a 3-form on P .

We decompose these nine 3-forms into the basis of 3-forms on P , � i ^�j ^�k , � i ^�j ^
A=A0

,

� i ^
A=A0 ^
B=B 0

, and 
A=A0 ^
B=B 0 ^
C=C 0

. This brings the relations between the unknown

functions u�j ; t�A; t�A0 and the curvatures Ki
jkl .

Analyzing these relations step by step we get the following:

First, we consider terms at the basis forms � i ^ �j ^ 
A=A0

. This gives 42 conditions

determining all the functions u�A and u�A0 in terms of .u�/. After solving these 42 conditions

we get

du1 D .3u4 C 2u6/

1 C u5


2 � 2u2

3 C u1j �

j ;

du2 D �.2u5 C u7/

1 � .u4 C 2u6/


2 C .u1 � u3/

3 C u2j �

j ;

du3 D u6

1 C .2u5 C 3u7/


2 C 2u2

3 C u3j �

j ;

du4 D �3u1

1 C 3u5


3 C u4j �
j ;

du5 D 2u2

1 � u1


2 C .2u6 � u4/

3 C u5j �

j ;

du6 D �u3

1 C 2u2


2 C .u7 � 2u5/

3 C u6j �

j ;

du7 D �3u3

2 � 3u6


3 C u7j �
j :

Second, the terms at the basis forms � i ^�j ^�k , when equated to zero, can be split into

two types of equations. The first type is obtained by eliminating the curvatures Ki
jkl from the

full set. This yields a system of linear equations for the unknowns u�j , whose only solution

is u�j D 0. After these conditions are imposed, the second type of equations involves the

curvatures Ki
jkl only in a linear fashion. It has a unique solution for the curvatures, which is

explicitly given by (6.15)–(6.16).

Third, after imposing the conditions described above, all the other terms in d2� i are

automatically zero.

This proves the proposition.

The next proposition determines the derivatives of the unknown k1.

Proposition 6.9. The second Bianchi identities d2
A � 0 � d2
A0

, A;A0 D 1; 2; 3,

imply that

(6.18) dk1 D �2k3

2 C 2k2


3:

Proof. To prove this we write dk1 in the most general form

dk1 D k1i�
i C k1A


A C k1A0
A0

;
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and consider the terms � i ^ �j ^ 
A=A0

in the decomposition of d2
A=A0

. This immediately

yields k1A0 D 0 for all A0 D 1; 2; 3, and k11 D 0; k12 D �2k3, and k13 D 2k2.

Eliminating u�s from the equations implied by equating to zero the coefficients at the

terms � i ^ �j ^ �k in d2
A=A0 � 0, shows that all the remaining coefficients k1i in dk1 must

also vanish, i.e., k1i D 0, for all i D 1; 2; : : : ; 9. This finishes the proof.

The lack of the � i terms on the right-hand sides of equations (6.14) and (6.18) proves that

the functions u� and k1, and as a consequence the functions k2; : : : ; k7, are constant along the

base manifoldM . They depend only on the fiber coordinates. Moreover, since only 
As appear

on the right-hand sides of these equations, they only depend on the fiber coordinates associated

with SO.3/L. This means that there exists an SO.3/L gauge in which all the functions u�,

k1; : : : ; k7 are constant. This is the same as to say that there exists a subbundle G of P , with

fibers at least as large as SO.3/R, on which we have du� D 0 D dk1 D � � � D dk7.

To see the examples of such solutions we look at the fourth and the seventh equation in

(6.14). Since we want du4 D du7 D 0, we obtain that

u1

1 D u5


3 and u3

2 D �u6


3:

Now, assuming that u1 ¤ 0 ¤ u3, we solve it for 
1 and 
2, obtaining

(6.19) 
1 D u5

u1

3 and 
2 D �u6

u3

3:

Thus these equations show that we have reduced our original manifold P to its 13-dimensional

submanifold G on which the forms 
1 and 
2 become dependent on 
3. On this manifold we

further want that du� D 0 for all � D 1; 2; : : : ; 7. Inserting (6.19) into the right-hand sides

of equations (6.14) for du1, du2, du3, du5, du6, and equating the result to zero, we obtain the

five equations

2u1u2u3 � 3u3u4u5 C u1u5u6 � 2u3u5u6 D 0;

u2
1u3 � u1u

2
3 � 2u3u

2
5 C u1u4u6 C 2u1u

2
6 � u3u5u7 D 0;

2u1u2u3 � 2u1u5u6 C u3u5u6 � 3u1u6u7 D 0;

u1u3u4 � 2u2u3u5 � u2
1u6 � 2u1u3u6 D 0;

2u1u3u5 C u2
3u5 C 2u1u2u6 � u1u3u7 D 0:

A particular solution is given by

(6.20)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

u2 D
u6

p
4u1 C u3

q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

3u2
6 � u2

3

;

u4 D u6.u1u
2
6 � 3u1u

2
3 � 2u3u

2
6/

u3.3u
2
6 � u2

3/
;

u5 D �
u1

q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u3

p
4u1 C u3

;

u7 D
.2u1u

3
3 C u3

3 C 2u1u
2
6 � u3u

2
6/

q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u3.3u
2
6 � u2

3/
p
4u1 C u3

:
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Of course we restrict the range of the free real torsion parameters u1, u3 and u6, so that u2,

u4, u5 and u7 are real and finite! This happens, e.g., for

�1 < 4u3

u1
< 4; u6 ¤ ˙

q

1
3
u3 ¤ 0:

This solution is compatible with the structure equations

d
1 D �
2 ^ 
3 C �1; d
2 D �
3 ^ 
1 C �2

having �1; �2 and �3 as in (6.15), and with dk1 D 0 if and only if

(6.21) k1 D 4.u1u
2
3 C u1u

2
6 C u3u

2
6/

2.u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6/

u2
3.4u1 C u3/.u

2
3 � 3u2

6/
2

:

This leads to the following proposition.

Proposition 6.10. Assume that the forms .� i ; 
3; 
A0

/ satisfy the equations for d� i ,

d
3, and d
A0

as in the system (4.6)–(4.7), (6.13) with

� the forms 
1 and 
2 given by (6.19),

� the coefficients u1, u3 and u6 being constants,

� the coefficients u2, u4, u5 and u7 given by (6.20),

� the curvatures �1, �A0

given by (6.15)–(6.16) and (6.21).

Then

� the equations for d
1 and d
2 in the system (4.6)–(4.7), (6.13) are automatically satis-

fied, and

� the Bianchi identities d2� i D d2
3 D d2
A0 D 0 are also automatically satisfied.

In such a case the manifold on which the forms .� i ; 
3; 
A0

/ are defined becomes a 13-

dimensional Lie group G
13, with the forms .� i ; 
3; 
A0

/ being its Maurer-Cartan forms. The

Lie group G
13 is a subbundle of the bundle SO.3/ � SO.3/ ! P ! M 9, so that the manifold

M 9 is a homogeneous space M 9 D G
13=H , with H being a certain 4-dimensional subgroup

of G
13 containing SO.3/R. The nearly integrable SO.3/ � SO.3/ structure .g; ‡; !/ on M 9

is given by the forms � i and the formulae (2.8)–(2.10).

For all of these geometries the metric g is conformally non-flat and not locally symmetric.

The Ricci tensors of the Levi-Civita connection
LC

� , of the characteristic connection � , and of

the so.3/L part
C

� of � have all two distinct eigenvalues.

The so.3/R part
�

� of the characteristic connection � is Einstein.

Explicitly, in the adapted coframe .� i / in which the structure equations read as in (6.11)

and in which the structural tensors g;‡; ! are given by (2.8)–(2.10), we have the following:

� The eigenvalues of the Levi-Civita connection Ricci tensor read

.45s; 45s; 45s; 55s; 55s; 55s; 55s; 55s; 55s/;
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where

s D .u1u
2
3 C u1u

2
6 C u3u

2
6/

3

u2
3.4u1 C u3/.u

2
3 � 3u2

6/
2
:

The Ricci scalar is equal to 465s. The Levi-Civita connection is never Ricci flat, because

the equation u1u
2
3 C u1u

2
6 C u3u

2
6 D 0 contradicts the reality of u2, u5 and u7.

� The so.3/L part
C

� of � has the curvature
C

� D �AeA, with

�1 D 4.u1u
2
3 C u1u

2
6 C u3u

2
6/

2.u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6/

u2
3.4u1 C u3/.u

2
3 � 3u2

6/
2

�1
0

C
4u6.u1u

2
3 C u1u

2
6 C u3u

2
6/

2
q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u2
3

p
4u1 C u3.u

2
3 � 3u2

6/
2

�2
0

�
4.u1u

2
3 C u1u

2
6 C u3u

2
6/

2
q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u3

p
4u1 C u3.u

2
3 � 3u2

6/
2

�3
0 ;

�2 D
4u6.u1u

2
3 C u1u

2
6 C u3u

2
6/

2
q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u2
3

p
4u1 C u3.u

2
3 � 3u2

6/
2

�1
0

C 4u2
6.u1u

2
3 C u1u

2
6 C u3u

2
6/

2

u2
3.u

2
3 � 3u2

6/
2

�2
0 � 4u6.u1u

2
3 C u1u

2
6 C u3u

2
6/

2

u3.u
2
3 � 3u2

6/
2

�3
0 ;

�3 D �
4.u1u

2
3 C u1u

2
6 C u3u

2
6/

2
q

u1u
2
3 � u3

3 C u1u
2
6 C 4u3u

2
6

u3

p
4u1 C u3.u

2
3 � 3u2

6/
2

�1
0

� 4u6.u1u
2
3 C u1u

2
6 C u3u

2
6/

2

u3.u
2
3 � 3u2

6/
2

�2
0 C 4.u1u

2
3 C u1u

2
6 C u3u

2
6/

2

.u2
3 � 3u2

6/
2

�3
0

and the matrices eA D .eA
i
j / given by (2.15)–(2.17). It has the Ricci tensor

C

Rij with two

different eigenvalues

.0; 0; 0; 20s; 20s; 20s; 20s; 20s; 20s/;

with the Ricci scalar equal to 120s.

� The so.3/R part
�

� of � has the curvature
�

� D 15s�A0

0 eA0 , where as before the matrices

eA0 D .eA0
i
j / are given by (2.15)–(2.17). Its Ricci tensor is Einstein,

�

Rij D 30sgij ;

and has Ricci scalar equal to 270s.

� The characteristic connection � D
C

� C
�

� has curvature

� D
C

�C
�

� D �AeA C 15s�A0

0 eA0

and the Ricci tensor with eigenvalues

.30s; 30s; 30s; 50s; 50s; 50s; 50s; 50s; 50s/:
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The examples of nearly integrable SO.3/ � SO.3/ geometries with torsion of the char-

acteristic connection in VŒ0;6� described by this proposition have quite similar features to the

nearly integrable SO.3/� SO.3/ geometries with torsion in VŒ0;2�. In particular, if any of these

geometries has curvature
C

� � 0, then it must be flat and torsion free.

It turns out however that there is another branch of nearly integrable SO.3/ � SO.3/

geometries with torsion of their characteristic connections in VŒ0;6� for which
C

� � 0 neither

implies vanishing torsion nor vanishing of
�

�. Below we present these examples.

Assuming that
C

� � 0 is the same as to assume that

k1 D k2 D k3 D k4 D k5 D k6 D 0:

(Compare with the first three equations in (6.15)). But since
C

� � 0 is the condition for the

connection
C

� to be flat, in such a situation we can use a gauge in which
C

� � 0. This condition

means that the system (4.6)–(4.7), (6.13) reduces from P to a 12-dimensional G
12 manifold

on which 
1 � 
2 � 
3 � 0.

Having these conditions and the requirement that T 2 VŒ0;6�, we see, via (6.14), that all

u� are constants. The rest of the equations d2� i � 0 finally imply that

2u2u4 C 2u1u5 � u3u5 C u1u7 D 0;

u3u4 � u1u6 C 2u3u6 C 2u2u7 D 0;

2u1u2 C 2u2u3 � 2u4u5 � 3u5u6 � u4u7 � 2u6u7 D 0;

2u2
1 C 2u1u3 C 2u2

4 C 4u4u6 C 2u5u7 D 0;

2u1u3 C 2u2
3 C 2u4u6 C 4u5u7 C 2u2

7 D 0;

2u2
1 � 2u2

3 C 2u2
4 C 2u4u6 � 2u5u7 � 2u2

7 D 0:

We have found six different particular solutions to these equations. These are

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

u2 D .u1 � 2u3/u
2
7 � .2u1 � u3/

�

.u1 � 2u3/.u1 C u3/C u2
4

�

6u4u7
;

u5 D .u1 � 2u3/.u1 C u3/C u2
4 � 2u2

7

3u7
;

u6 D �.2u1 � u3/.u1 C u3/ � 2u2
4 C u2

7

3u4
I

(6.22)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

u2 D �
u5

q

9u2
3 � 4u2

4

2u4
; u6 D �

u3

�

˙3u3 C
q

9u2
3 � 4u2

4

�

2u4
;

u1 D 1
2

�

u3 ˙
q

9u2
3 � 4u2

4

�

; u7 D 0I
(6.23)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

u2 D �
u6

�

˙9u2
3 C

q

9u2
3 C 8u2

7

�

8u7
;

u5 D
�4u2

7 ˙ u3

�

�3u3 C
q

9u2
3 C 8u2

7

�

8u7
;

u1 D 1
4

�

�u3 �
q

9u2
3 C 8u2

7

�

; u4 D 0I

(6.24)
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u1 D u3 D u4 D u5 D u7 D 0I(6.25)

u1 D �u3; u4 D u5 D u6 D u7 D 0I(6.26)

u1 D u3 D u4 D u6 D u7 D 0:(6.27)

It follows that for all of these six solutions we have d2� i � 0 and d2
A0 � 0, automat-

ically for all i D 1; 2; : : : ; 9 and for all A0 D 1; 2; 3. Thus each of these six solutions defines

a nearly integrable SO.3/ � SO.3/ geometry .M 9; g; ‡; !/ having the torsion of the charac-

teristic connection in VŒ0;6� and the vanishing curvature
C

� of
C

� . It turns out that all the six

solutions have the same qualitative behavior of the curvatures of
LC

� , � ,
C

� and
�

� . The properties

of the curvatures of the geometries corresponding to these six solutions are summarized in the

theorem below.

Theorem 6.11. All nearly integrable SO.3/ � SO.3/ geometries .M 9; g; ‡; !/ corre-

sponding to any solution (6.22)–(6.27) above have

� torsion of the characteristic connection � in VŒ0;6� � V3
R

9,

� vanishing curvature
C

� of the so.3/L part of � , i.e.,
C

� � 0,

� the curvature � of the characteristic connection � equal to

� �
�

� D 1
36

kT k2�A0

0 eA0 ;

where kT k2 is the square norm of the torsion T of �:

kT k2 D TijkT
ijk

D 36k7 D 36
�

2u2
1 C u2

2 C u1u3 C 2u2
4 C u2

5 C 3u4u6 C u2
6 C u5u7

�

with u� being constants and satisfying one of (6.22)–(6.27).

All these geometries .M 9; g; ‡; !/ are locally homogeneous spaces M 9 D G
12=H ,

where G
12 is a 12-dimensional symmetry group of .M 9; g; ‡; !/ and H is its 3-dimensional

subgroup isomorphic to SO.3/, i.e., H D SO.3/R. The metric g, the tensor ‡ and the form

! defining a nearly integrable SO.3/ � SO.3/ geometry on M 9 are given by formulae (2.8)–

(2.10), in terms of the forms .� i ; 
A � 0; 
A0

/ satisfying (4.6)–(4.7), (6.13), (6.15)–(6.16), and

one of (6.22)–(6.27), with u� being constants.

� In the basis .� i ; 
A0

/ the Killing form for the group G
12 reads

Kil D �8 diag.k7; k7; k7; k7; k7; k7; k7; k7; k7; 1; 1; 1/:

� If k7 ¤ 0 the Riemannian manifold .M 9 D G
12=SO.3/R; g/ is not locally symmetric.

If k7 D 0 the solutions have flat characteristic connection, � � 0, and in such a case

.M 9 D G
12=SO.3/R; g/ is a locally symmetric Riemannian manifold.

� For every value of k7 the metric is Einstein,
LC

Ric D 3k7g. It is not conformally flat unless

the torsion is zero, .u1; u2; : : : ; u7/ D 0.

� Also the SO.3/R part
�

� of the characteristic connection is always Einstein,

�

Rij D 2k7gij :

It is flat,
�

� � 0, if and only if k7 D 0.



106 Fino and Nurowski, Analog of selfduality in dimension nine

It is a remarkable fact that both the Levi-Civita connection
LC

� and the characteristic con-

nection � are Einstein and (generically) Ricci non-flat for all the geometries .M 9; g; ‡; !/

described by the theorem. Moreover although the metric g is not conformally flat, the SO.3/L
part

C

� of � is flat. This makes these geometries similar to the selfdual Riemannian geometries

in dimension four.

6.3. Analogs of selfduality; examples with torsion in VŒ0;2� ˚ VŒ0;6�. The exam-

ples described by the Theorem 6.11 raise the question if there are other nearly integrable

SO.3/�SO.3/ geometries .M 9; g; ‡; !/ in dimension nine for which the so.3/L part
C

� of the

characteristic connection � is flat,
C

� � 0, and for which the so.3/R part
�

� is not flat,
�

� ¤ 0.

In the following the nearly integrable SO.3/�SO.3/ geometries .M 9; g; ‡; !/with these

two properties,
C

� � 0 and
�

� ¤ 0, will be called analogs of selfduality.

The problem of finding all such structures is a difficult one. To generalize solutions of

Theorem 6.11, on top of the analogs of selfduality conditions, we will assume in addition that

the torsion T of the characteristic connection � is restricted from
V3

R
9 to VŒ0;2� ˚ VŒ0;6�. In

this section we will find all such structures.

We first have an analog of Proposition 6.6 and Remark 6.2:

Proposition 6.12. In an adapted coframe .� i / the VŒ0;2� ˚ VŒ0;6� torsion of a charac-

teristic connection of a nearly integrable geometry .M 9; g; ‡; !/ reads

(6.28)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

T 1 D �t1�90

0 C t2�
60

0 C 1
3
t3.5�

30

0 � 4�30

0 C 2�120

0 /C u1.��30

0 C �120

0 /

� u2�
150

0 � u3�
30

0 � u4�
60

0 � u5�
90

0 � u6�
60

0 � u7�
90

0 ;

T 2 D t1�
80

0 � t2�50

0 C 1
3
t3.�5�20

0 C 4�20

0 � 2�110

0 /C u1.�
20

0 � �110

0 /

C u2�
140

0 C u3�
20

0 C u4�
50

0 C u5�
80

0 C u6�
50

0 C u7�
80

0 ;

T 3 D �t1�70

0 C t2�
40

0 C 1
3
t3.5�

10

0 � 4�10

0 C 2�100

0 /C u1.��10

0 C �100

0 /

� u2�
130

0 � u3�
10

0 � u4�
40

0 � u5�
70

0 � u6�
40

0 � u7�
70

0 ;

T 4 D �t1�150

0 C 1
3
t2.�5�30

0 � 2�30

0 C 4�120

0 / � t3�60

0

C u1�
60

0 � u2�
90

0 C u4.��30

0 C �120

0 /C u5�
150

0 � u6�
30

0 ;

T 5 D t1�
140

0 C 1
3
t2.5�

20

0 C 2�20

0 � 4�110

0 /C t3�
50

0

� u1�
50

0 C u2�
80

0 C u4.�
20

0 � �110

0 / � u5�
140

0 C u6�
20

0 ;

T 6 D �t1�130

0 C 1
3
t2.�5�10

0 � 2�10

0 C 4�100

0 / � t3�40

0

C u1�
40

0 � u2�
70

0 C u4.��10

0 C �100

0 /C u5�
130

0 � u6�
10

0 ;

T 7 D 1
3
t1.5�

30

0 C 2�30

0 C 2�120

0 /C t2�
150

0 � t3�90

0

� u2�
60

0 C u3�
90

0 C u5.��30

0 C �120

0 /C u6�
150

0 � u7�
30

0 ;

T 8 D �1
3
t1.5�

20

0 C 2�20

0 C 2�110

0 / � t2�140

0 C t3�
80

0

C u2�
50

0 � u3�
80

0 C u5.�
20

0 � �110

0 / � u6�
140

0 C u7�
20

0 ;

T 9 D 1
3
t1.5�

10

0 C 2�10

0 C 2�100

0 /C t2�
130

0 � t3�70

0

� u2�
40

0 C u3�
70

0 C u5.��10

0 C �100

0 /C u6�
130

0 � u7�
10

0 ;
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where .t1; t2; t3; u1; u2; u3; u4; u5; u6; u7/ are the ten independent components of the torsion

T , and .�
�0

0 /, �
0 D 1; 2; : : : ; 15, is a basis of 2-forms in VŒ4;2� as defined in (3.3). Note that if

all u� are equal to zero, then T 2 VŒ0;2�, and if all tA are equal to zero, then T 2 VŒ0;6�.

We want to construct nearly integrable SO.3/ � SO.3/ structures with torsion in

VŒ0;2� ˚ VŒ0;6�, and with
C

� � 0. All of them, in an adapted coframe, are therefore described

by the system (4.6)–(4.7), (6.28), with �A � 0. This enables us to reduce the system from

P ! M 9 to a 12-dimensional subbundle of P on which


1 � 
2 � 
3 � 0:

The procedure of analyzing such a reduced system is completely the same as the proce-

dure leading to solutions described by Theorem 6.11. We therefore only state the result.

Theorem 6.13. All nearly integrable SO.3/ � SO.3/ geometries .M 9; g; ‡; !/, which

have torsion T of the characteristic connection � in VŒ0;2� ˚ VŒ0;6�, and the curvature
C

� of

the so.3/L-part
C

� of � vanishing,
C

� � 0, correspond to the system (4.6)–(4.7), (6.28), with


1 � 
2 � 
3 � 0 and �A � 0, and constant torsion coefficients

.t1; t2; t3; u1; u2; u3; u4; u5; u6; u7/

satisfying the following algebraic equations:

(6.29)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2u2u4 C 2u1u5 � u3u5 C u1u7

C t2u2 C t1u3 � t3u5 � t3u7 � t1t3 D 0;

u3u4 � u1u6 C 2u3u6 C 2u2u7

� t2u1 � t1u2 � t3u4 � t3u6 C t2t3 D 0;

2u1u2 C 2u2u3 � 2u4u5 � 3u5u6 � u4u7 � 2u6u7

C t3u2 C t2u5 � t1u6 � t1t2 D 0;

2u2
1 C 2u1u3 C 2u2

4 C 4u4u6 C 2u5u7

� 2t1u7 � t3u1 � 2t3u3 C t2u4 � t1u5 C 2t2u6 C t21 � t23 D 0;

2u1u3 C 2u2
3 C 2u4u6 C 4u5u7 C 2u2

7

� 2t3u1 � t3u3 C 2t2u4 � 2t1u5 C t2u6 � t1u7 C t22 � t23 D 0;

2u2
1 � 2u2

3 C 2u2
4 C 2u4u6 � 2u5u7 � 2u2

7

C t3u1 � t3u3 � t2u4 C t1u5 C t2u6 � t1u7 C t21 � t22 D 0:

If these equations are satisfied, the metric g, the tensor ‡ and the 4-form ! are obtained

in terms of the forms .� i / via formulae (2.8)–(2.10). They descend from the 12-dimensional

subbundle P 12 ! M 9 of the fiber bundle SO.3/ � SO.3/ ! P ! M 9 to M 9 due to the

structure equations (4.6).

If the equations (6.29) for the constants .t1; t2; t3; u1; u2; u3; u4; u5; u6; u7/ are satisfied,

then all the integrability conditions d2� i � 0 and d2
A0 � 0, for all � i and all 
A0

appearing

in the system (4.6)–(4.7), (6.28) are automatically satisfied.

The manifold P 12 is locally a 12-dimensional symmetry group P 12 D G
12 of the so

obtained .M 9; g; ‡; !/, andM 9 is a homogeneous spaceM 9 D G
12=H , whereH D SO.3/R

is a subgroup of G
12.
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The curvatures �A0

are given by

�A0 D
�

1
36

kT k2 � 25
6
.t21 C t22 C t23 /

�

�A0

0 ; A0 D 1; 2; 3;

where

kT k2 D 6
�

4u2
1 C 6u2

2 C 2u1u3 C 4u2
3 C 4u2

4 C 6u2
5 C 6u4u6 C 6u2

6 C 6u5u7 C 4u2
7

�

C 90
�

t21 C t22 C t23
�

;

with constants .t1; t2; t3; u1; u2; u3; u4; u5; u6; u7/ fulfilling equations (6.29).

The torsion T of the characteristic connection generically seats in VŒ02;� ˚VŒ0;6�. It is in

VŒ0;2� if and only if .u1; u2; u3; u4; u5; u6; u7/ D 0, and in VŒ0;6� if and only if .t1; t2; t3/ D 0.

The square of the torsion is kT k2 as above.

The curvature � of � has vanishing so.3/L part,
C

� � 0, and is equal to

� �
�

� D
�

1
36

kT k2 � 25
6
.t21 C t22 C t23 /

�

�A0

0 eA0 :

The Ricci tensor of the curvature � of the characteristic connection, and what is the same, the

Ricci tensor of the curvature
�

� of its so.3/R-part is Einstein,

�

Rij D 2
�

1
36

kT k2 � 25
6
.t21 C t22 C t23 /

�

gij :

The metric g is Einstein if and only if t1 D t2 D t3 D 0. In such a case the nearly integrable

structures coincide with those described in Theorem 6.11.

Generically the solutions described by this theorem have
�

� ¤ 0, and as such constitute

analogs of selfduality.

Remark 6.14. Note that although .t1; t2; t3/ D 0 gives all the solutions described in

Theorem 6.11, the assumption .u1; u2; u3; u4; u5; u6; u7/ D 0 does not recover all the solu-

tions with T 2 VŒ0;2�. The reason for this is that here we additionally assumed that
C

� � 0,

and such solutions are possible for T 2 VŒ0;2� only if T D 0. Nonetheless the solutions in this

section are non-trivial generalizations to T 2 VŒ0;2� ˚ VŒ0;6� of solutions from Theorems 6.5

and 6.11.

Remark 6.15. We emphasize that the system of equations (6.29) for the constants

.t1; t2; t3; u1; u2; u3; u4; u5; u6; u7/ can be solved explicitly to the very end. For example,

an application of a Mathematica command Solve[] to the system (6.29), immediately gives

thirteen different solutions of these equations. The obtained formulae are not particularly illu-

minating. For example a generalization to the case of T 2 VŒ0;2� ˚ VŒ0;6� of the solution (6.22)

from Section 6.2 is given by

u2 D
�

�

2.t3 C u1 � 2u3/u
2
7

C .t3 � 2u1 C u3/
�

�2t22 C .t3 C u1 � 2u3/.t3 C 2.u1 C u3// � 3t2u4 C 2u2
4

�

C 3t1.t3 C u1 � 2u3/u7 � 2t21 .t3 C u1 � 2u3/
�

�

�
�

3.t2 C 2u4/.2u7 � t1/
��1

;



Fino and Nurowski, Analog of selfduality in dimension nine 109

u5 D .t3 C u1 � 2u3/.t3 C 2.u1 C u3// � .2t2 � u4/.t2 C 2u4/ � 4u2
7 C t21

3.2u7 � t1/
;

u6 D 2u3.u3 � u1/ � 4.u2
1 C u2

4/ � .t1 � 2u7/.2t1 C u7/C t22 C t23 C 3t3u3

3.2u4 C t2/
:

It is a matter of checking that this coincides with solution (6.22) from Section 6.2 in the limit

t1 ! 0, t2 ! 0, t3 ! 0.

A solution of (6.29) which has no limit when t1 ! 0, t2 ! 0, t3 ! 0 is given below:

u2 D 3t1t2 � 8t2u5 C 8t1u6 C 12u5u6

20t3
; u1 D u3 D t3; u4 D �1

2
t2; u7 D 1

2
t1:

Remark 6.16. It is remarkable that we have obtained analogs of selfduality with high

number of symmetries. We did not assume any symmetry conditions. The homogeneity of the

structures obtained were implied by the merely requirements that

C

� � 0 and T 2 VŒ0;2� ˚ VŒ0;6�:

It would be very interesting to find analogs of selfduality which are not locally homogeneous.

It is an open question whether such solutions exist.
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