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Analog Placement Based on
Symmetry-Island Formulation
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Abstract—To reduce the effect of parasitic mismatches and
circuit sensitivity to thermal gradients or process variations for
analog circuits, some pairs of modules need to be placed symmet-
rically with respect to a common axis, and the symmetric modules
are preferred to be placed at closest proximity for better elec-
trical properties. Most previous works handle the problem with
symmetry constraints by imposing symmetric-feasible conditions
in floorplan representations and using cost functions to minimize
the distance between symmetric modules. Such approaches are
inefficient due to the large search space and cannot guarantee the
closest proximity of symmetry modules. In this paper, we present
the first linear-time-packing algorithm for the placement with
symmetry constraints using the topological floorplan representa-
tions. We first introduce the concept of a symmetry island which
is formed by modules of the same symmetry group in a single
connected placement. Based on this concept and the B∗-tree rep-
resentation, we propose automatically symmetric-feasible (ASF)
B∗-trees to directly model the placement of a symmetry island. We
then present hierarchical B∗-trees (HB∗-trees) which can simulta-
neously optimize the placement with both symmetry islands and
nonsymmetric modules. Unlike the previous works, our approach
can place the symmetry modules in a symmetry group in close
proximity and significantly reduce the search space based on the
symmetry-island formulation. In particular, the packing time for
an ASF-B∗-tree or an HB∗-tree is the same as that for a plain
B∗-tree (only linear) and much faster than previous works. Experi-
mental results show that our approach achieves the best-published
quality and runtime efficiency for analog placement.

Index Terms—Analog circuit, floorplanning, physical design,
placement.

I. INTRODUCTION

FOR ANALOG layout design, some pairs of modules need

to be placed symmetrically with respect to a common axis.

The symmetric placement has several advantages: It reduces

the effect of parasitic mismatches which may lead to higher

offset voltages and degrade power-supply rejection ratio [2].

It can also reduce the circuit sensitivity to process variations
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by placing the symmetric devices closed to each other. Failure

to adequately balance thermal coupling in a differential circuit

can even introduce unwanted oscillations [3]. Furthermore,

the symmetric modules are preferred to be placed at closest

proximity for better parasitic matching and other electrical

properties.

A. Previous Work

The problem of analog placement considering symmetry

constraints has been extensively studied in the literature. Most

of these works used the simulated-annealing (SA) algorithm

[4] in combination with floorplan representations to handle

symmetry constraints. We can classify these representations

into two major categories: 1) the absolute representation and

2) the topological representation.

An absolute representation was proposed by Jepsen and

Gellat [5]. For this representation, each module is associ-

ated with an absolute coordinate on a gridless plane. It op-

erates on a module by changing its coordinate directly. The

KOAN/ANAGRAM II [2], PUPPY-A [6], and LAYLA [7]

systems all adopted the absolute representation to handle the

placement of analog modules. The main weakness of the ab-

solute method lies in the fact that it may generate an infeasible

placement with overlapped modules. Therefore, a postprocess-

ing step must be performed to eliminate this condition, which

implies a longer computation time.

Recently, most previous works apply topological floor-

plan representations due to its flexibility and effectiveness.

Balasa et al. derived the symmetric-feasible conditions for

several popular floorplan representations including sequence

pairs (SPs) [8], O-tree [9], and binary trees [10]. To explore

the solution space in the symmetric-feasible binary trees, they

augmented the B∗-tree [11] using various data structures, in-

cluding segment trees [3], [12], red–black trees [13], and de-

terministic skip lists [14]. Lin et al. [15] also presented the

symmetric-feasible conditions for the TCG-S representation.

Three more recent works [16]–[18] further took advantage of

the symmetric-feasible condition in SPs [8]. Koda et al. [16]

proposed a linear-programming-based method, and Tam et al.

[17] introduced a dummy node and additional constraint edges

for each symmetry group after obtaining a symmetric-feasible

SP. Krishnamoorthy et al. [18] proposed an O(m · n lg lg n)
packing-time algorithm by employing the priority queue, where

m is the number of symmetry groups and n is the number

of modules. More recently, Zhang et al. [19] further im-

proved the perturbation time of the TCG representation from

O(n2) to O(n).

0278-0070/$25.00 © 2009 IEEE
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Most of the previous works showed that the symmetric-

feasible conditions in the topological representations can han-

dle the placement problem with a symmetry group effectively.

However, it is time-consuming to generate a relatively larger

scale placement with several symmetry groups. For example,

Koda et al. [16] reported that it takes almost an hour on a

3.2-GHz Pentium PC to generate a symmetric placement of

110 modules with five symmetry groups.

We observed several problems/deficiencies in the previous

works for analog placement: First, most previous works em-

ployed either an initial scan or a postprocessing with penalty

to avoid or fix the violation of the symmetric-feasible con-

dition for each perturbation during the SA process. There is

no direct representation that can guarantee the symmetric-

feasible condition in the representation itself. It is clear that

such approaches are inefficient due to the large search space and

fixing overheads. Consequently, the previous works using topo-

logical floorplan representations need O(m · n lg lg n) time for

packing n modules. Second, most previous works used cost

functions or weights to penalize the solution with symmetric

modules far from each other. Obviously, such approaches can-

not guarantee the close proximity (or even the adjacency) of

symmetry modules.

B. Our Contributions

In this paper, we present the first linear-time-packing algo-

rithm for the placement with symmetry constraints, compared

to the previous works that need O(m · n lg lg n) time. Specif-

ically, the packing complexity of the previous works [8]–[10],

[15]–[17], [19] are all O(n2) time while those of [3], [12]–[14]

need O(n lg n) time (the work in [18] requires O(m · n lg lg n)
time, which was the fastest previous work).

We first introduce the concept of symmetry island that keeps

modules of the same symmetry group connected to each other

so that the circuit sensitivity to thermal gradients or process

variations can be reduced. Based on this concept and the B∗-

tree representation [11], we propose a representation called au-

tomatically symmetric-feasible (ASF)-B∗-trees that can model

the compacted placement of a symmetry island (i.e., the sym-

metric placement of the modules in a symmetry group). Specif-

ically, an ASF-B∗-tree corresponds to a symmetry island with a

rectilinear placement. It guarantees a symmetric placement and

does not need to verify/fix the symmetric-feasible conditions

during SA perturbations.

We then present a hierarchical framework called hierarchi-

cal B∗-trees (HB∗-trees) which can simultaneously optimize

the placement with both symmetry islands and nonsymmetric

modules and dynamically update the rectilinear shape for the

modules in a symmetry island. In particular, the overall time

complexity for packing an ASF-B∗-tree or an HB∗-tree is

the same as that for a plain B∗-tree (only linear) and much

faster than previous works. Experimental results based on the

MCNC benchmarks [15] and the real industry designs used

in [16] show that our approach produces the best published

results and runtime efficiency for analog placement. Further-

more, the scalability of our approach is much better than those

of the previous works. It should be noted that our formula-

TABLE I
COMPARISONS OF POPULAR PREVIOUS WORKS AND OUR APPROACHES.
n: THE NUMBER OF MODULES; m: THE NUMBER OF SYMMETRY PAIRS

tion requires modules in a symmetry island to be connected,

which corresponds to common cases in analog placements.

We can leverage this property to prune the solution subspace

formed with nonsymmetry-island placements, leading to effi-

cient and effective operations of the ASF-B∗-trees. According

to our empirical results, in particular, this solution pruning

does not degrade the resulting solution quality for practical

applications.

Table I compares state-of-the-art previous works using

the topological floorplan representations and our approach

(ASF-B∗-tree + HB∗-tree).
The remainder of this paper is organized as follows.

Section II gives the preliminaries about the symmetry con-

straints, symmetry islands, and the B∗-tree representation.

Section III presents how to model the placement of a symmetry

group as a symmetry island using the ASF-B∗-tree. Section IV

proposes the hierarchical framework, HB∗-tree, and Section V

presents our placement algorithm. Section VI reports the exper-

imental results, and finally, Section VII concludes this paper.

II. PRELIMINARIES

In this section, we first introduce the symmetry constraints

for analog placement, the definitions of symmetry types, and

the concept of symmetry islands. Then, we review the B∗-tree

representation in [11] on which this paper is based.

A. Symmetry Constraints

Symmetry constraints can be formulated in terms of symme-

try types, symmetry groups, symmetry pairs, and self-symmetric

modules. In analog layout design, a symmetry group may

contain some symmetry pairs and self-symmetric modules with

respect to a certain symmetry type. A symmetry type may

correspond to a symmetry axis in either horizontal or vertical

direction. Fig. 1 shows two different symmetry types with either

vertical or horizontal symmetry axis.

For the symmetric placement with the vertical (horizontal)

symmetry axis shown in Fig. 1(a) [Fig. 1(b)], a symmetry pair

with two modules of the same dimensions and orientations

should be placed symmetrically along the vertical (horizon-

tal) symmetry axis. A self-symmetric module whose internal
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Fig. 1. Two symmetry types. (a) Symmetric placement with the vertical
symmetry axis. (b) Symmetric placement with the horizontal symmetry axis.

TABLE II
NOTATIONS IN THIS PAPER

structure is self-symmetric must have its center placed at the

symmetry axis.

We use the notations listed in Table II throughout this paper.

Let S = {S1, S2, . . . , Sm} be a set of m symmetry groups

whose coordinate(s) of the symmetry axis (axes) is (are) de-

noted by x̂i or ŷi (x̂i and ŷi), 1 ≤ i ≤ n. A symmetry group

Si = {(b1, b
′
1), (b2, b

′
2), . . . , (bp, b

′
p), b

s
1, b

s
2, . . . , b

s
q} consists of

p symmetry pairs and q self-symmetric modules, where (bj , b
′
j)

denotes a symmetry pair and bs
k denotes a self-symmetric mod-

ule. Let (xj , yj) and (x′
j , y

′
j) denote the respective coordinates

of the centers of two modules bj and b′j in a symmetry pair

(bj , b
′
j), respectively, and (xs

k, ys
k) denotes the coordinate of

the center of the self-symmetric module bs
k. The symmetric

placement of a symmetry group Si with the vertical (horizontal)

symmetry axis must satisfy (1) [(2)]

xj + x′
j = 2 × x̂i ∀j = 1, 2, . . . , p

yj = y′
j ∀j = 1, 2, . . . , p

xs
k = x̂i ∀k = 1, 2, . . . , q (1)

xj =x′
j ∀j = 1, 2, . . . , p

yj + y′
j = 2 × ŷi ∀j = 1, 2, . . . , p

ys
k = ŷi ∀k = 1, 2, . . . , q. (2)

B. Symmetry Island

Before introducing the symmetry island, we shall first inves-

tigate the effect of the symmetric device layout on the electrical

matching properties of the symmetric devices. Pelgrom et al.

[20] measured the mismatch between MOS transistors with

various electrical parameters as a function of device areas, dis-

tances, and orientations. According to Pelgrom et al. [20], the

difference of an electrical parameter P between two rectangular

devices is modeled by the standard deviation, as shown in (3),

where AP is the area proportionality constant for P , W and L

denote the respective width and length of the device, and SP

denotes the variation of P under the device spacing Dx

σ2(∆P ) =
A2

P

WL
+ S2

P D2
x. (3)

We assume that the device dimensions of modules in a

symmetry pair are the same. According to the above equation,

the larger the distance between the symmetry pair, the greater

differences between their electrical properties. Therefore, it

is of significant importance for the symmetric devices of a

symmetry group to be placed in close proximity. Fig. 2(a) shows

an analog circuit of a two-stage CMOS operational amplifier

containing the differential input subcircuit. The devices M1,

M2, M3, M4, and M5 in the differential input subcircuit

form a symmetry group S = {(M1,M2), (M3,M4),M5}.

Fig. 2(b) and (c) shows two corresponding layouts with dif-

ferent placement styles for the symmetry group S. The layout

style in Fig. 2(c) is generally considered much better than that

in Fig. 2(b) because the symmetric modules of the same sym-

metry group are placed at closer proximity (or even adjacent)

to each other. Consequently, the sensitivities due to process

variations can be minimized, and the circuit performance can

be improved.

Based on the placement with the closest proximity for a

symmetry group as shown in Fig. 2(c), we introduce the concept

of symmetry islands and give its definition as follows.

Definition 1: A symmetry island is a placement of a symme-

try group in which each module in the group abuts at least one

of the other modules in the same group, and all modules in the

symmetry group form a connected placement.

We further use the example in Fig. 3 to explain the concept of

symmetry islands. The symmetry group S1 in Fig. 3(a) forms a

symmetry island but that in Fig. 3(b) does not, since it results in

two disconnected components. The placement style in Fig. 3(a)

is preferred in analog layout design due to its better electrical

properties.

C. Review of B∗-Trees

Since this paper is based on the B∗-tree representation [11],

we shall first give a brief review over the representation. A

B∗-tree is an ordered binary tree representing a compacted

placement, in which every module can no longer move left and

bottom. As shown in Fig. 4, every node of a B∗-tree corresponds

to a module of a compacted placement. The root of a B∗-

tree corresponds to the module on the bottom-left corner. For

each node n corresponding to a module b, the left child of n
represents the lowest adjacent module on the right side of b,

while the right child of n represents the first module above b
with the same horizontal coordinate.

Given a B∗-tree, we can calculate the coordinate of each

module by a preorder tree traversal. Suppose the module bi,

represented by the node ni, has the bottom-left coordinate

(xi, yi), the width wi, and the height hi. Then, for the left child

nj of ni, xj = xi + wi; for the right child nk of ni, xk = xi.

In addition, we maintain a contour structure to calculate the

y-coordinates. Thus, starting from the root node, whose bottom-

left coordinate is (0, 0), then visiting the root’s left subtree and,

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore.  Restrictions apply. 



794 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Fig. 2. Example analog circuit and two different layout styles for the circuit. (a) Schematic of a two-stage CMOS operational amplifier, where the differential
input subcircuit forms a symmetry group. (b) Layout design of the circuit in (a), where the devices of a symmetry group are not placed close to each other.
(c) Another layout design of the circuit in (a), where the devices of a symmetry group are placed close to each other.

Fig. 3. Two symmetric-placement examples of a symmetry group S1 =
{(b1, b′

1
), (b2, b′

2
)}. (a) S1 forms a symmetry island. (b) S1 cannot form a

symmetry island.

Fig. 4. (a) Compacted placement [same as in Fig. 3(a)]. (b) B∗-tree represent-
ing the compacted placement in (a).

then, its right subtree, this preorder-tree-traversal procedure,

also known as B∗-tree packing, calculates all coordinates of

the modules in the placement. Using a doubly linked list to

implement the contour structure, the total packing time is linear

to the number of modules.

III. PLACEMENT OF A SYMMETRY GROUP

In this section, we propose the ASF-B∗-tree to consider the

symmetric placement of a symmetry group and the packing

of the symmetry modules to make a symmetry island. Like

Fig. 5. (a) Placement example of a symmetry group with a vertical symmetry
axis. (b) Selecting a representative for each symmetry pair and self-symmetric
module. (c) ASF-B∗-tree (also a representative B∗-tree) representing the place-
ment of the symmetry group, where the dash circled nodes represent the left-
boundary modules.

B∗-trees, the ASF-B∗-tree can represent only compacted sym-

metric placement; in particular, there exists a unique corre-

spondence between a compacted symmetric placement of a

symmetry group and its induced ASF-B∗-tree which results in

a symmetry island. We first present the definitions and prop-

erties of the ASF−B∗-tree and then prove the correspondence

between a symmetry island and its induced ASF-B∗-tree.

Before introducing the ASF-B∗-tree, we should define the

representative of a symmetry pair, the representative of a self-

symmetric module, and the representative B∗-tree.

Definition 2: The representative br
j of a symmetry pair

(bj , b
′
j) is b′j .

Definition 3: The representative br
k of a self-symmetric mod-

ule bs
k is the right (top) half of bs

k in a symmetric placement with

respect to a (horizontal) symmetry axis.

For the example shown in Fig. 5, the representative br
1 of the

symmetry pair {b1, b
′
1} is b′1, while the representative br

0 of the

self-symmetric module bs
0 is the right half of bs

0.
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It should be noted that each symmetry pair or self-symmetric

module must have its own representative module. Therefore, the

number of the representatives in a symmetry group should be

the same as the number of symmetry pairs and self-symmetric

modules. We define the representative B∗-tree as follows.

Definition 4: A representative B∗-tree is a B∗-tree containing

only the representative nodes that correspond to representative

modules.

In the following, we describe how to obtain an ASF-B∗-tree

by making a representative B∗-tree symmetric feasible for sym-

metric placements with vertical and horizontal symmetry axes.

We first introduce the mirrored placement of the representative

modules for a symmetry group.

Definition 5: The mirrored placement of the representative

modules for a symmetry group Si is to place the nonrepresen-

tative modules on the mirrored positions of the representative

ones for each symmetry pair or each self-symmetric module in

Si with respect to its symmetry axis (axes). Furthermore, the

representative and the nonrepresentative modules of each self-

symmetric module are not disjointed.

We are now ready to define the symmetric-feasible condition

of a representative B∗-tree for the symmetric placements.

Definition 6: A representative B∗-tree is symmetric feasible

if the mirrored placement of the representative modules can be

obtained after packing the representative B∗-tree.

In Fig. 5(a), the modules in the symmetry group S =
{(b1, b

′
1), b

s
0, b

s
2, b

s
3} are placed symmetrically with respect to

the vertical axis. To construct the corresponding representative

B∗-tree, we should select the representative module of each

symmetry pair and self-symmetric module and consider the

placement on the right half-plane. Fig. 5(b) shows the rep-

resentative modules, and Fig. 5(c) shows the corresponding

representative B∗-tree of the symmetric placement. Each node

in the representative B∗-tree corresponds to a representative

module.

To make the representative B∗-tree symmetry symmetric fea-

sible, we have the following lemmas which gives the symmetry

condition for a self-symmetric module and a symmetry pair.

Lemma 1: The representative of a self-symmetric module

must abut the symmetry axis.

Proof: Let S be a symmetry group with a vertical symme-

try axis and bs be a self-symmetric module in S. The symmetry

axis of S is denoted by x̂, and the center of bs is denoted by

(xs, ys).
Based on (1), the symmetry axis x̂ always passes through the

center (xs, ys) of the self-symmetric module bs, i.e., x̂ = xs.

According to Definition 3, the representative br of bs is the right

half of bs. Therefore, the center (xs, ys) of bs must be on the

left boundary of br. To keep the symmetric-feasible condition

x̂ = xs, br must abut the symmetry axis x̂. The case for a

symmetry group with a horizontal symmetry axis can be proved

similarly. Q.E.D.

Lemma 2: The representative of a symmetry pair not on a

symmetry axis is always symmetric feasible.

Proof: Let S be a symmetry group with a vertical symme-

try axis and (b, b′) be a symmetry pair in S. The symmetry axis

of S is denoted by x̂. The respective centers of b and b′ are (x, y)
and (x′, y′), and the respective widths/heights of b and b′ are

Fig. 6. (a) Placement example of a symmetry group with a horizontal sym-
metry axis. (b) Selecting a representative module for each symmetry pair
and self-symmetric module. (c) ASF-B∗-tree (also a representative B∗-tree)
representing the placement of the symmetry group, where the dash circled
nodes represent the bottom-boundary modules.

w/h and w′/h′, where w = w′ and h = h′. The representative

of the symmetry pair (b, b′) is b′.
Given the coordinate of the representative b′ and the vertical

symmetry axis x̂, the coordinate of the symmetric module b can

be calculated by (1). We have x = 2 × x̂ − x′ and y = y′. After

transposing x̂ to the left side and having the absolute value on

both sides, we have |x − x̂| = |x̂ − x′|. Since the representative

is not on the symmetry axis, we have |x − x̂| = |x̂ − x′| ≥
w/2. It means that the distances from the symmetry axis to

the centers of b and b′ are greater than or equal to half of the

width of b or b′. Since b and b′ are on different sides of the

symmetry axis, b and b′ will not overlap each other. Therefore,

the symmetric-feasible condition is always satisfied. The case

for a symmetry group with a horizontal symmetry axis can be

proved similarly. Q.E.D.

According to Lemma 1 and the boundary constraints [21] in

the B∗-trees, we have the following property for the symmetric-

feasible representative B∗-trees representing 1-D symmetric

placement.

Property 1: The left-boundary (right-boundary) constraint

for the symmetric placement with respect to a vertical (horizon-

tal) symmetry axis: The representative node of a self-symmetric

module should always be on the rightmost (leftmost) branch of

the representative B∗-tree.

Based on the above property, the nodes representing the mod-

ules on the left boundary should be on the rightmost branch, as

shown in Fig. 5(c).

Similarly, we can get the symmetric-feasible representative

B∗-tree of the symmetric placement when the symmetry axis

is in the horizontal direction. In this case, we only consider

the top half-plane during the placement of the representative

modules. Fig. 6(c) shows the representative B∗-tree of the

symmetry group S = {(b0, b
′
0), b

s
1, b

s
2, b

s
3} having the symmet-

ric placement with respect to the horizontal symmetry axis

in Fig. 6(a). Again, the representatives of the self-symmetric

modules should abut the horizontal symmetry axis which is on

the bottom boundary of the top half-plane. Therefore, the nodes

representing the modules on the bottom boundary should be on

the leftmost branch, as shown in Fig. 6(c).

Based on Definition 4 and Property 1, we define an ASF-

B∗-tree as follows.

Definition 7: An ASF-B∗-tree is a representative B∗-tree

which satisfies Property 1.

Once an ASF-B∗-tree is packed, the coordinates of these

representatives are obtained. We can further calculate the
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coordinates of their symmetric modules based on (1) and (2)

with the given coordinates of the symmetry axes, x̂i and ŷi.

Then, we have the symmetric placement of a symmetry group,

and it automatically forms a symmetry island.

Based on Lemmas 1 and 2, we have the following theorems.

Theorem 1: An ASF-B∗-tree is symmetric feasible in a sym-

metric placement of a symmetry group with respect to either a

vertical or a horizontal symmetry axis.

Proof: An ASF-B∗-tree is symmetric feasible if all

the representatives in the ASF-B∗-tree are symmetric fea-

sible. There are four kinds of representatives, and the

symmetric-feasible condition for each is defined and proved

in Lemmas 1 and 2. Therefore, an ASF-B∗-tree is symmet-

ric feasible in a symmetric placement of a symmetry group

with respect to either a vertical or a horizontal symmetry

axis. Q.E.D.

Theorem 2: The packing of an ASF-B∗-tree results in a

symmetry island of the corresponding symmetry group.

Proof: It is obvious that all the representative modules

will form a connected placement after packing. We set the

coordinate(s) of the symmetry axis (axes) to the left or (and) the

bottom boundary (boundaries) of the connected placement of

the representative modules. The coordinates of the symmetric

modules can be calculated by (1) and (2). The symmetric

modules also form a connected placement, and the boundary

of the connected placement also abut the symmetry axis (axes).

Therefore, the whole symmetry group forms a connected place-

ment, and each module in the group abuts at least one of the

other modules in the same group. The packing of an ASF-B∗-

tree, thus, results in a symmetry island of the corresponding

symmetry group. Q.E.D.

Theorem 3: There exists a unique correspondence between

a compacted symmetric placement of a symmetry group and its

induced ASF-B∗-tree.

Proof: According to Chang et al. [11], there is a unique

correspondence between an admissible placement and its in-

duced B∗-tree. After obtaining the placement of the repre-

sentative modules, we simply get the mirrored placement of

the symmetric ones. The mirrored placement is also unique.

Therefore, there exists a unique correspondence between a

compacted symmetric placement of a symmetry group and its

induced ASF-B∗-tree. Q.E.D.

Based on the earlier theorems, we can correctly find a

corresponding symmetric placement for an ASF-B∗-tree very

efficiently, by avoiding searching in redundant solution spaces.

It will be clear later in Section VI that these nice properties of

ASF-B∗-trees lead to superior solution quality and efficiency

for analog placement.

IV. HIERARCHICAL FRAMEWORK

We propose a hierarchical framework, called hierarchical

B∗-tree (HB∗-tree for short), to handle the simultaneous place-

ment of modules in symmetry islands and nonsymmetric mod-

ules. In an HB∗-tree, the symmetry island of each symmetry

group can be in any rectilinear shapes, and symmetry and

nonsymmetric modules are simultaneously placed to optimize

the placement.

Fig. 7. HB∗-tree for the placement in Fig. 3(a).

Fig. 8. (a) ASF-B∗-tree of a symmetry group S0. (b) Horizontal and vertical
contours of the corresponding placement. (c) Symmetry island and its effective
contours. (d) HB∗-tree for the rectilinear symmetry island.

A. HB∗-Tree Representation

Fig. 7 shows an HB∗-tree for the placement in Fig. 3(a). Two

symmetry groups, S1 and S2, are represented by two hierarchy

nodes, nS1
and nS2

, and each hierarchy node contains an ASF-

B∗-tree that corresponds to a symmetry island in the symmetric

placement.

The symmetry islands are often not rectangular but are of rec-

tilinear shapes. For example, in Fig. 8(c), the symmetry island

of the symmetry group S0 is of the rectilinear shape. Therefore,

we should augment the HB∗-tree in Fig. 7 to handle rectilinear

symmetry islands. Wu et al. [22] proposed a method to deal

with rectilinear modules by slicing a rectilinear module into

several rectangular submodules along each vertical boundary.

However, it is complicated to maintain the relationship between

the submodules during B∗-tree perturbations.

Instead of slicing a rectilinear symmetry island, we introduce

contour nodes to represent top horizontal contour segments of

the symmetry island. In Fig. 8(c), there are three horizontal

contour segments: c00, c01, and c02. We augment the HB∗-tree

by introducing the three contour nodes, n00, n01, n02, as shown

in Fig. 8(d). Each contour node keeps the coordinates of the

corresponding horizontal contour segment. The relationship of

a hierarchy node, its contour nodes, and other regular module

nodes is described as follows.

Property 2: Properties for an HB∗-tree.

1) The left child of a hierarchy node, if any, must be a

noncontour node.

2) The right child of a hierarchy node must be the contour

node representing the leftmost top horizontal contour

segment of the symmetry island.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 27, 2009 at 13:42 from IEEE Xplore.  Restrictions apply. 



LIN et al.: ANALOG PLACEMENT BASED ON SYMMETRY-ISLAND FORMULATION 797

3) The left child of a contour node, if any, must be the

contour node representing the next contour segment on

the right side.

4) The right child of a contour node, if any, must be a

noncontour node.

5) The children of a regular module node must be noncon-

tour nodes.

6) The parent of a contour node cannot be a regular module

node.

Proof: Given a symmetry group S0, bS0
denotes the sym-

metry island of S0, nS0
denotes the corresponding hierarchy

node, and n0i represents the ith top contour segment of bS0

from left to right.

1) Since the contour node n0i represents the ith top contour

segment of bS0
, it is impossible for n0i to be the left child

of nS0
that corresponds to the lowest adjacent module on

the right side of bS0
, based on the B∗-tree definition. The

property thus follows.

2) According to the definition of the B∗-tree, the right child

of nS0
represents the first module above bS0

. Since the

top horizontal contour segments of bS0
always abut bS0

,

other modules cannot be placed between bS0
and its top

contour segments. Therefore, the right child of nS0
must

be a contour node representing the leftmost top horizontal

contour segment of bS0
.

3) By the contour-node definition, the contour node n0,i

represents the ith top contour segment of bS0
from left

to right, and the left child of n0,i, if any, is n0,i+1,

representing the next [(i + 1)th] contour segments. If n0,i

represents the last (the rightmost) top contour segment,

the left child of n0i is empty.

4) The right child of the contour node n0i represents the first

module above the ith top contour segment of bS0
. If there

exists another contour node n0j that is the right child of

n0i, both contour segments will overlap each other with

n0j’s contour segment on top of that of n0i, implying that

n0i is not a contour node. A contraction.

5) Based on the second and the third properties of the HB∗-

tree, the contour node n0i cannot be the left or right child

of a regular module node. The property thus follows.

6) Based on the construction of the HB∗-tree, the parent of a

contour node is either a contour node or a hierarchy node.

Q.E.D.

Fig. 8(a) shows the ASF-B∗-tree of the symmetry group

S0 = {(b0, b
′
0), (b1, b

′
1), (b2, b

′
2)}. In Fig. 8(b), the horizontal

and vertical contours are obtained from the rectilinear outline

after packing the ASF-B∗-tree. Fig. 8(c) shows the symmetry

island and the effective horizontal and vertical contours. The

horizontal contour segments are denoted as c00, c01, and c02

from left to right. Therefore, we have a hierarchy node nS0

representing the symmetry island of the symmetry group S0,

and three contour nodes n00, n01, and n02 representing the

contour segments. The relationship between the hierarchy node

and its contour nodes is shown in the HB∗-tree in Fig. 8(d).

After introducing the representation and the properties of

HB∗-trees, we present the packing procedure for ASF-B∗-trees

and HB∗-trees.

Fig. 9. Packing procedure including the contour updates of the ASF-B∗-tree
in Fig. 8(a).

Fig. 10. Generation of the bottom contour of the symmetry island based on
the dual vertical contours. (a) Convex points obtained by traversing the dual
vertical contours from bottom to top. (b) Bottom horizontal contour connected
by the convex points.

B. ASF-B∗-Tree Packing

The packing of the ASF-B∗-tree is similar to that of the

B∗-tree [11] which follows the preorder-tree-traversal proce-

dure to calculate the coordinates of the modules. During the

packing, two double-linked lists are implemented to keep both

horizontal and vertical contour structures. Fig. 9 shows the

packing procedure of the example ASF-B∗-tree in Fig. 8(a). The

bold (red) lines denote the horizontal contour, while the dotted

(green) lines represent the vertical contour.

After obtaining the coordinates of all representative modules

in the symmetry group, we can calculate the coordinates of

the symmetric modules and the extended contours based on

either (1) or (2). Fig. 8(b) shows the resulting placement of the

symmetry group and the contours of the symmetry island for

the ASF-B∗-tree shown in Fig. 8(a). As shown in Fig. 8(b), the

symmetry island contains one top horizontal and dual vertical

contours. To further calculate the bottom horizontal contour of

the symmetry island, we need to traverse both vertical contours

from bottom to top and keep the convex points as shown in

Fig. 10(a). By connecting the convex points horizontally, we

can obtain the bottom horizontal contour of the symmetry

island, as shown in Fig. 10(b).

C. HB∗-Tree Packing

The HB∗-tree packing also adopts the preorder-tree-traversal

procedure. When a hierarchy node is traversed, the ASF-B∗-

tree in the hierarchy node should be packed first to obtain

the contours of the symmetry island described previously. The

contours are then stored in the corresponding hierarchy node.

During packing a hierarchy node representing a symmetry

island, we should calculate the best packing coordinate for the

bottom boundary of the symmetry island, based on the bottom

contour shown in Fig. 10(b). We then proceed to pack the

left child of the hierarchy node. After the left child and all

its descendants are packed, we pack the first contour node of

the symmetry island, followed by the second one, and so on.

When packing the contour nodes, we only need to update their
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Fig. 11. (a) HB∗-tree representing 20 modules with two symmetry groups S0

and S1. (b) Resulting placement after packing the HB∗-tree.

coordinates and replace the hierarchy node in the contour data

structure of the HB∗-tree.

Fig. 11(a) shows an HB∗-tree representing 20 modules with

two symmetry groups S0 and S1. For the packing, the two ASF-

B∗-trees in nS0
and nS1

are packed first, and the rectilinear

outlines of the two symmetry islands are obtained. Then, the

nodes, n5, n6, n7, n8, and n9, are packed in the depth-first

search order. The temporal contour list is 〈n5, n6, n7, n9〉. By

calculating the rectilinear outlines between the temporal con-

tour list and the bottom boundary of the symmetry island S0,

the dead space between the previously packed modules and the

symmetry island can be minimized. The updated temporal con-

tour list becomes 〈nS0
, n7, n9〉. Continuing the packing pro-

cedure, we can obtain the resulting placement of the HB∗-tree

in Fig. 11(b) finally. Although the purpose of the packing is

to obtain a compacted placement, we might need to allocate

sufficient white space for the surrounding wells or guard rings

based on the device types, such as NMOS or PMOS transistors.

When packing a node, the device type of the corresponding

module should be compared with those of the previously

packed modules in the current contour list. If the device types

are different, the currently packed module should be snapped to

a position to reserve sufficient white space for the surrounding

wells or guard rings.

We have the following theorem for the packing complexity.

Theorem 4: The packing for an ASF-B∗-tree or an HB∗-tree

takes linear time.

Proof: Given a design with n modules (including symme-

try and nonsymmetry ones) and m symmetry groups, let n̂ be

the number of nonsymmetric modules and n(Si) be the number

of modules in each symmetry group Si, where n(Si) ≥ 1. We

have n = n̂ +
∑m

i=1 n(Si).
For the HB∗-tree representing the symmetric placement of

the given design, there are m hierarchy nodes, O(
∑m

i=1 n(Si))
contour nodes, and n̂ module nodes. For the ASF-B∗-tree of

the symmetry group Si in a hierarchy node, there are O(n(Si))
representative nodes.

We first consider the packing for the ASF-B∗-tree of the

symmetry group Si in a hierarchy node. It consists of two steps.

The first step is the packing for all representative modules.

The second step is the calculation of the coordinate of each

symmetric module.

According to Chang et al. [11], the packing for a B∗-tree

takes linear time, so the time complexity of the first step is

O(n(Si)). Since it takes constant time to calculate the coor-

dinate of a symmetric module, it also takes O(n(Si)) time to

compute the coordinates of all the symmetric modules in Si.

Combining both steps, we have the O(n(Si)) time complexity

for the packing of an ASF-B∗-tree of Si.

Second, we consider the packing for the HB∗-tree. If all the

symmetry islands of m symmetry groups are in a rectangular

shape. We can ignore the contour nodes in the HB∗-tree, and

it takes O(m + n̂) time to pack the HB∗-tree. However, if any

symmetry island is in a rectilinear shape, we need to consider

the packing of the hierarchy node representing this symmetry

island, particularly the additional contour nodes.

The bottom contour of the symmetry island of Si is obtained

when the corresponding ASF-B∗-tree of the symmetry group

is packed, and the number of the bottom contour segments is

O(n(Si)). By comparing the current packing contour segments

and the bottom contour segments of the symmetry island from

left to right, it also takes O(n(Si)) time to get the coordinates

of the modules in the symmetry island Si.

To sum up, it takes O(m +
∑m

i=1 n(Si) + n̂) time to pack

the HB∗-tree. Since n =
∑m

i=1 n(Si) + n̂, the packing time can

be reduced to O(m + n) time. Since the number of symmetry

group m is upper bounded by the number of total modules n,

the packing time is O(n). Q.E.D.

It should be noted that this is the fastest algorithm in the lit-

erature for the placement with symmetry constraints, as shown

in Table I.

D. Advanced Symmetry Constraints

For some analog layout applications, the symmetry con-

straints could be even more complex than what we have con-

sidered. We brief the handling of two kinds of such symmetry

constraints in the following.

1) Multiple Symmetry-Group Alignment: In some analog

layouts, the symmetry axes of different symmetry groups are

required to be aligned to share a common symmetry axis. To

align multiple symmetry groups with respect to a common

vertical (horizontal) symmetry axis, we can insert a zero-

height (zero-width) dummy block right at the left (bottom)

of each to-be-aligned symmetry island. We then introduce a

dummy node as the parent of the hierarchy node representing

the corresponding symmetry island in the HB∗-tree, where the

hierarchy node is the left (right) child of the dummy node.

By adjusting the width (height) of each dummy block, the

symmetry islands of different symmetry groups can be aligned

with respect to a common vertical (horizontal) symmetry axis.

Such an alignment technique is an extension of the work

in [23].

2) Hierarchical Symmetry: In some fully symmetric analog

designs, the device layouts should be hierarchically symmetric.
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A symmetry group Si may also contain a self-symmetry group

Ss
j and/or a symmetry-group pair (Sk, S′

k). Consequently, the

top-level symmetry group STop contains all device modules

and other symmetry groups hierarchically. Based on the pro-

posed symmetry-island and tree formulations, a hierarchical

tree structure [24] that mixes both the ASF-B∗-trees and the

HB∗-trees can be constructed. The optimized fully symmetric

placement with the hierarchical symmetry constraint can then

be obtained by searching a desired configuration of the tree

structure and packing the trees to form the symmetry islands

hierarchically.

E. Application to Hierarchical Clustering Constraint

Besides handling the symmetry constraints based on the

symmetry-island formulation, the proposed hierarchical frame-

work, HB∗-trees, can also effectively manage the hierarchical

clustering constraint in analog placement or mixed-signal floor-

planning based on the intrinsic hierarchical tree structure.

Let C = {C1, C2, . . . , Cl} be a set of device module clus-

ters. Each cluster contains at least two modules, or one module

and one of the other clusters, or two of the other clusters. If the

cluster Ci contains the cluster Cj , we call Ci a supercluster and

Cj a subcluster. The hierarchical clustering constraint limits all

the device modules and/or subclusters of the same supercluster

to a connected placement.

To formulate the hierarchical clustering constraint using

the HB∗-trees, each of the hierarchy nodes nC1
, nC2

, . . . , nCl

denotes a cluster. Each hierarchy node nCi
further contains

another HB∗-tree to represent the topological relation of the

device modules and/or the subclusters in the supercluster de-

noted by nCi
. After hierarchically constructing the HB∗-trees,

the placement can be optimized by searching a desired con-

figuration of the HB∗-trees while the inner placement of each

cluster is connected.

F. Consideration of Nonsymmetry-Island Placements

In addition to the preferred symmetry-island placements

in analog layouts, the proposed ASF-B∗-trees and HB∗-trees

can also generate a nonsymmetry-island placement by inte-

grating nonsymmetric modules as a self-symmetric module

cluster or a symmetry pair consisting of two module clusters

in a symmetry group represented by an ASF-B∗-tree. Fig. 12

shows two examples, including the symmetric placements and

the corresponding ASF-B∗-trees, which integrate nonsymmet-

ric module clusters into symmetry groups. In Fig. 12(a), the

nonsymmetric modules, b3 and b4, form the self-symmetric

module cluster C1 in the symmetry group S1. After packing

the B∗-tree representing the placement of the nonsymmetric

modules, the representative node nr
C1

is introduced in the ASF-

B∗-tree representing a symmetric placement of S1. Similarly,

in Fig. 12(b), the nonsymmetric modules, b7, b8, and b9, form

two clusters, C2 and C ′
2, as a symmetry pair in the symmetry

group S2. In the corresponding ASF-B∗-tree, the representative

node nr
C2

is introduced to denote the larger dimensions of the

placements of C2 and C ′
2.

Fig. 12. Integrating nonsymmetric modules into symmetry groups. (a) Non-
symmetric modules form the self-symmetric module cluster C1 = {b3, b4} in
the symmetry group S1 = {(b1, b′

1
), (b2, b′

2
), Cs

1
}. (b) Nonsymmetric mod-

ules form two clusters, C2 = {b7, b8} and C′

2
= {b9}, as a symmetry pair in

the symmetry group S2 = {bs

5
, (b6, b′

6
), (C2, C′

2
)}.

V. ALGORITHM

Our algorithm is based on the SA [4]. Given a set of modules

and symmetry constraints as the inputs, we construct an initial

solution represented by an HB∗-tree and, then, perturb it to

search for a desired configuration until a predefined termination

condition is satisfied. The cost function Φ(P ) of the placement

is defined in (4), where α and β are user-specified parameters,

AP is the area of the bounding rectangle for the placement, and

WP is the half-perimeter wire length

Φ(P ) = α × AP + β × WP . (4)

A. HB∗-Tree Perturbation

We apply the following operations to perturb an HB∗-tree.

1) Op1: Rotate a module.

2) Op2: Move a node to another place.

3) Op3: Swap two nodes.

In the perturbation, the nonhierarchy nodes have higher prob-

abilities to be selected because rotating, moving, or swapping

the hierarchy nodes might incur a big jump in finding the next

solution. It is well known that such a big jump might deteriorate

the solution quality during the SA process. It should be noted

that, due to the special structure of the HB∗-tree, we cannot

move a nonhierarchy node to the right child of a hierarchy node

or the left child of a contour node. The contour nodes are always

moved along with its hierarchy node which cannot be moved

individually.

B. ASF-B∗-Tree Perturbation

In addition to the aforementioned Op1, Op2, and Op3 for

HB∗-tree perturbation, we introduce the operations, Op4 and

Op5, to perturb the ASF-B∗-trees. It should be noted that

Property 1 should always be satisfied when perturbing an ASF-

B∗-tree according to the definition of the ASF-B∗-trees in

Definition 7.

1) Op4: Change a representative.

2) Op5: Convert a symmetry type.
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Fig. 13. Rotating the self-symmetric module bs

1
in the symmetry group

S = {bs

0
, bs

1
} results in the shape change of its representative br

1
.

1) Module Rotation: When rotating modules in a symmetry

group, the corresponding ASF-B∗-tree is unchanged. We should

consider two cases of symmetry-module rotation.

Case 1) Rotate a symmetry pair.

Case 2) Rotate a self-symmetric module.

In case 1), both modules of a symmetry pair should be rotated

at the same time so that they can still be symmetrically placed

with respect to a symmetry axis. In case 2), after rotating a

self-symmetric module, the shape of its representative should

be updated accordingly, as shown in Fig. 13.

2) Node Movement: When moving a node to another place in

an ASF-B∗-tree, we should consider the following two cases.

Case 1) Move a node representing the representative of a

symmetry pair.

Case 2) Move a node representing the representative of a

self-symmetric module.

In case 1), we can move the representative node of a sym-

metry pair to anywhere in an ASF-B∗-tree. In case 2), however,

we can only move the representative node of a self-symmetric

module along the rightmost (leftmost) branch of the ASF-

B∗-tree for vertical (horizontal) symmetric placement so that

Property 1 is satisfied.

3) Node Swapping: When swapping two nodes in an ASF-

B∗-tree, we consider the following two cases.

Case 1) Both nodes represent the representatives of two

different symmetry pairs.

Case 2) At least one node represents the representative of a

self-symmetric module.

In case 1), we can arbitrarily swap two nodes representing the

representatives of two different symmetry pairs. However, we

should be very careful for case 2). If at least one of the swapped

nodes represents the representative of a self-symmetric module,

the other node must be located on the same branch (i.e., the left-

most or the rightmost branch) of the ASF-B∗-tree. Therefore,

Property 1 is still satisfied after node swapping.

4) Representative Change: The purpose of changing a rep-

resentative for a symmetry pair or a self-symmetric module is to

optimize the wire length, while the area is kept unchanged after

changing the representative. We can change the representative

of either a symmetry pair or a self-symmetric module.

Case 1) Change the representative of a symmetry pair.

Case 2) Change the representative of a self-symmetric

module.

In case 1), for a symmetry pair (bj , b
′
j), we can simply change

the representative from bj to b′j or from b′j to bj . Fig. 14 shows

that changing the representative of the symmetry pair (b1, b
′
1)

from b′1 to b1 may result in shorter wire length between b1 and

b3. Similarly, in case 2), for a self-symmetric module bs
k, we can

change its representative by flipping it horizontally or vertically

Fig. 14. Changing the representative of the symmetry pair (b1, b′
1
) from b′

1

to b1 may result in shorter wire length between b1 and b3.

Fig. 15. Changing the representative of the self-symmetric module bs

1
may

result in shorter wire length between bs

1
and b3.

Fig. 16. Converting the symmetry type from (a) vertical symmetry to
(b) horizontal symmetry.

Fig. 17. Converting the symmetry type from (a) horizontal symmetry to
(b) vertical symmetry.

according to its symmetry axis. As shown in Fig. 15, changing

the representative of the self-symmetric module bs
1 by flipping

it horizontally may result in shorter wire length between bs
1 and

b3. Obviously, each operation takes constant time.

5) Symmetry-Type Conversion: For symmetry-type conver-

sion of a symmetry group, we should consider both conversions

between the vertical symmetry and the horizontal one.

Case 1) Convert the symmetry type from vertical symmetry

to horizontal one.

Case 2) Convert the symmetry type from horizontal symme-

try to vertical one.

To convert the symmetry type of a symmetry group from

vertical symmetry to horizontal one or vice versa, we first rotate

every module including the representative and, then, swap the

left and the right children of each node in the given ASF-B∗-

tree. Figs. 16 and 17 show the respective examples for the

conversions of cases 1) and 2).

It should be noted that the symmetry type is usually pre-

defined based on the power/ground lines or signal flows in

the layout by the analog designers. Therefore, Op5 is seldom

applied in real applications.
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Fig. 18. Example of updating contour-related nodes. (a) HB∗-tree and its
corresponding placement containing the symmetry group S0 = {(b0, b′

0
),

(b1, b′
1
)}. (b) Intermediate HB∗-tree after perturbing the ASFB∗-tree in the hi-

erarchy node nS0 and the corresponding symmetry island of S0. The contour-
related nodes, n3 and n5, become dangling. (c) HB∗-tree after updating the
contour-related nodes and its corresponding placement.

C. Contour-Node-Related Updates

Once an ASF-B∗-tree is perturbed, the number of the cor-

responding contour nodes in the HB∗-tree might be changed.

The tree structure might have to be updated accordingly. If the

number of contour nodes representing the horizontal contour

segments of the symmetry island is increased, the structure of

the HB∗-tree can be kept unchanged. However, if that of the

contour nodes is decreased, some other nodes in the HB∗-tree

might not have parents. We call such nodes dangling node,

and we should reassign new parents for these nodes. To keep

the relative placement topology before and after perturbing an

ASF-B∗-tree, we first find the nearest contour node for each

dangling node. If the nearest contour node has no right child,

it is the parent of the dangling node, and the dangling node

will be its right child. If the nearest contour node has a right

child, we continuously traverse the leftmost skewed child of

the right child. The leftmost skewed child will be the parent of

the dangling node, and the dangling node is assigned to its left

child. It takes amortized constant time to update the contour-

related nodes.

Fig. 18 shows an example of updating contour-related nodes.

In Fig. 18(a), there are initially three contour nodes representing

the three top contour segments of the symmetry island of the

symmetry group S0. After performing Op2 to perturb the ASF-

B∗-tree in nS0
, the representative node nr

1 is moved from the

left child to the right child of the other representative node nr
0.

TABLE III
MCNC BENCHMARK CIRCUITS

TABLE IV
INDUSTRY BENCHMARK CIRCUITS

The placement of S0 forms a new symmetry island, as shown in

Fig. 18(b) which has only one top contour segment. Therefore,

the contour nodes n01 and n02 disappear, and the nodes n3 and

n5 become dangling nodes. We first find the nearest contour

node of n3, which is n00. Since n00 already has the right child

n2, the leftmost skewed child of n2 should be searched. In this

case, we directly assign n3 to be the left child of n2 because n2

has no left child. After n3 is assigned to a proper tree location,

the nearest contour node of n5 is then searched, which is also

n00. Since n00 already has the right child n2, the leftmost

skewed child is searched, which is n3. We assign n3 to be the

parent of n5, and n5 is the left child of n3.

VI. EXPERIMENTAL RESULTS

We implemented our placement algorithm in the C++ pro-

gramming language on a 3.2-GHz Intel Pentium4 PC under the

Linux operating system. We performed two sets of experiments:

One is based on the four MCNC benchmarks (apte, hp, ami33,

and ami49) used in [15], and the other consists of two real

industry analog designs (biasynth_2p4g and lnamixbias_2p4g)

used in [12] and [16] (note that they both were extracted by

Koda et al. [16] from [12, Figs. 9 and 10]). Table III lists

the names of the MCNC benchmark circuits (“Circuit”), the

numbers of modules (“# of Mod.”), the numbers of sym-

metry modules (“# of Sym. Mod.”), and the total module

areas (“Mod. Area”). Table IV lists the names of the indus-

try benchmark circuits (“Circuit”), the numbers of modules

(“# of Mod.”), the numbers of symmetry modules (“# of

Sym. Mod.”), and the total module areas (“Mod. Area”).

Our approach is based on SA. A left skewed HB∗-tree was

constructed as the initial solution. The initial temperature T0

was calculated by (5), where ∆avg is the average uphill cost and

P is the initial probability to accept uphill solutions. During the

SA process, the temperature was reduced at the rate of 0.9 for

each subsequent pass, and 20 000 iterations were performed at

each temperature/pass

T0 = −∆avg/ ln P. (5)

In the first set of experiments, we compared our algorithm

with the following works: SPs [8], segment trees [3], TCG-S

[15], and SPs with dummy nodes [17]. Table V lists the names

of the MCNC benchmark circuits (“Circuit”), the total areas
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TABLE V
COMPARISONS OF AREA UTILIZATION AND CPU TIMES FOR SP (ON SUN SPARC ULTRA-60 433 MHz), SEGMENT TREE (SEG. TREE) (ON SUN SPARC

ULTRA-60 433 MHz), TCG-S (ON SUN SPARC ULTRA-60 433 MHz), SP WITH DUMMY NODES (SP w. DUMMY) (ON PENTIUM4 3.2 GHz),
AND OUR HB∗-TREE (ON PENTIUM4 3.2 GHz) WITH AREA OPTIMIZATION ALONE, SAME AS THE PREVIOUS WORKS, AND WITH

SIMULTANEOUS AREA AND WIRE-LENGTH OPTIMIZATION [HB∗-TREE (AREA+WL)], BASED ON THE MCNC BENCHMARKS

TABLE VI
COMPARISONS OF AREA UTILIZATION AND CPU TIMES FOR SP (ON SUN BLADE 100 500 MHz), SEGMENT TREE (SEG. TREE)

(ON SUN BLADE 100 500 MHz), SP+LP (PENTIUM4 3.2 GHz), SP WITH DUMMY NODES (SP w. DUMMY) (ON PENTIUM4 3.2 GHz),
AND HB∗-TREE (ON PENTIUM4 3.2 GHz), BASED ON TWO REAL INDUSTRY BENCHMARKS

(“Area”), and the runtimes (“Time”) for the aforementioned

works and our HB∗-tree with area optimization alone, same as

the previous works, and with simultaneous area and wire-length

optimization. The results of the works in [3], [8], and [15] are

taken from [15], and those of [17] are based on the package

provided by the authors. The results show that our HB∗-tree

achieves average area reductions of 3%, 2%, 1%, and 2% over

[3], [8], [15], and [17], respectively. Note that the improvements

should not be considered marginal, since the previous works

have pushed the solution quality close to their limits. The main

reason for the area improvement over the previous works is

that our approach benefits from both the symmetry-island for-

mulation and the short packing time of the proposed floorplan

representations. Based on the symmetry-island formulation, the

undesired solutions are pruned, and thus, we do not waste the

time to search inferior solutions during SA. With the short

packing time, we can search for more solutions within the same

time limit. Consequently, our approach has greater possibility

to find better solutions in shorter running time. For the running

time, our algorithm is about 4.09× faster than in [17]. Since

all other previous works ran on different platforms, it is not

easy to report the speedups of our algorithm. Nevertheless, it

is obvious from the table that our algorithm runs much faster

than the previous works.

In the second set of experiments, we compared our algo-

rithm with SPs in [8], segment trees in [12], SPs with linear

programming in [16], and SPs with dummy nodes in [17].

Table VI lists the names of the industry benchmark circuits,

the total areas, and the runtime for SPs, segment trees, SPs

with linear programming, SPs with dummy nodes, and HB∗-

tree. The results show that our algorithm achieved average

area reductions of 7.1%, 6.6%, 1.6%, and 10.3% over [8],

[12], [16], and [17], respectively. In some applications, the

orientations of analog device modules may not be allowed to

Fig. 19. Resulting placement of ami49 with simultaneous area and wire-
length optimization, which contains the symmetry group, S = {(b19, b21),
bs

30
, bs

48
}.

be changed. To make fair comparisons with the previous works,

we also performed our algorithm without module rotation. Our

results show only 2.4% and 4% area overheads without the

rotation, compared to the results of SPs with linear program-

ming [16] and our approach, respectively. For the running time,

our approach achieves significant speedups over the previous

works, which is about 39.88× and 5.68× faster than those

in [16] and [17], respectively. Again, the previous works [8],
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Fig. 20. Resulting placement of biasynth_2p4g with three symmetry groups. (a) Resulting placement without module rotation. (b) Resulting placement with
module rotation.

[12] ran on different platforms, and thus, we do not report the

corresponding speedups; yet, it is obvious that our algorithm

runs much faster than the previous works. It is clear from the

two experiments that our algorithm achieves the best quality

and efficiency than all published works.

Fig. 19 shows the resulting placement of ami49 with si-

multaneous area and wire-length optimization, which contains

the symmetry group S = {(b19, b21), b
s
30, b

s
48}. Fig. 20 shows

the resulting placements of biasynth_2p4g with the symmetry

modules being colored.

VII. CONCLUSION AND FUTURE WORK

We have proposed the first linear-time-packing algorithm

for the placement with symmetry constraints, based on the

symmetry-island formulation that prunes the solution subspace

formed with nonsymmetry-island placements. We have intro-

duced the concept of symmetry islands and presented the ASF-

B∗-trees to directly model the placement of a symmetry island.

We have also presented the hierarchical HB∗-trees to simultane-

ously optimize the placement with both symmetry islands and

nonsymmetric modules. Experimental results have shown that

our approach achieves the best-published quality and runtime

efficiency for analog placement.
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